

Joint work with Noga Alon
Clara Shikhelman WOLA 2019

GRAPH MODIFICATION

For an input graph G find the minimum possible number of edges/vertices we need to
add/remove/edit to get a graph with given property.

INTRO NP-HARD EDGE MODIFICATION PROBLEMS

Yannakakis '81 being outerplanar, transitively orientable, and line-invertible.

Asano and Hirata '82, Asano '87 Certain properties expressible by forbidding minors or topological minors.

Natanzon, Shamir and Sharan '01 Hereditary properties such as being Perfect and Comparability.

INTRO apProximation OF EDGE MOD PROBLEMS

Fernandez de la Vega'96, Arora, Frieze and Kaplan
Arora, Karger and Karpinski '02 Quadratic assignment
'95 several NP-complete problems and other
problems such as MAX-CUT and MAX-3-CNF

Frieze and Kannan '99
Alon, Vega, Kannan and
Karpinski '02 Constraint-
Satisfaction-Problem
Graph theo. properties

INTRO SOME DEFINITIONS

A graph property is called monotone if it can be defined by forbidding a family of graphs.

The only relevant edge modification for monotone properties is edge deletion.

For a graphs G, T and a family of graphs \mathcal{F} let $\operatorname{ex}(G, T, \mathcal{F})$ be the maximum possible number of copies of T in an \mathcal{F}-free subgraph of G.

INTRODUCTION $\operatorname{ex}\left(G, K_{2}, \mathcal{F}\right)$

Alon, Shapira and Sudakov '05 For any $\epsilon>0$ and \mathcal{F} there is a polynomial time algorithm that approximates $\operatorname{ex}\left(G, K_{2}, \mathcal{F}\right)$ up to an additive error of ϵn^{2}.

A significantly $\left(n^{2-\epsilon}\right)$ better approximation is possible iff there is a bipartite graph in \mathcal{F}.

ALGORITHM FOR GENERAL T

Alon, Sh. '18+ For any graph T, finite family of graphs \mathcal{F} and $\epsilon>0$ there is a polynomial
time algorithm that approximates $\operatorname{ex}(G, T, \mathcal{F})$
up to an additive error of $\epsilon n^{v(T)}$.

Can we do better?

CAN WE DO BETTER?

$\mathcal{B}(T)$ - The family of blow ups is all the graphs obtained from T by replacing vertices with independent sets and every edge with complete bipartite graph.

Proposition (Alon, Sh. '18+) Let T be a graph and \mathcal{F} a family of graphs s.t. there is a graph $H \in \mathcal{F} \cap \mathcal{B}(T)$. Then $\operatorname{ex}(G, T, \mathcal{F})$ can be calculated up to an additive error of $n^{v(T)-c(T, \mathcal{F})}$ in polynomial time.

CAN WE DO BETTER?

Conjecture It is NP-hard to approximate $\operatorname{ex}(G, T, \mathcal{F})$ up to an additive error of $n^{v(T)-\epsilon}$ iff $\mathcal{F} \cap \mathcal{B}(T)=\varnothing$.

Proved for:

1. Both T and \mathcal{F} are complete graphs
2. Both T and \mathcal{F} are 3-connected, NP-hard up to an additive error of $n^{v(T)-2-\epsilon}$
3. In progress - additive error of $n^{v(T)-\epsilon}$

INTUITION FOR THE ALGORITHM REGULAR PAIRS

Given a graph G and a pair of disjoint sets V_{1}, V_{2}, we say that $\left(V_{1}, V_{2}\right)$ is an $\boldsymbol{\epsilon}$-regular pair if for every $U_{i} \subseteq V_{i}$ s.t. $\left|U_{i}\right|>\epsilon\left|V_{i}\right|$

$$
\left|d\left(V_{i}, V_{j}\right)-d\left(U_{i}, U_{j}\right)\right| \leq \epsilon
$$

Where $d\left(V_{i}, V_{j}\right)=\frac{e\left(V_{i}, V_{j}\right)}{\left|V_{i}\right| \cdot\left|V_{j}\right|}$

INTUITION FOR THE ALGORITHM regular partitions

For a graph G, a partition of its vertices $V=U \cup_{i=1}^{k} V_{i}$ is called strongly ϵ-regular if

1. For every $i, j\left|V_{i}\right|=\left|V_{j}\right|$ and $|U|<k$
2. Every pair $\left(V_{i}, V_{j}\right)$ is ϵ-regular

Can be found in pol-time by changing $o\left(n^{2}\right)$ edges.

INTUITION FOR THE ALGORITHM CONVENTIONAL SUBGRAPH

A conventional subgraph of G if it is obtained by deleting

1. All of edge inside the sets V_{i}
2. All of the edges with endpoint in U
3. All of the edges between some $\left(V_{i}, V_{j}\right)$

How many conventional subgraphs are there?
$2^{\binom{k}{2}}$

THE (SIMPLE) ALGORITHM

For a graph T, a finite family of graphs \mathcal{F} and input graph G :

1. Find a strong ϵ-regular partition of G.
2. Find a conventional subgraph of G which is \mathcal{F}-homorphism-free and has max. possible T density.

Main Lemma

This graph has $\geq \operatorname{ex}(G, T, \mathcal{F})-\epsilon n^{v(T)}$ copies of T.

THANKS FOR YOUR ATTENTION!

