LOCAL MARKOV CHAINS, PATH COUPLING AND BELIEF PROPAGATION (BP)

Eric Vigoda

Georgia Tech

joint work with:
Charis Efthymiou (Warwick)
Tom Hayes (New Mexico)
Daniel Štefankovič (Rochester)
Yitong Yin (Nanjing)

WOLA, July '19

Undirected graph G = (V, E):

Independent set: subset of vertices with no adjacent pairs.

Let $\Omega = \text{all independent sets (of all sizes)}$.

Our Goal:

- **①** Counting problem: Estimate $|\Omega|$.
- **2** Sampling problem: Sample uniformly at random from Ω .

Given G = (V, E), Markov chain (X_t) on $\Omega = \mathsf{all}$ independent sets.

Transitions $X_t \rightarrow X_{t+1}$:

Given G = (V, E), Markov chain (X_t) on $\Omega = \text{all independent sets.}$

Transitions $X_t \rightarrow X_{t+1}$:

• Choose v uniformly at random from V.

Given G = (V, E), Markov chain (X_t) on $\Omega =$ all independent sets.

Transitions $X_t \to X_{t+1}$:

• Choose v uniformly at random from V.

$$X' = \begin{cases} X_t \cup \{v\} & \text{with probability } 1/2\\ X_t \setminus \{v\} & \text{with probability } 1/2 \end{cases}$$

Given G = (V, E), Markov chain (X_t) on $\Omega = \text{all independent sets.}$

Transitions $X_t \rightarrow X_{t+1}$:

• Choose v uniformly at random from V.

$$X' = \begin{cases} X_t \cup \{v\} & \text{with probability } 1/2\\ X_t \setminus \{v\} & \text{with probability } 1/2 \end{cases}$$

 $oldsymbol{2}$ If $X' \in \Omega$, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$

Stationary distribution is $\mu = \text{uniform}(\Omega)$.

Mixing Time:
$$T_{\text{mix}} := \min\{t : \text{ for all } X_0, \ d_{tv}(X_t, \mu) \le 1/4 \}$$

Then $T_{\text{mix}}(\epsilon) \leq \log(1/\epsilon) T_{\text{mix}}$.

Recall,
$$d_{\mathsf{TV}}(\mu, \nu) = \frac{1}{2} \sum_{\sigma \in \Omega} |\mu(\sigma) - \nu(\sigma)|$$
.

Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set}$ of all independent sets in G.

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set of all independent sets in } G$.

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n):

1 Counting: Compute $|\Omega|$,

2 Sampling: generate random element of Ω .

```
Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set} of all independent sets in G.
```

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n):

- **1** Counting: Compute $|\Omega|$,
- **2** Sampling: generate random element of Ω .

Exactly computing $|\Omega|$ is #P-complete, even for maximum degree $\Delta=3$.

[Greenhill '00]

Approximate $|\Omega|$:

FPRAS for *Z*: Given
$$G$$
, ϵ , δ > 0, output EST where:

$$\Pr\left(\mathsf{EST}(1-\epsilon) \leq Z \leq \mathsf{EST}(1+\epsilon)\right) \geq 1-\delta,$$
 in time $\mathsf{poly}(|G|, 1/\epsilon, \mathsf{log}(1/\delta)).$

FPTAS for *Z*: FPRAS with $\delta = 0$.

Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set}$ of all independent sets in G.

Typically, $|\Omega|$ is HUGE = exponentially large in n.

```
Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set} of all independent sets in G.
```

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n):

Compute $|\Omega|$ or sample from uniform(Ω)?

```
Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set of all independent sets in } G.
```

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n): Compute $|\Omega|$ or sample from uniform (Ω) ?

General graphs:

NP-hard to approx. $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon > 0$.

```
let \Omega = set of all independent sets in G.
Typically, |\Omega| is HUGE = exponentially large in n.
Goal: in time poly(n):
               Compute |\Omega| or sample from uniform(\Omega)?
General graphs:
         NP-hard to approx. |\Omega| within 2^{n^{1-\epsilon}} for any \epsilon > 0.
Restricted graphs: Given graph G with maximum degree \Delta:
    For \Delta < 5, FPTAS for |\Omega|.
                                                                       [Weitz '06]
    For \Delta \geq 6, \exists \delta > 0, no poly-time to approx |\Omega| within 2^{n^{\delta}}
unless NP = RP.
                                                                        [Sly '10]
```

Given input graph G = (V, E) with n = |V| vertices,

```
Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set} of all independent sets in G.
```

Typically, $|\Omega|$ is HUGE = exponentially large in n.

Goal: in time poly(n):

Compute $|\Omega|$ or sample from uniform(Ω)?

General graphs:

NP-hard to approx. $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon > 0$.

Restricted graphs: Given graph G with maximum degree Δ : For $\Delta \leq$ 5, FPTAS for $|\Omega|$. [Weitz '06]

For $\Delta \geq$ 6, $\exists \delta >$ 0, no poly-time to approx $|\Omega|$ within $2^{n^{\delta}}$ unless NP = RP. [Sly '10]

What happens between $\Delta = 5 \leftrightarrow 6$?

Statistical physics phase transition on infinite Δ -regular tree!

HARD-CORE GAS MODEL

Graph
$$G = (V, E)$$
, fugacity $\lambda > 0$, for $\sigma \in \Omega$:

Gibbs distribution:
$$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}$$

where

Partition function:
$$Z = \sum_{\sigma} \lambda^{|\sigma|}$$

$$\lambda = 1$$
, $Z = |\Omega| = \#$ of independent sets.

HARD-CORE GAS MODEL

Graph
$$G = (V, E)$$
, fugacity $\lambda > 0$, for $\sigma \in \Omega$:

Gibbs distribution:
$$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}$$

where

Partition function:
$$Z = \sum_{\sigma} \lambda^{|\sigma|}$$

$$\lambda = 1$$
, $Z = |\Omega| = \#$ of independent sets.

Inuition: Small λ easier: for $\lambda < 1$ prefer smaller sets. Large λ harder: for $\lambda > 1$ prefer max independent sets.

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$

Extremal cases: even versus odd height.

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell\to\infty} p_{2\ell} = \lim_{\ell\to\infty} p_{2\ell+1}$$
 ?

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$
 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root.
 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root.

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} \, (\mathsf{root} \, \mathsf{is} \, \mathsf{occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$
?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

Example:
$$\Delta = 5$$
, $\lambda = 1$:
 $p_{even} = .245$, $p_{odd} = .245$

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

Example:
$$\Delta = 5$$
, $\lambda = 1.05$:

$$p_{even} = .250, \ p_{odd} = .250$$

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

Example:
$$\Delta = 5$$
, $\lambda = 1.06$:

$$p_{even} = .283, \ p_{odd} = .219$$

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness

Tree/BP recursions:
$$p_{\ell+1} = \frac{\lambda(1-p_{\ell})^{\Delta-1}}{1+\lambda(1-p_{\ell})^{\Delta-1}}$$

Key: Unique vs. Multiple fixed points of 2-level recursions.

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$

Extremal cases: even versus odd height.

Does
$$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$
 ?

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

 $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness

 $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness

For 2-dimensional integer lattice \mathbb{Z}^2 :

Conjecture: $\lambda_c(\mathbb{Z}^2) \approx 3.79$

Best bounds: $2.53 < \lambda_c(\mathbb{Z}^2) < 5.36$

Tree threshold:
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

Tree threshold:
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

• All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]

Tree threshold:
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

• All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]

Tree threshold:
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

• All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]

• All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]

Tree threshold:
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

- All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]

• All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]

Tree threshold:
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

- All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]

• All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]

What happens at $\lambda_c(\Delta)$?

Tree threshold:
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

- All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]

• All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]

What happens at
$$\lambda_c(\Delta)$$
?

Statistical physics phase transition on infinite Δ -regular tree Computational phase transition on general max deg. Δ graphs

Tree threshold:
$$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$
:

- All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]

 BUT: For $\delta, \epsilon > 0$, $\Delta \geq 3$, exists $C = C(\delta)$, for $\lambda < (1 \delta)\lambda_c$, running time $(n/\epsilon)^{C\log \Delta}$.
- ullet All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]

What happens at
$$\lambda_c(\Delta)$$
?

Statistical physics phase transition on infinite Δ -regular tree Computational phase transition on general max deg. Δ graphs

HIGH-LEVEL IDEA OF FPTAS'S

[Weitz '06]: For G = (V, E) and vertex $a \in V$, consider T_{saw} :

$$\mathsf{Pr}_{\sigma \sim \mu_{\mathcal{T}}} \left(\mathsf{root} \notin \sigma \right) \quad = \quad \mathsf{Pr}_{\sigma \sim \mu_{\mathsf{G}}} \left(v \notin \sigma \right)$$

[Barvinok '14]: Consider $Z(\lambda)$ for complex λ . Suppose $Z(x) \neq 0$ for all x in an open disk D around interval $[0, \lambda]$. Look at Taylor of $f(x) = \log Z(x)$, then: $f(\lambda) = \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} f^{(j)}(0)$ and $O(\log(n))$ terms gives good approx.

Poly-time for constant Δ : [Patel,Regts '17] No complex zeros: [Peters,Regts '19]

Glauber dynamics (X_t) = Gibbs Sampler

 $X_t \to X_{t+1}$ is defined as follows:

Glauber dynamics (X_t) = Gibbs Sampler

 $X_t \rightarrow X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

 $X_t \to X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

$$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$

 $X_t \rightarrow X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

$$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$

② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$

Stationary distribution is Gibbs distribution:
$$\mu(X) = \frac{\lambda^{|X|}}{Z}$$

 $X_t \to X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

$$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$

② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$

Stationary distribution is Gibbs distribution: $\mu(X) = \frac{\lambda^{|X|}}{Z}$

Mixing Time:
$$T_{mix} := \min\{t : \text{ for all } X_0, \ d_{tv}(X_t, \mu) \leq 1/4\}$$

Then $T_{\text{mix}}(\epsilon) \leq \log(1/\epsilon) T_{\text{mix}}$.

 $X_t \rightarrow X_{t+1}$ is defined as follows:

• Choose v uniformly at random from V.

$$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$

② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$

Stationary distribution is Gibbs distribution: $\mu(X) = \frac{\lambda^{|X|}}{Z}$

Mixing Time:
$$T_{mix} := \min\{t : \text{ for all } X_0, \ d_{tv}(X_t, \mu) \leq 1/4\}$$

Then $T_{\text{mix}}(\epsilon) \leq \log(1/\epsilon) T_{\text{mix}}$.

Recall,
$$d_{\mathsf{TV}}(\mu, \nu) = \frac{1}{2} \sum_{\sigma \in \Omega} |\mu(\sigma) - \nu(\sigma)|$$
.

Our Results

Our Results

THEOREM

For all
$$\delta>0$$
, there exists $\Delta_0=\Delta_0(\delta)$: all $G=(V,E)$ of max degree $\Delta\geq\Delta_0$ and girth \geq 7, all $\lambda<(1-\delta)\lambda_c(\Delta)$,

$$T_{\min} = O(n \log n)$$
.

Our Results

THEOREM

For all
$$\delta>0$$
, there exists $\Delta_0=\Delta_0(\delta)$:
all $G=(V,E)$ of max degree $\Delta\geq\Delta_0$ and girth \geq 7,
all $\lambda<(1-\delta)\lambda_c(\Delta)$,

$$T_{\min} = O(n \log n)$$
.

COROLLARIES

- An $O^*(n^2)$ FPRAS for estimating the partition function Z.
- $T_{mix} = O(n \log n)$ when $\lambda \leq (1 \delta)\lambda_c(\Delta)$ for:
 - \bullet random Δ -regular graphs
 - ullet random Δ -regular bipartite graphs

Coupling of Markov Chains

Consider a Markov chain (Ω, P) .

Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where:

$$X_t \sim P$$
 and $Y_t \sim P$

More precisely, for all $A, B, C \in \Omega$,

$$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(A, C)$$

$$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(B, C)$$

Coupling of Markov Chains

Consider a Markov chain (Ω, P) .

Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where:

$$X_t \sim P$$
 and $Y_t \sim P$

More precisely, for all $A, B, C \in \Omega$,

$$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(A, C)$$

$$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(B, C)$$

Intuition:

$$(X_t o X_{t+1}) \sim P$$
 and $(Y_t o Y_{t+1}) \sim P$ can correlate by ω .

Let X_0 be arbitrary, and $Y_0 \sim \pi$. Once $X_T = Y_T$ then $X_T \sim \pi$.

COUPLING OF MARKOV CHAINS

Consider a Markov chain (Ω, P) .

Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where:

$$X_t \sim P$$
 and $Y_t \sim P$

More precisely, for all $A, B, C \in \Omega$,

$$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(A, C)$$

 $Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(B, C)$

Intuition:

$$(X_t o X_{t+1}) \sim P$$
 and $(Y_t o Y_{t+1}) \sim P$ can correlate by ω .

Let X_0 be arbitrary, and $Y_0 \sim \pi$. Once $X_T = Y_T$ then $X_T \sim \pi$.

Coupling time:

$$T_{\text{couple}} = \max_{A,B \in \Omega} \min\{t : \Pr\left(X_t \neq Y_t \mid X_0 = A, Y_0 = B\right) \leq 1/4.\}$$

$$T_{\rm mix} \leq T_{\rm couple}$$

Coupling for Independent Sets

Consider a pair of independent sets X_t and Y_t :

Coupling for Independent Sets

Consider a pair of independent sets X_t and Y_t :

Look at $\frac{X_t}{Y_t}$:

COUPLING FOR INDEPENDENT SETS

Consider a pair of independent sets X_t and Y_t :

Look at $\frac{X_t}{Y_t}$:

Identity Coupling:

Update same v_t , attempt to add to both or remove from both.

COUPLING FOR INDEPENDENT SETS

Consider a pair of independent sets X_t and Y_t :

Look at $\frac{X_t}{Y_t}$:

Identity Coupling:

Update same v_t , attempt to add to both or remove from both.

How to analyze???

Coupling for bounding T_{mix}

For all X_t, Y_t , define a coupling: $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$.

Look at Hamming distance: $H(X_t, Y_t) = |\{v : X_t(v) \neq Y_t(v)\}|.$

If for all X_t, Y_t ,

$$\mathbb{E}[H(X_{t+1}, Y_{t+1})|X_t, Y_t] \leq (1 - C/n)H(X_t, Y_t),$$

Then,
$$\mathbf{Pr}(A_T \neq B_T) \leq \mathbb{E}[H(A_T, B_T)]$$

 $\leq H(A_0, B_0)(1 - C/n)^T$
 $\leq n \exp(-C/n)$
 $\leq 1/4 \text{ for } T = O(n \log n).$

Path coupling: Suffices to consider pairs where $H(X_t, Y_t) = 1$.

Coupling for bounding T_{mix}

For all X_t , Y_t , define a coupling: $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$.

Look at Hamming distance: $H(X_t, Y_t) = |\{v : X_t(v) \neq Y_t(v)\}|.$

If for all X_t, Y_t ,

$$\mathbb{E}[H(X_{t+1}, Y_{t+1})|X_t, Y_t] < (1 - C/n)H(X_t, Y_t),$$

Then,
$$\Pr(A_T \neq B_T) \leq \mathbb{E}[H(A_T, B_T)]$$

 $\leq H(A_0, B_0)(1 - C/n)^T$

$$\leq n \exp(-C/n)$$

 $\leq 1/4$ for $T = O(n \log n)$.

Path coupling: Suffices to consider pairs where $H(X_t, Y_t) = 1$.

Can replace H():

For
$$\Phi: V \to \mathbb{R}_{\geq 1}$$
, let $\Phi(X, Y) = \sum_{v \in X \oplus Y} \Phi_v$.
Key: if $X \neq Y$ then $\Phi(X, Y) \geq 1$.
Hence, $\Pr(X_t \neq Y_t) < \mathbb{E} [\Phi(X_t, Y_t)]$.

$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

$$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

$$\mathbb{E}\left[H(X_{t+1}, Y_{t+1})\right] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

$$= (1 - \frac{1}{n}) + \frac{1}{n} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \frac{\lambda}{1 + \lambda}$$

$$\leq 1 - \frac{1}{n} + \frac{\Delta}{n} \frac{\lambda}{1 + \lambda}$$

$$\mathbb{E}\left[H(X_{t+1}, Y_{t+1})\right] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$

$$= (1 - \frac{1}{n}) + \frac{1}{n} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \frac{\lambda}{1 + \lambda}$$

$$\leq 1 - \frac{1}{n} + \frac{\Delta}{n} \frac{\lambda}{1 + \lambda} < 1$$
Requires: $\lambda < 1/(\Delta - 1)$

$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,\,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$

$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$

$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$

$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$

$$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,\,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle V} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$

$$\begin{split} \mathbb{E}\left[\Phi(X_{t+1},Y_{t+1})|\,X_t,\,Y_t\right] &= \left(1-\frac{1}{n}\right)\Phi_v + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \Phi_{z_i} \\ &= \left(1-\frac{1}{n}\right)\Phi_v + \frac{1}{n}\sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \frac{\lambda}{1+\lambda}\Phi_{z_i} \end{split}$$

$$\mathbb{E}\left[\left. \varPhi(X_{t+1},Y_{t+1}) \right| X_t,Y_t \right] = \left(1 - \frac{1}{n}\right) \varPhi_{v} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$

$$= \left(1 - \frac{1}{n}\right) \varPhi_{v} + \frac{1}{n} \sum_{z_{i}} \mathbf{1} \{z_{i} \text{ unblocked}\} \frac{\lambda}{1 + \lambda} \varPhi_{z_{i}} < \underline{\varPhi}_{v}$$

Want:
$$\Phi_{v} > \frac{\lambda}{1+\lambda} \sum_{z_{i}} \mathbf{1}\{z_{i} \text{ unblocked in } Y_{t}\} \cdot \Phi_{z_{i}}$$

Belief Propagation on trees

For tree T and given λ , compute:

$$q(v, w) = \mu(v \text{ occupied}|w \text{ unoccupied})$$

$$R_{v \to w} = \frac{q(v, w)}{1 - q(v, w)}$$

$$R_{v \to w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}}$$

BP starts from arbitrary $R_{\nu \to w}^0$, then iterates:

$$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}}$$

BP AND GIBBS DISTRIBUTION ON TREES

Convergence on trees

For i > max-depth, for every initial (R^0) :

$$R_{v \to w}^i = R_{v \to w}^*$$

In turn

$$\mu(v \text{ occupied}|w \text{ unoccupied}) = q^* = \frac{R_{v \to w}^*}{1 + R_{v \to w}^*}$$

BP is an elaborate version of *Dynamic Programing*

BP CONVERGENCE FOR GIRTH > 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$:

$$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$

BP Convergence for girth > 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$:

$$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$

Does it converge? If so, to what?

BP CONVERGENCE FOR GIRTH > 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$:

$$R_{v \to w}^i = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^i(v, w) = \frac{R_{v \to w}^i}{1 + R_{v \to w}^i}$$

Does it converge? If so, to what?

For $\lambda < \lambda_c$: R() has a unique fixed point R^* .

BP Convergence for Girth ≥ 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$:

$$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$

Does it converge? If so, to what?

For $\lambda < \lambda_c$: R() has a unique fixed point R^* .

THEOREM

Let
$$\delta, \epsilon > 0$$
, $\Delta_0 = \Delta_0(\delta, \epsilon)$ and $C = C(\delta, \epsilon)$.

For G of max degree $\Delta \geq \Delta_0$ and girth ≥ 6 , all $\lambda < (1 - \delta)\lambda_c(\Delta)$: for i > C, for all $v \in V$, $w \in N(v)$,

$$\left|\frac{q^i(\mathsf{v},\mathsf{w})}{\mu(\mathsf{v}\ is\ occupied\ |\ \mathsf{w}\ is\ unoccupied)} - 1\right| \leq \epsilon$$

Unblocked Neighbors and Loopy BP

Recall, loopy BP estimate that z is unoccupied:

$$R_z^i = \lambda \prod_{y \in N(v)} \frac{1}{1 + R_y^{i-1}}$$

Loopy BP estimate that z is unblocked:

$$\omega_z^i = \prod_{y \in N(z)} \frac{1}{1 + \lambda \cdot \omega_y^{i-1}}$$

For $\lambda < \lambda_c$:

Since R converges to unique fixed point R^* , thus ω converges to unique fixed point ω^* .

We'll prove (but don't know a priori):

$$\omega^*(z) \approx \mu(z \text{ is unblocked})$$

BACK TO PATH COUPLING

worst case condition

$$\Phi_{\nu} > \frac{\lambda}{1+\lambda} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \cdot \Phi_{z_i}$$

when X_t, Y_t "behave" like ω^*

$$\Phi_{\nu} > \frac{\lambda}{1+\lambda} \sum_{z_i} \omega^*(z_i) \cdot \Phi_{z_i}$$

Finding Φ

REFORMULATION

Goal: Find Φ such that

$$\Phi_{v} > \sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1 + \lambda \omega^{*}(z)} \Phi_{z}$$

Finding Φ

REFORMULATION

Goal: Find Φ such that

$$\Phi_{v} > \sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1 + \lambda \omega^{*}(z)} \Phi_{z}$$

Define $n \times n$ matrix C

$$\mathcal{C}(v,z) = \left\{ egin{array}{ll} rac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} & ext{if } z \in \mathcal{N}(v) \\ 0 & ext{otherwise} \end{array}
ight.$$

Finding Φ

REFORMULATION

Goal: Find Φ such that

$$\Phi_{
m v} > \sum_{z \in N({
m v})} rac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} \; \Phi_{z}$$

Define $n \times n$ matrix C

$$C(v,z) = \begin{cases} \frac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} & \text{if } z \in N(v) \\ 0 & \text{otherwise} \end{cases}$$

Rephrased: Find vector $\Phi \in \mathbb{R}^V_{\geq 1}$ such that

$$\mathcal{C} \Phi < \Phi$$

CONNECTIONS WITH LOOPY BP

Recall, BP operator for unblocked:
$$F(\omega)(z) = \prod_{y \in N(z)} \frac{1}{1 + \lambda \omega(y)}$$

It has Jacobian:
$$J(v, u) = \left| \frac{\partial F(\omega)(v)}{\partial \omega(u)} \right| = \begin{cases} \frac{\lambda F(\omega)(v)}{1 + \lambda \omega(u)} & \text{if } u \in N(v) \\ 0 & \text{otherwise} \end{cases}$$

Let $J^*=J|_{\omega=\omega^*}$ denote the Jacobian at the fixed point ω^* .

Key fact:
$$C = D^{-1}J^*D$$
,

where D is diagonal matrix with $D(v, v) = \omega^*(v)$

CONNECTIONS WITH LOOPY BP

Recall, BP operator for unblocked:
$$F(\omega)(z) = \prod_{y \in N(z)} \frac{1}{1 + \lambda \omega(y)}$$

It has Jacobian:
$$J(v, u) = \left| \frac{\partial F(\omega)(v)}{\partial \omega(u)} \right| = \begin{cases} \frac{\lambda F(\omega)(v)}{1 + \lambda \omega(u)} & \text{if } u \in N(v) \\ 0 & \text{otherwise} \end{cases}$$

Let $J^*=J|_{\omega=\omega^*}$ denote the Jacobian at the fixed point ω^* .

Key fact:
$$C = D^{-1}J^*D$$
,

where D is diagonal matrix with $D(v, v) = \omega^*(v)$

Fixed point ω^* is Jacobian attractive so all eigenvalues < 1. Principal eigenvector Φ is good coupling distance.

KEY RESULTS

Proof approach:

- Find good Φ when locally X_t, Y_t "behave" like ω^*
- dynamics gets "local uniformity": $O(n \log \Delta)$ steps looks locally like ω^* . builds on [Hayes '13]
- Disagreements don't spread too fast

OUTLINE

Proof approach:

ullet Find good Φ when locally X_t, Y_t "behave" like ω^* —dynamics gets "local uniformity" builds on [Hayes '13]

• Disagreements don't spread too fast:

OUTLINE

Proof approach:

• Find good Φ when locally X_t, Y_t "behave" like ω^* —dynamics gets "local uniformity" builds on [Hayes '13]

```
For any X_0, when \lambda < \lambda_c and girth \geq 7, with prob. \geq 1 - \exp(-\Omega(\Delta)), for t = \Omega(n \log \Delta):
```

$$\#\{\text{Unblocked Neighbors of } v \text{ in } X_t\} < \sum_{z \in N(v)} \omega^*(z) + \epsilon \Delta.$$

• Disagreements don't spread too fast:

OUTLINE

Proof approach:

• Find good Φ when locally X_t, Y_t "behave" like ω^* —dynamics gets "local uniformity" builds on [Hayes '13]

For any
$$X_0$$
, when $\lambda < \lambda_c$ and girth ≥ 7 , with prob. $\geq 1 - \exp(-\Omega(\Delta))$, for $t = \Omega(n \log \Delta)$:

$$\#\{\text{Unblocked Neighbors of } v \text{ in } X_t\} < \sum_{z \in N(v)} \omega^*(z) + \epsilon \Delta.$$

• Disagreements don't spread too fast:

For
$$(X_0, Y_0)$$
 differ only at v , for $T = O(n \log \Delta)$, $r = O(\sqrt{\Delta})$, $\Pr(X_T \oplus Y_T \subset B_r(v)) \ge 1 - \exp(\Omega(\sqrt{\Delta}))$

lacktriangle Initially: single disagreement at v.

- lacktriangle Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".

- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.

- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- **3** The disagreements might spread during this burn-in.
- \bullet The disagreements do not escape the ball B, whp.

- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.
- lacktriangle The disagreements do not escape the ball B, whp.
- The entire ball *B* has uniformity, whp.

- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.
- lacktriangle The disagreements do not escape the ball B, whp.
- **1** The entire ball B has uniformity, whp.
- Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity

- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- **1** The disagreements might spread during this burn-in.
- \bullet The disagreements do not escape the ball B, whp.
- **1** The entire ball B has uniformity, whp.
- Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity and Φ gives contraction

- Initially: single disagreement at v.
- **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in".
- The disagreements might spread during this burn-in.
- \bullet The disagreements do not escape the ball B, whp.
- The entire ball B has uniformity, whp.
- Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity and Φ gives contraction
- Run O(n) steps to get expected # of disagreements < 1/8.

QUESTIONS

What happens at λ_c ?

QUESTIONS

What happens at λ_c ?

THANK YOU!