LOCAL MARKOV CHAINS, PATH COUPLING AND BELIEF PROPAGATION (BP) Eric Vigoda Georgia Tech joint work with: Charis Efthymiou (Warwick) Tom Hayes (New Mexico) Daniel Štefankovič (Rochester) Yitong Yin (Nanjing) WOLA, July '19 Undirected graph G = (V, E): Independent set: subset of vertices with no adjacent pairs. Let $\Omega = \text{all independent sets (of all sizes)}$. #### Our Goal: - **①** Counting problem: Estimate $|\Omega|$. - **2** Sampling problem: Sample uniformly at random from Ω . Given G = (V, E), Markov chain (X_t) on $\Omega = \mathsf{all}$ independent sets. Transitions $X_t \rightarrow X_{t+1}$: Given G = (V, E), Markov chain (X_t) on $\Omega = \text{all independent sets.}$ Transitions $X_t \rightarrow X_{t+1}$: • Choose v uniformly at random from V. Given G = (V, E), Markov chain (X_t) on $\Omega =$ all independent sets. Transitions $X_t \to X_{t+1}$: • Choose v uniformly at random from V. $$X' = \begin{cases} X_t \cup \{v\} & \text{with probability } 1/2\\ X_t \setminus \{v\} & \text{with probability } 1/2 \end{cases}$$ Given G = (V, E), Markov chain (X_t) on $\Omega = \text{all independent sets.}$ Transitions $X_t \rightarrow X_{t+1}$: • Choose v uniformly at random from V. $$X' = \begin{cases} X_t \cup \{v\} & \text{with probability } 1/2\\ X_t \setminus \{v\} & \text{with probability } 1/2 \end{cases}$$ $oldsymbol{2}$ If $X' \in \Omega$, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$ Stationary distribution is $\mu = \text{uniform}(\Omega)$. Mixing Time: $$T_{\text{mix}} := \min\{t : \text{ for all } X_0, \ d_{tv}(X_t, \mu) \le 1/4 \}$$ Then $T_{\text{mix}}(\epsilon) \leq \log(1/\epsilon) T_{\text{mix}}$. Recall, $$d_{\mathsf{TV}}(\mu, \nu) = \frac{1}{2} \sum_{\sigma \in \Omega} |\mu(\sigma) - \nu(\sigma)|$$. Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set}$ of all independent sets in G. Typically, $|\Omega|$ is HUGE = exponentially large in n. Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set of all independent sets in } G$. Typically, $|\Omega|$ is HUGE = exponentially large in n. Goal: in time poly(n): **1** Counting: Compute $|\Omega|$, **2** Sampling: generate random element of Ω . ``` Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set} of all independent sets in G. ``` Typically, $|\Omega|$ is HUGE = exponentially large in n. ## Goal: in time poly(n): - **1** Counting: Compute $|\Omega|$, - **2** Sampling: generate random element of Ω . Exactly computing $|\Omega|$ is #P-complete, even for maximum degree $\Delta=3$. [Greenhill '00] #### Approximate $|\Omega|$: **FPRAS** for *Z*: Given $$G$$, ϵ , δ > 0, output EST where: $$\Pr\left(\mathsf{EST}(1-\epsilon) \leq Z \leq \mathsf{EST}(1+\epsilon)\right) \geq 1-\delta,$$ in time $\mathsf{poly}(|G|, 1/\epsilon, \mathsf{log}(1/\delta)).$ **FPTAS** for *Z*: FPRAS with $\delta = 0$. Given input graph G = (V, E) with n = |V| vertices, let $\Omega = \text{set}$ of all independent sets in G. Typically, $|\Omega|$ is HUGE = exponentially large in n. ``` Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set} of all independent sets in G. ``` Typically, $|\Omega|$ is HUGE = exponentially large in n. *Goal:* in time poly(n): Compute $|\Omega|$ or sample from uniform(Ω)? ``` Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set of all independent sets in } G. ``` Typically, $|\Omega|$ is HUGE = exponentially large in n. Goal: in time poly(n): Compute $|\Omega|$ or sample from uniform (Ω) ? General graphs: NP-hard to approx. $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon > 0$. ``` let \Omega = set of all independent sets in G. Typically, |\Omega| is HUGE = exponentially large in n. Goal: in time poly(n): Compute |\Omega| or sample from uniform(\Omega)? General graphs: NP-hard to approx. |\Omega| within 2^{n^{1-\epsilon}} for any \epsilon > 0. Restricted graphs: Given graph G with maximum degree \Delta: For \Delta < 5, FPTAS for |\Omega|. [Weitz '06] For \Delta \geq 6, \exists \delta > 0, no poly-time to approx |\Omega| within 2^{n^{\delta}} unless NP = RP. [Sly '10] ``` Given input graph G = (V, E) with n = |V| vertices, ``` Given input graph G = (V, E) with n = |V| vertices, let \Omega = \text{set} of all independent sets in G. ``` Typically, $|\Omega|$ is HUGE = exponentially large in n. Goal: in time poly(n): Compute $|\Omega|$ or sample from uniform(Ω)? General graphs: NP-hard to approx. $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon > 0$. Restricted graphs: Given graph G with maximum degree Δ : For $\Delta \leq$ 5, FPTAS for $|\Omega|$. [Weitz '06] For $\Delta \geq$ 6, $\exists \delta >$ 0, no poly-time to approx $|\Omega|$ within $2^{n^{\delta}}$ unless NP = RP. [Sly '10] What happens between $\Delta = 5 \leftrightarrow 6$? Statistical physics phase transition on infinite Δ -regular tree! ## HARD-CORE GAS MODEL Graph $$G = (V, E)$$, fugacity $\lambda > 0$, for $\sigma \in \Omega$: Gibbs distribution: $$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}$$ where Partition function: $$Z = \sum_{\sigma} \lambda^{|\sigma|}$$ $$\lambda = 1$$, $Z = |\Omega| = \#$ of independent sets. #### HARD-CORE GAS MODEL Graph $$G = (V, E)$$, fugacity $\lambda > 0$, for $\sigma \in \Omega$: Gibbs distribution: $$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}$$ where Partition function: $$Z = \sum_{\sigma} \lambda^{|\sigma|}$$ $$\lambda = 1$$, $Z = |\Omega| = \#$ of independent sets. Inuition: Small λ easier: for $\lambda < 1$ prefer smaller sets. Large λ harder: for $\lambda > 1$ prefer max independent sets. For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$ Extremal cases: even versus odd height. For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$ Extremal cases: even versus odd height. Does $$\lim_{\ell\to\infty} p_{2\ell} = \lim_{\ell\to\infty} p_{2\ell+1}$$? For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$ Extremal cases: even versus odd height. Does $$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$? $$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$ $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$ Extremal cases: even versus odd height. Does $$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$? $$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$ $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} \, (\mathsf{root} \, \mathsf{is} \, \mathsf{occupied})$ Extremal cases: even versus odd height. Does $$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$? $$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$ $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness Example: $$\Delta = 5$$, $\lambda = 1$: $p_{even} = .245$, $p_{odd} = .245$ For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$ Extremal cases: even versus odd height. Does $$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$? $$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$ $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness Example: $$\Delta = 5$$, $\lambda = 1.05$: $$p_{even} = .250, \ p_{odd} = .250$$ For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$ Extremal cases: even versus odd height. Does $$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$? $$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$ $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness Example: $$\Delta = 5$$, $\lambda = 1.06$: $$p_{even} = .283, \ p_{odd} = .219$$ For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{\ is \ occupied})$ Extremal cases: even versus odd height. Does $$\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$$? $$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$ $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness Tree/BP recursions: $$p_{\ell+1} = \frac{\lambda(1-p_{\ell})^{\Delta-1}}{1+\lambda(1-p_{\ell})^{\Delta-1}}$$ Key: Unique vs. Multiple fixed points of 2-level recursions. For Δ -regular tree of height ℓ : Let $p_{\ell} := \mathbf{Pr} (\mathsf{root} \mathsf{ is occupied})$ Extremal cases: even versus odd height. Does $$\lim_{\ell\to\infty}p_{2\ell}=\lim_{\ell\to\infty}p_{2\ell+1}$$? $$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$ $\lambda \leq \lambda_c(\Delta)$: No boundary affects root. uniqueness $\lambda > \lambda_c(\Delta)$: Exist boundaries affect root. non-uniqueness #### For 2-dimensional integer lattice \mathbb{Z}^2 : Conjecture: $\lambda_c(\mathbb{Z}^2) \approx 3.79$ Best bounds: $2.53 < \lambda_c(\mathbb{Z}^2) < 5.36$ Tree threshold: $$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$: Tree threshold: $$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$: • All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06] Tree threshold: $$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$: • All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06] Tree threshold: $$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$: • All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06] • All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15] Tree threshold: $$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$: - All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06] - FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19] • All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15] Tree threshold: $$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$: - All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06] - FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19] • All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15] What happens at $\lambda_c(\Delta)$? Tree threshold: $$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$: - All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06] - FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19] • All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15] What happens at $$\lambda_c(\Delta)$$? Statistical physics phase transition on infinite Δ -regular tree Computational phase transition on general max deg. Δ graphs Tree threshold: $$\lambda_c(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$$: - All constant Δ , all $\lambda < \lambda_c(\Delta)$, FPTAS for Z. [Weitz '06] - FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19] BUT: For $\delta, \epsilon > 0$, $\Delta \geq 3$, exists $C = C(\delta)$, for $\lambda < (1 \delta)\lambda_c$, running time $(n/\epsilon)^{C\log \Delta}$. - ullet All $\Delta \geq$ 3, all $\lambda > \lambda_c(\Delta)$: No poly-time to approx. Z for Δ -regular, triangle-free G, unless NP = RP [Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15] What happens at $$\lambda_c(\Delta)$$? Statistical physics phase transition on infinite Δ -regular tree Computational phase transition on general max deg. Δ graphs #### HIGH-LEVEL IDEA OF FPTAS'S [Weitz '06]: For G = (V, E) and vertex $a \in V$, consider T_{saw} : $$\mathsf{Pr}_{\sigma \sim \mu_{\mathcal{T}}} \left(\mathsf{root} \notin \sigma \right) \quad = \quad \mathsf{Pr}_{\sigma \sim \mu_{\mathsf{G}}} \left(v \notin \sigma \right)$$ [Barvinok '14]: Consider $Z(\lambda)$ for complex λ . Suppose $Z(x) \neq 0$ for all x in an open disk D around interval $[0, \lambda]$. Look at Taylor of $f(x) = \log Z(x)$, then: $f(\lambda) = \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} f^{(j)}(0)$ and $O(\log(n))$ terms gives good approx. Poly-time for constant Δ : [Patel,Regts '17] No complex zeros: [Peters,Regts '19] # Glauber dynamics (X_t) = Gibbs Sampler $X_t \to X_{t+1}$ is defined as follows: # Glauber dynamics (X_t) = Gibbs Sampler $X_t \rightarrow X_{t+1}$ is defined as follows: • Choose v uniformly at random from V. $X_t \to X_{t+1}$ is defined as follows: • Choose v uniformly at random from V. $$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$ $X_t \rightarrow X_{t+1}$ is defined as follows: • Choose v uniformly at random from V. $$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$ ② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$ Stationary distribution is Gibbs distribution: $$\mu(X) = \frac{\lambda^{|X|}}{Z}$$ $X_t \to X_{t+1}$ is defined as follows: • Choose v uniformly at random from V. $$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$ ② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$ Stationary distribution is Gibbs distribution: $\mu(X) = \frac{\lambda^{|X|}}{Z}$ Mixing Time: $$T_{mix} := \min\{t : \text{ for all } X_0, \ d_{tv}(X_t, \mu) \leq 1/4\}$$ Then $T_{\text{mix}}(\epsilon) \leq \log(1/\epsilon) T_{\text{mix}}$. $X_t \rightarrow X_{t+1}$ is defined as follows: • Choose v uniformly at random from V. $$X' = egin{cases} X_t \cup \{v\} & ext{ with probability } \lambda/(1+\lambda) \ X_t \setminus \{v\} & ext{ with probability } 1/(1+\lambda) \end{cases}$$ ② If X' is independent set, then $X_{t+1} = X'$, otherwise $X_{t+1} = X_t$ Stationary distribution is Gibbs distribution: $\mu(X) = \frac{\lambda^{|X|}}{Z}$ Mixing Time: $$T_{mix} := \min\{t : \text{ for all } X_0, \ d_{tv}(X_t, \mu) \leq 1/4\}$$ Then $T_{\text{mix}}(\epsilon) \leq \log(1/\epsilon) T_{\text{mix}}$. Recall, $$d_{\mathsf{TV}}(\mu, \nu) = \frac{1}{2} \sum_{\sigma \in \Omega} |\mu(\sigma) - \nu(\sigma)|$$. # Our Results ### Our Results #### THEOREM For all $$\delta>0$$, there exists $\Delta_0=\Delta_0(\delta)$: all $G=(V,E)$ of max degree $\Delta\geq\Delta_0$ and girth \geq 7, all $\lambda<(1-\delta)\lambda_c(\Delta)$, $$T_{\min} = O(n \log n)$$. #### Our Results #### THEOREM For all $$\delta>0$$, there exists $\Delta_0=\Delta_0(\delta)$: all $G=(V,E)$ of max degree $\Delta\geq\Delta_0$ and girth \geq 7, all $\lambda<(1-\delta)\lambda_c(\Delta)$, $$T_{\min} = O(n \log n)$$. #### COROLLARIES - An $O^*(n^2)$ FPRAS for estimating the partition function Z. - $T_{mix} = O(n \log n)$ when $\lambda \leq (1 \delta)\lambda_c(\Delta)$ for: - \bullet random Δ -regular graphs - ullet random Δ -regular bipartite graphs ### Coupling of Markov Chains Consider a Markov chain (Ω, P) . Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where: $$X_t \sim P$$ and $Y_t \sim P$ More precisely, for all $A, B, C \in \Omega$, $$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(A, C)$$ $$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(B, C)$$ ### Coupling of Markov Chains Consider a Markov chain (Ω, P) . Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where: $$X_t \sim P$$ and $Y_t \sim P$ More precisely, for all $A, B, C \in \Omega$, $$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(A, C)$$ $$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(B, C)$$ #### Intuition: $$(X_t o X_{t+1}) \sim P$$ and $(Y_t o Y_{t+1}) \sim P$ can correlate by ω . Let X_0 be arbitrary, and $Y_0 \sim \pi$. Once $X_T = Y_T$ then $X_T \sim \pi$. #### COUPLING OF MARKOV CHAINS Consider a Markov chain (Ω, P) . Coupling is a joint process $\omega = (X_t, Y_t)$ on $\Omega \times \Omega$ where: $$X_t \sim P$$ and $Y_t \sim P$ More precisely, for all $A, B, C \in \Omega$, $$Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(A, C)$$ $Pr(X_{t+1} = C \mid X_t = A, Y_t = B) = P(B, C)$ #### Intuition: $$(X_t o X_{t+1}) \sim P$$ and $(Y_t o Y_{t+1}) \sim P$ can correlate by ω . Let X_0 be arbitrary, and $Y_0 \sim \pi$. Once $X_T = Y_T$ then $X_T \sim \pi$. #### Coupling time: $$T_{\text{couple}} = \max_{A,B \in \Omega} \min\{t : \Pr\left(X_t \neq Y_t \mid X_0 = A, Y_0 = B\right) \leq 1/4.\}$$ $$T_{\rm mix} \leq T_{\rm couple}$$ ## Coupling for Independent Sets Consider a pair of independent sets X_t and Y_t : ## Coupling for Independent Sets Consider a pair of independent sets X_t and Y_t : Look at $\frac{X_t}{Y_t}$: #### COUPLING FOR INDEPENDENT SETS Consider a pair of independent sets X_t and Y_t : Look at $\frac{X_t}{Y_t}$: #### **Identity Coupling:** Update same v_t , attempt to add to both or remove from both. #### COUPLING FOR INDEPENDENT SETS Consider a pair of independent sets X_t and Y_t : Look at $\frac{X_t}{Y_t}$: #### **Identity Coupling:** Update same v_t , attempt to add to both or remove from both. How to analyze??? # Coupling for bounding T_{mix} For all X_t, Y_t , define a coupling: $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$. Look at Hamming distance: $H(X_t, Y_t) = |\{v : X_t(v) \neq Y_t(v)\}|.$ If for all X_t, Y_t , $$\mathbb{E}[H(X_{t+1}, Y_{t+1})|X_t, Y_t] \leq (1 - C/n)H(X_t, Y_t),$$ Then, $$\mathbf{Pr}(A_T \neq B_T) \leq \mathbb{E}[H(A_T, B_T)]$$ $\leq H(A_0, B_0)(1 - C/n)^T$ $\leq n \exp(-C/n)$ $\leq 1/4 \text{ for } T = O(n \log n).$ Path coupling: Suffices to consider pairs where $H(X_t, Y_t) = 1$. # Coupling for bounding T_{mix} For all X_t , Y_t , define a coupling: $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$. Look at Hamming distance: $H(X_t, Y_t) = |\{v : X_t(v) \neq Y_t(v)\}|.$ If for all X_t, Y_t , $$\mathbb{E}[H(X_{t+1}, Y_{t+1})|X_t, Y_t] < (1 - C/n)H(X_t, Y_t),$$ Then, $$\Pr(A_T \neq B_T) \leq \mathbb{E}[H(A_T, B_T)]$$ $\leq H(A_0, B_0)(1 - C/n)^T$ $$\leq n \exp(-C/n)$$ $\leq 1/4$ for $T = O(n \log n)$. Path coupling: Suffices to consider pairs where $H(X_t, Y_t) = 1$. Can replace H(): For $$\Phi: V \to \mathbb{R}_{\geq 1}$$, let $\Phi(X, Y) = \sum_{v \in X \oplus Y} \Phi_v$. Key: if $X \neq Y$ then $\Phi(X, Y) \geq 1$. Hence, $\Pr(X_t \neq Y_t) < \mathbb{E} [\Phi(X_t, Y_t)]$. $$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$ $$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$ $$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$ $$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$ $$\mathbb{E}[H(X_{t+1}, Y_{t+1})] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$ $$\mathbb{E}\left[H(X_{t+1}, Y_{t+1})\right] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$ $$= (1 - \frac{1}{n}) + \frac{1}{n} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \frac{\lambda}{1 + \lambda}$$ $$\leq 1 - \frac{1}{n} + \frac{\Delta}{n} \frac{\lambda}{1 + \lambda}$$ $$\mathbb{E}\left[H(X_{t+1}, Y_{t+1})\right] = H(X_t, Y_t) - \frac{1}{n} + \sum_{z_i} \Pr[z_i \in Y_{t+1}]$$ $$= (1 - \frac{1}{n}) + \frac{1}{n} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \frac{\lambda}{1 + \lambda}$$ $$\leq 1 - \frac{1}{n} + \frac{\Delta}{n} \frac{\lambda}{1 + \lambda} < 1$$ Requires: $\lambda < 1/(\Delta - 1)$ $$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,\,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$ $$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$ $$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$ $$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle \mathcal{V}} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$ $$\mathbb{E}\left[\varPhi(X_{t+1},Y_{t+1})|\,X_t,\,Y_t\right] = \left(1 - \frac{1}{n}\right)\varPhi_{\scriptscriptstyle V} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$ $$\begin{split} \mathbb{E}\left[\Phi(X_{t+1},Y_{t+1})|\,X_t,\,Y_t\right] &= \left(1-\frac{1}{n}\right)\Phi_v + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \Phi_{z_i} \\ &= \left(1-\frac{1}{n}\right)\Phi_v + \frac{1}{n}\sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \frac{\lambda}{1+\lambda}\Phi_{z_i} \end{split}$$ $$\mathbb{E}\left[\left. \varPhi(X_{t+1},Y_{t+1}) \right| X_t,Y_t \right] = \left(1 - \frac{1}{n}\right) \varPhi_{v} + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \varPhi_{z_i}$$ $$= \left(1 - \frac{1}{n}\right) \varPhi_{v} + \frac{1}{n} \sum_{z_{i}} \mathbf{1} \{z_{i} \text{ unblocked}\} \frac{\lambda}{1 + \lambda} \varPhi_{z_{i}} < \underline{\varPhi}_{v}$$ Want: $$\Phi_{v} > \frac{\lambda}{1+\lambda} \sum_{z_{i}} \mathbf{1}\{z_{i} \text{ unblocked in } Y_{t}\} \cdot \Phi_{z_{i}}$$ #### Belief Propagation on trees For tree T and given λ , compute: $$q(v, w) = \mu(v \text{ occupied}|w \text{ unoccupied})$$ $$R_{v \to w} = \frac{q(v, w)}{1 - q(v, w)}$$ $$R_{v \to w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}}$$ BP starts from arbitrary $R_{\nu \to w}^0$, then iterates: $$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}}$$ ## BP AND GIBBS DISTRIBUTION ON TREES #### Convergence on trees For i > max-depth, for every initial (R^0) : $$R_{v \to w}^i = R_{v \to w}^*$$ In turn $$\mu(v \text{ occupied}|w \text{ unoccupied}) = q^* = \frac{R_{v \to w}^*}{1 + R_{v \to w}^*}$$ BP is an elaborate version of *Dynamic Programing* ## BP CONVERGENCE FOR GIRTH > 6 Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$: $$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$ ### BP Convergence for girth > 6 Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$: $$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$ Does it converge? If so, to what? ## BP CONVERGENCE FOR GIRTH > 6 Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$: $$R_{v \to w}^i = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^i(v, w) = \frac{R_{v \to w}^i}{1 + R_{v \to w}^i}$$ Does it converge? If so, to what? For $\lambda < \lambda_c$: R() has a unique fixed point R^* . # BP Convergence for Girth ≥ 6 Loopy Belief Propagation: Run BP on general G = (V, E). For all $v \in V, w \in N(v)$: $$R_{v \to w}^{i} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \to v}^{i-1}} \quad \text{and} \quad q^{i}(v, w) = \frac{R_{v \to w}^{i}}{1 + R_{v \to w}^{i}}$$ Does it converge? If so, to what? For $\lambda < \lambda_c$: R() has a unique fixed point R^* . #### THEOREM Let $$\delta, \epsilon > 0$$, $\Delta_0 = \Delta_0(\delta, \epsilon)$ and $C = C(\delta, \epsilon)$. For G of max degree $\Delta \geq \Delta_0$ and girth ≥ 6 , all $\lambda < (1 - \delta)\lambda_c(\Delta)$: for i > C, for all $v \in V$, $w \in N(v)$, $$\left|\frac{q^i(\mathsf{v},\mathsf{w})}{\mu(\mathsf{v}\ is\ occupied\ |\ \mathsf{w}\ is\ unoccupied)} - 1\right| \leq \epsilon$$ ### Unblocked Neighbors and Loopy BP Recall, loopy BP estimate that z is unoccupied: $$R_z^i = \lambda \prod_{y \in N(v)} \frac{1}{1 + R_y^{i-1}}$$ Loopy BP estimate that z is unblocked: $$\omega_z^i = \prod_{y \in N(z)} \frac{1}{1 + \lambda \cdot \omega_y^{i-1}}$$ For $\lambda < \lambda_c$: Since R converges to unique fixed point R^* , thus ω converges to unique fixed point ω^* . We'll prove (but don't know a priori): $$\omega^*(z) \approx \mu(z \text{ is unblocked})$$ #### BACK TO PATH COUPLING worst case condition $$\Phi_{\nu} > \frac{\lambda}{1+\lambda} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \cdot \Phi_{z_i}$$ when X_t, Y_t "behave" like ω^* $$\Phi_{\nu} > \frac{\lambda}{1+\lambda} \sum_{z_i} \omega^*(z_i) \cdot \Phi_{z_i}$$ ### Finding Φ #### REFORMULATION Goal: Find Φ such that $$\Phi_{v} > \sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1 + \lambda \omega^{*}(z)} \Phi_{z}$$ ### Finding Φ #### REFORMULATION Goal: Find Φ such that $$\Phi_{v} > \sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1 + \lambda \omega^{*}(z)} \Phi_{z}$$ Define $n \times n$ matrix C $$\mathcal{C}(v,z) = \left\{ egin{array}{ll} rac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} & ext{if } z \in \mathcal{N}(v) \\ 0 & ext{otherwise} \end{array} ight.$$ ## Finding Φ #### REFORMULATION Goal: Find Φ such that $$\Phi_{ m v} > \sum_{z \in N({ m v})} rac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} \; \Phi_{z}$$ Define $n \times n$ matrix C $$C(v,z) = \begin{cases} \frac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} & \text{if } z \in N(v) \\ 0 & \text{otherwise} \end{cases}$$ Rephrased: Find vector $\Phi \in \mathbb{R}^V_{\geq 1}$ such that $$\mathcal{C} \Phi < \Phi$$ #### CONNECTIONS WITH LOOPY BP Recall, BP operator for unblocked: $$F(\omega)(z) = \prod_{y \in N(z)} \frac{1}{1 + \lambda \omega(y)}$$ It has Jacobian: $$J(v, u) = \left| \frac{\partial F(\omega)(v)}{\partial \omega(u)} \right| = \begin{cases} \frac{\lambda F(\omega)(v)}{1 + \lambda \omega(u)} & \text{if } u \in N(v) \\ 0 & \text{otherwise} \end{cases}$$ Let $J^*=J|_{\omega=\omega^*}$ denote the Jacobian at the fixed point ω^* . Key fact: $$C = D^{-1}J^*D$$, where D is diagonal matrix with $D(v, v) = \omega^*(v)$ ### CONNECTIONS WITH LOOPY BP Recall, BP operator for unblocked: $$F(\omega)(z) = \prod_{y \in N(z)} \frac{1}{1 + \lambda \omega(y)}$$ It has Jacobian: $$J(v, u) = \left| \frac{\partial F(\omega)(v)}{\partial \omega(u)} \right| = \begin{cases} \frac{\lambda F(\omega)(v)}{1 + \lambda \omega(u)} & \text{if } u \in N(v) \\ 0 & \text{otherwise} \end{cases}$$ Let $J^*=J|_{\omega=\omega^*}$ denote the Jacobian at the fixed point ω^* . Key fact: $$C = D^{-1}J^*D$$, where D is diagonal matrix with $D(v, v) = \omega^*(v)$ Fixed point ω^* is Jacobian attractive so all eigenvalues < 1. Principal eigenvector Φ is good coupling distance. #### KEY RESULTS #### Proof approach: - Find good Φ when locally X_t, Y_t "behave" like ω^* - dynamics gets "local uniformity": $O(n \log \Delta)$ steps looks locally like ω^* . builds on [Hayes '13] - Disagreements don't spread too fast ### **OUTLINE** #### Proof approach: ullet Find good Φ when locally X_t, Y_t "behave" like ω^* —dynamics gets "local uniformity" builds on [Hayes '13] • Disagreements don't spread too fast: #### **OUTLINE** #### Proof approach: • Find good Φ when locally X_t, Y_t "behave" like ω^* —dynamics gets "local uniformity" builds on [Hayes '13] ``` For any X_0, when \lambda < \lambda_c and girth \geq 7, with prob. \geq 1 - \exp(-\Omega(\Delta)), for t = \Omega(n \log \Delta): ``` $$\#\{\text{Unblocked Neighbors of } v \text{ in } X_t\} < \sum_{z \in N(v)} \omega^*(z) + \epsilon \Delta.$$ • Disagreements don't spread too fast: #### OUTLINE #### Proof approach: • Find good Φ when locally X_t, Y_t "behave" like ω^* —dynamics gets "local uniformity" builds on [Hayes '13] For any $$X_0$$, when $\lambda < \lambda_c$ and girth ≥ 7 , with prob. $\geq 1 - \exp(-\Omega(\Delta))$, for $t = \Omega(n \log \Delta)$: $$\#\{\text{Unblocked Neighbors of } v \text{ in } X_t\} < \sum_{z \in N(v)} \omega^*(z) + \epsilon \Delta.$$ • Disagreements don't spread too fast: For $$(X_0, Y_0)$$ differ only at v , for $T = O(n \log \Delta)$, $r = O(\sqrt{\Delta})$, $\Pr(X_T \oplus Y_T \subset B_r(v)) \ge 1 - \exp(\Omega(\sqrt{\Delta}))$ lacktriangle Initially: single disagreement at v. - lacktriangle Initially: single disagreement at v. - **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in". - Initially: single disagreement at v. - **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in". - The disagreements might spread during this burn-in. - Initially: single disagreement at v. - **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in". - **3** The disagreements might spread during this burn-in. - \bullet The disagreements do not escape the ball B, whp. - Initially: single disagreement at v. - **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in". - The disagreements might spread during this burn-in. - lacktriangle The disagreements do not escape the ball B, whp. - The entire ball *B* has uniformity, whp. - Initially: single disagreement at v. - **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in". - The disagreements might spread during this burn-in. - lacktriangle The disagreements do not escape the ball B, whp. - **1** The entire ball B has uniformity, whp. - Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity - Initially: single disagreement at v. - **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in". - **1** The disagreements might spread during this burn-in. - \bullet The disagreements do not escape the ball B, whp. - **1** The entire ball B has uniformity, whp. - Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity and Φ gives contraction - Initially: single disagreement at v. - **2** Run the chains for $O(n \log \Delta)$ steps: "burn-in". - The disagreements might spread during this burn-in. - \bullet The disagreements do not escape the ball B, whp. - The entire ball B has uniformity, whp. - Interpolate and do path coupling for the disagree pairs in B, ... pairs have local uniformity and Φ gives contraction - Run O(n) steps to get expected # of disagreements < 1/8. # QUESTIONS What happens at λ_c ? # QUESTIONS What happens at λ_c ? # THANK YOU!