# Local Markov Chains, Path Coupling and Belief Propagation (BP) 

Eric Vigoda

Georgia Tech

joint work with:<br>Charis Efthymiou (Warwick)<br>Tom Hayes (New Mexico)<br>Daniel Štefankovič (Rochester) Yitong Yin (Nanjing)

WOLA, July '19

## Independent Set

Undirected graph $G=(V, E)$ :


Independent set: subset of vertices with no adjacent pairs.
Let $\Omega=$ all independent sets (of all sizes).
Our Goal:
(1) Counting problem: Estimate $|\Omega|$.
(2) Sampling problem: Sample uniformly at random from $\Omega$.

## Glauber Dynamics $=$ GibBS Sampler

Given $G=(V, E)$, Markov chain $\left(X_{t}\right)$ on $\Omega=$ all independent sets.
Transitions $X_{t} \rightarrow X_{t+1}$ :

## Glauber Dynamics $=$ GibBS Sampler

Given $G=(V, E)$, Markov chain $\left(X_{t}\right)$ on $\Omega=$ all independent sets.
Transitions $X_{t} \rightarrow X_{t+1}$ :
(1) Choose $v$ uniformly at random from $V$.

## GLAUBER DYNAMICS $=$ GIbBS SAMPLER

Given $G=(V, E)$, Markov chain $\left(X_{t}\right)$ on $\Omega=$ all independent sets.
Transitions $X_{t} \rightarrow X_{t+1}$ :
(1) Choose $v$ uniformly at random from $V$.

$$
X^{\prime}= \begin{cases}X_{t} \cup\{v\} & \text { with probability } 1 / 2 \\ X_{t} \backslash\{v\} & \text { with probability } 1 / 2\end{cases}
$$

## GLAUBER DYNAMICS $=$ GIbBS SAMPLER

Given $G=(V, E)$, Markov chain $\left(X_{t}\right)$ on $\Omega=$ all independent sets.
Transitions $X_{t} \rightarrow X_{t+1}$ :
(1) Choose $v$ uniformly at random from $V$.

$$
X^{\prime}= \begin{cases}X_{t} \cup\{v\} & \text { with probability } 1 / 2 \\ X_{t} \backslash\{v\} & \text { with probability } 1 / 2\end{cases}
$$

(2) If $X^{\prime} \in \Omega$, then $X_{t+1}=X^{\prime}$, otherwise $X_{t+1}=X_{t}$

Stationary distribution is $\mu=$ uniform $(\Omega)$.
Mixing Time: $\quad T_{\text {mix }}:=\min \left\{t:\right.$ for all $\left.X_{0}, d_{t v}\left(X_{t}, \mu\right) \leq 1 / 4\right\}$
Then $T_{\text {mix }}(\epsilon) \leq \log (1 / \epsilon) T_{\text {mix }}$.

$$
\text { Recall, } d_{\mathrm{TV}}(\mu, \nu)=\frac{1}{2} \sum_{\sigma \in \Omega}|\mu(\sigma)-\nu(\sigma)| .
$$

## Independent Sets

Given input graph $G=(V, E)$ with $n=|V|$ vertices, let $\Omega=$ set of all independent sets in $G$.

Typically, $|\Omega|$ is HUGE $=$ exponentially large in $n$.

## Independent Sets

Given input graph $G=(V, E)$ with $n=|V|$ vertices, let $\Omega=$ set of all independent sets in $G$.

Typically, $|\Omega|$ is HUGE $=$ exponentially large in $n$.
Goal: in time poly ( $n$ ):
(1) Counting: Compute $|\Omega|$,
(2) Sampling: generate random element of $\Omega$.

## Independent Sets

Given input graph $G=(V, E)$ with $n=|V|$ vertices, let $\Omega=$ set of all independent sets in $G$.

Typically, $|\Omega|$ is HUGE $=$ exponentially large in $n$.
Goal: in time poly ( $n$ ):
(1) Counting: Compute $|\Omega|$,
(2) Sampling: generate random element of $\Omega$.

Exactly computing $|\Omega|$ is \#P-complete, even for maximum degree $\Delta=3$.
[Greenhill '00]
Approximate $|\Omega|$ :
FPRAS for $Z$ : Given $G, \epsilon, \delta>0$, output EST where:
$\operatorname{Pr}(E S T(1-\epsilon) \leq Z \leq \operatorname{EST}(1+\epsilon)) \geq 1-\delta$,
in time poly $(|G|, 1 / \epsilon, \log (1 / \delta))$.
FPTAS for $Z$ : FPRAS with $\delta=0$.

## Independent Sets

Given input graph $G=(V, E)$ with $n=|V|$ vertices, let $\Omega=$ set of all independent sets in $G$.

Typically, $|\Omega|$ is HUGE $=$ exponentially large in $n$.

## Independent Sets

Given input graph $G=(V, E)$ with $n=|V|$ vertices, let $\Omega=$ set of all independent sets in $G$.

Typically, $|\Omega|$ is HUGE $=$ exponentially large in $n$.
Goal: in time poly ( $n$ ):
Compute $|\Omega|$ or sample from uniform $(\Omega)$ ?

## Independent Sets

Given input graph $G=(V, E)$ with $n=|V|$ vertices, let $\Omega=$ set of all independent sets in $G$.

Typically, $|\Omega|$ is HUGE $=$ exponentially large in $n$.
Goal: in time poly( $n$ ):
Compute $|\Omega|$ or sample from uniform $(\Omega)$ ?
General graphs:
NP-hard to approx. $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon>0$.

## Independent Sets

Given input graph $G=(V, E)$ with $n=|V|$ vertices, let $\Omega=$ set of all independent sets in $G$.

Typically, $|\Omega|$ is HUGE $=$ exponentially large in $n$.
Goal: in time poly ( $n$ ):
Compute $|\Omega|$ or sample from uniform $(\Omega)$ ?
General graphs: NP-hard to approx. $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon>0$.

Restricted graphs: Given graph $G$ with maximum degree $\Delta$ : For $\Delta \leq 5$, FPTAS for $|\Omega|$.

For $\Delta \geq 6, \exists \delta>0$, no poly-time to approx $|\Omega|$ within $2^{n^{\delta}}$
unless $N P=R P$.
[Sly '10]

## Independent Sets

Given input graph $G=(V, E)$ with $n=|V|$ vertices, let $\Omega=$ set of all independent sets in $G$.

Typically, $|\Omega|$ is HUGE $=$ exponentially large in $n$.
Goal: in time poly ( $n$ ):
Compute $|\Omega|$ or sample from uniform $(\Omega)$ ?
General graphs: NP-hard to approx. $|\Omega|$ within $2^{n^{1-\epsilon}}$ for any $\epsilon>0$.

Restricted graphs: Given graph $G$ with maximum degree $\Delta$ :

$$
\text { For } \Delta \leq 5 \text {, FPTAS for }|\Omega| \text {. }
$$

For $\Delta \geq 6, \exists \delta>0$, no poly-time to approx $|\Omega|$ within $2^{n^{\delta}}$
unless $N P=R P$.

$$
\begin{equation*}
\text { What happens between } \Delta=5 \leftrightarrow 6 \text { ? } \tag{Sly'10}
\end{equation*}
$$

Statistical physics phase transition on infinite $\Delta$-regular tree!

Graph $G=(V, E)$, fugacity $\lambda>0$, for $\sigma \in \Omega$ :
Gibbs distribution: $\quad \mu(\sigma)=\frac{\lambda^{|\sigma|}}{Z}$
where
Partition function: $\quad Z=\sum_{\sigma} \lambda^{|\sigma|}$

$$
\lambda=1, Z=|\Omega|=\# \text { of independent sets. }
$$

## Hard-Core Gas Model

Graph $G=(V, E)$, fugacity $\lambda>0$, for $\sigma \in \Omega$ :

$$
\text { Gibbs distribution: } \quad \mu(\sigma)=\frac{\lambda^{|\sigma|}}{Z}
$$

where

$$
\text { Partition function: } \quad Z=\sum_{\sigma} \lambda^{|\sigma|}
$$

$$
\lambda=1, Z=|\Omega|=\# \text { of independent sets. }
$$

Inuition: Small $\lambda$ easier: for $\lambda<1$ prefer smaller sets.
Large $\lambda$ harder: for $\lambda>1$ prefer max independent sets.

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :

$$
\text { Let } p_{\ell}:=\operatorname{Pr} \text { (root is occupied) }
$$



Extremal cases: even versus odd height.

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :

$$
\text { Let } p_{\ell}:=\operatorname{Pr} \text { (root is occupied) }
$$



Extremal cases: even versus odd height.

$$
\text { Does } \lim _{\ell \rightarrow \infty} p_{2 \ell}=\lim _{\ell \rightarrow \infty} p_{2 \ell+1} ?
$$

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :

$$
\text { Let } p_{\ell}:=\operatorname{Pr} \text { (root is occupied) }
$$



Extremal cases: even versus odd height.

$$
\text { Does } \lim _{\ell \rightarrow \infty} p_{2 \ell}=\lim _{\ell \rightarrow \infty} p_{2 \ell+1} \text { ? }
$$

$$
\begin{aligned}
\lambda_{c}(\Delta) & =\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2} . \\
& \lambda \leq \lambda_{c}(\Delta): \quad \text { No boundary affects root. } \\
& \lambda>\lambda_{c}(\Delta): \text { Exist boundaries affect root. }
\end{aligned}
$$

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :

$$
\text { Let } p_{\ell}:=\operatorname{Pr}(\text { root is occupied })
$$



Extremal cases: even versus odd height.

$$
\text { Does } \lim _{\ell \rightarrow \infty} p_{2 \ell}=\lim _{\ell \rightarrow \infty} p_{2 \ell+1} \text { ? }
$$

$\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}$.
$\lambda \leq \lambda_{c}(\Delta)$ : No boundary affects root. uniqueness
$\lambda>\lambda_{c}(\Delta)$ : Exist boundaries affect root. non-uniqueness

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :

$$
\text { Let } p_{\ell}:=\operatorname{Pr}(\text { root is occupied })
$$



Extremal cases: even versus odd height.

$$
\text { Does } \lim _{\ell \rightarrow \infty} p_{2 \ell}=\lim _{\ell \rightarrow \infty} p_{2 \ell+1} \text { ? }
$$

$\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}$.
$\lambda \leq \lambda_{c}(\Delta)$ : No boundary affects root. uniqueness
$\lambda>\lambda_{c}(\Delta)$ : Exist boundaries affect root. non-uniqueness
Example: $\Delta=5, \lambda=1$ :

$$
p_{\text {even }}=.245, p_{\text {odd }}=.245
$$

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :
Let $p_{\ell}:=\operatorname{Pr}$ (root is occupied)


Extremal cases: even versus odd height.

$$
\text { Does } \lim _{\ell \rightarrow \infty} p_{2 \ell}=\lim _{\ell \rightarrow \infty} p_{2 \ell+1} \text { ? }
$$

$\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}$.
$\lambda \leq \lambda_{c}(\Delta)$ : No boundary affects root. uniqueness
$\lambda>\lambda_{c}(\Delta)$ : Exist boundaries affect root. non-uniqueness
Example: $\Delta=5, \lambda=1.05$ :

$$
p_{\text {even }}=.250, p_{\text {odd }}=.250
$$

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :
Let $p_{\ell}:=\operatorname{Pr}$ (root is occupied)


Extremal cases: even versus odd height.

$$
\text { Does } \lim _{\ell \rightarrow \infty} p_{2 \ell}=\lim _{\ell \rightarrow \infty} p_{2 \ell+1} \text { ? }
$$

$\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}$.
$\lambda \leq \lambda_{c}(\Delta)$ : No boundary affects root. uniqueness
$\lambda>\lambda_{c}(\Delta)$ : Exist boundaries affect root. non-uniqueness
Example: $\Delta=5, \lambda=1.06$ :

$$
p_{\text {even }}=.283, p_{\text {odd }}=.219
$$

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :

$$
\text { Let } p_{\ell}:=\operatorname{Pr}(\text { root is occupied })
$$



Extremal cases: even versus odd height.
Does $\lim _{\ell \rightarrow \infty} p_{2 \ell}=\lim _{\ell \rightarrow \infty} p_{2 \ell+1}$ ?
$\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}$.
$\lambda \leq \lambda_{c}(\Delta)$ : No boundary affects root. uniqueness
$\lambda>\lambda_{c}(\Delta)$ : Exist boundaries affect root. non-uniqueness
Tree/BP recursions: $p_{\ell+1}=\frac{\lambda\left(1-p_{\ell}\right)^{\Delta-1}}{1+\lambda\left(1-p_{\ell}\right)^{\Delta-1}}$
Key: Unique vs. Multiple fixed points of 2-level recursions.

## Phase Transition on Trees

For $\Delta$-regular tree of height $\ell$ :

$$
\text { Let } p_{\ell}:=\operatorname{Pr}(\text { root is occupied })
$$



Extremal cases: even versus odd height.

$$
\text { Does } \lim _{\ell \rightarrow \infty} p_{2 \ell}=\lim _{\ell \rightarrow \infty} p_{2 \ell+1} \text { ? }
$$

$\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}$.
$\lambda \leq \lambda_{c}(\Delta)$ : No boundary affects root. uniqueness
$\lambda>\lambda_{c}(\Delta)$ : Exist boundaries affect root. non-uniqueness
For 2-dimensional integer lattice $\mathbb{Z}^{2}$ :
$\begin{array}{lr}\text { Conjecture: } & \lambda_{c}\left(\mathbb{Z}^{2}\right) \approx 3.79 \\ \text { Best bounds: } & 2.53<\lambda_{c}\left(\mathbb{Z}^{2}\right)<5.36\end{array}$

Tree threshold: $\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$ :

Tree threshold: $\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$ :

- All constant $\Delta$, all $\lambda<\lambda_{c}(\Delta)$, FPTAS for $Z$.
[Weitz '06]

Tree threshold: $\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$ :

- All constant $\Delta$, all $\lambda<\lambda_{c}(\Delta)$, FPTAS for $Z$.
[Weitz '06]


## Approximating Partition Function

Tree threshold: $\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$ :

- All constant $\Delta$, all $\lambda<\lambda_{c}(\Delta)$, FPTAS for $Z$.
[Weitz '06]
- All $\Delta \geq 3$, all $\lambda>\lambda_{c}(\Delta)$ : No poly-time to approx. $Z$ for $\Delta$-regular, triangle-free $G$, unless $N P=R P$
[Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]


## Approximating Partition Function

Tree threshold: $\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$ :

- All constant $\Delta$, all $\lambda<\lambda_{c}(\Delta)$, FPTAS for $Z$.
[Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]
- All $\Delta \geq 3$, all $\lambda>\lambda_{c}(\Delta)$ : No poly-time to approx. $Z$ for $\Delta$-regular, triangle-free $G$, unless $N P=R P$
[Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]


## Approximating Partition Function

Tree threshold: $\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$ :

- All constant $\Delta$, all $\lambda<\lambda_{c}(\Delta)$, FPTAS for $Z$.
[Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]
- All $\Delta \geq 3$, all $\lambda>\lambda_{c}(\Delta)$ : No poly-time to approx. $Z$ for $\Delta$-regular, triangle-free $G$, unless $N P=R P$
[Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]
What happens at $\lambda_{c}(\Delta)$ ?


## Approximating Partition Function

Tree threshold: $\lambda_{C}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$ :

- All constant $\Delta$, all $\lambda<\lambda_{c}(\Delta)$, FPTAS for $Z$.
[Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]
- All $\Delta \geq 3$, all $\lambda>\lambda_{c}(\Delta)$ : No poly-time to approx. $Z$ for $\Delta$-regular, triangle-free $G$, unless $N P=R P$
[Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]


## What happens at $\lambda_{c}(\Delta)$ ?

Statistical physics phase transition on infinite $\Delta$-regular tree
Computational phase transition on general max deg. $\Delta$ graphs

## Approximating Partition Function

Tree threshold: $\lambda_{c}(\Delta):=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \sim \frac{e}{\Delta}$ :

- All constant $\Delta$, all $\lambda<\lambda_{c}(\Delta)$, FPTAS for $Z$.
[Weitz '06]
- FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]

BUT: For $\delta, \epsilon>0, \Delta \geq 3$, exists $C=C(\delta)$, for $\lambda<(1-\delta) \lambda_{c}$, running time $(n / \epsilon)^{C \log \Delta}$.

- All $\Delta \geq 3$, all $\lambda>\lambda_{c}(\Delta)$ : No poly-time to approx. $Z$ for $\Delta$-regular, triangle-free $G$, unless $N P=R P$
[Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]


## What happens at $\lambda_{c}(\Delta)$ ?

Statistical physics phase transition on infinite $\Delta$-regular tree
Computational phase transition on general max deg. $\Delta$ graphs

## High-LEVEL IDEA of FPTAS's

[Weitz '06]: For $G=(V, E)$ and vertex $a \in V$, consider $T_{\text {saw }}$ :


$$
\operatorname{Pr}_{\sigma \sim \mu_{T}}(\text { root } \notin \sigma)=\operatorname{Pr}_{\sigma \sim \mu_{G}}(v \notin \sigma)
$$

[Barvinok '14]: Consider $Z(\lambda)$ for complex $\lambda$.
Suppose $Z(x) \neq 0$ for all $x$ in an open disk $D$ around interval $[0, \lambda]$. Look at Taylor of $f(x)=\log Z(x)$, then: $\quad f(\lambda)=\sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} f^{(j)}(0)$ and $O(\log (n))$ terms gives good approx.

Poly-time for constant $\Delta$ : [Patel,Regts '17]
No complex zeros: [Peters,Regts '19]

## GLAUBER DYNAMICS $\left(X_{t}\right)=$ GIBBS SAMPLER

$X_{t} \rightarrow X_{t+1}$ is defined as follows:

## GLAUBER DYNAMICS $\left(X_{t}\right)=$ GIBBS SAMPLER

$X_{t} \rightarrow X_{t+1}$ is defined as follows:
(1) Choose $v$ uniformly at random from $V$.

## GLAUBER DYNAMICS $\left(X_{t}\right)=$ GIBBS SAMPLER

$X_{t} \rightarrow X_{t+1}$ is defined as follows:
(1) Choose $v$ uniformly at random from $V$.

$$
X^{\prime}= \begin{cases}X_{t} \cup\{v\} & \text { with probability } \lambda /(1+\lambda) \\ X_{t} \backslash\{v\} & \text { with probability } 1 /(1+\lambda)\end{cases}
$$

## Glauber dynamics $\left(X_{t}\right)=$ Gibbs Sampler

$X_{t} \rightarrow X_{t+1}$ is defined as follows:
(1) Choose $v$ uniformly at random from $V$.

$$
X^{\prime}= \begin{cases}X_{t} \cup\{v\} & \text { with probability } \lambda /(1+\lambda) \\ X_{t} \backslash\{v\} & \text { with probability } 1 /(1+\lambda)\end{cases}
$$

(2) If $X^{\prime}$ is independent set, then $X_{t+1}=X^{\prime}$, otherwise $X_{t+1}=X_{t}$

Stationary distribution is Gibbs distribution: $\quad \mu(X)=\frac{\lambda^{|X|}}{Z}$

## Glauber dynamics $\left(X_{t}\right)=$ Gibbs Sampler

$X_{t} \rightarrow X_{t+1}$ is defined as follows:
(1) Choose $v$ uniformly at random from $V$.

$$
X^{\prime}= \begin{cases}X_{t} \cup\{v\} & \text { with probability } \lambda /(1+\lambda) \\ X_{t} \backslash\{v\} & \text { with probability } 1 /(1+\lambda)\end{cases}
$$

(2) If $X^{\prime}$ is independent set, then $X_{t+1}=X^{\prime}$, otherwise $X_{t+1}=X_{t}$

Stationary distribution is Gibbs distribution: $\quad \mu(X)=\frac{\lambda^{|X|}}{Z}$

Mixing Time: $\quad T_{\text {mix }}:=\min \left\{t:\right.$ for all $\left.X_{0}, d_{t v}\left(X_{t}, \mu\right) \leq 1 / 4\right\}$
Then $T_{\text {mix }}(\epsilon) \leq \log (1 / \epsilon) T_{\text {mix }}$.

## Glauber dynamics $\left(X_{t}\right)=$ Gibbs Sampler

$X_{t} \rightarrow X_{t+1}$ is defined as follows:
(1) Choose $v$ uniformly at random from $V$.

$$
X^{\prime}= \begin{cases}X_{t} \cup\{v\} & \text { with probability } \lambda /(1+\lambda) \\ X_{t} \backslash\{v\} & \text { with probability } 1 /(1+\lambda)\end{cases}
$$

(2) If $X^{\prime}$ is independent set, then $X_{t+1}=X^{\prime}$, otherwise $X_{t+1}=X_{t}$

Stationary distribution is Gibbs distribution: $\quad \mu(X)=\frac{\lambda^{|X|}}{Z}$

Mixing Time: $\quad T_{\text {mix }}:=\min \left\{t:\right.$ for all $\left.X_{0}, d_{t v}\left(X_{t}, \mu\right) \leq 1 / 4\right\}$
Then $T_{\text {mix }}(\epsilon) \leq \log (1 / \epsilon) T_{\text {mix }}$.

$$
\text { Recall, } d_{\mathrm{TV}}(\mu, \nu)=\frac{1}{2} \sum_{\sigma \in \Omega}|\mu(\sigma)-\nu(\sigma)| .
$$

## Our Results

## Our Results

## Theorem

For all $\delta>0$, there exists $\Delta_{0}=\Delta_{0}(\delta)$ : all $G=(V, E)$ of max degree $\Delta \geq \Delta_{0}$ and girth $\geq 7$, all $\lambda<(1-\delta) \lambda_{c}(\Delta)$,

$$
T_{\text {mix }}=O(n \log n)
$$

## Our Results

## Theorem

For all $\delta>0$, there exists $\Delta_{0}=\Delta_{0}(\delta)$ : all $G=(V, E)$ of max degree $\Delta \geq \Delta_{0}$ and girth $\geq 7$, all $\lambda<(1-\delta) \lambda_{c}(\Delta)$,

$$
T_{\text {mix }}=O(n \log n)
$$

## Corollaries

- An $O^{*}\left(n^{2}\right)$ FPRAS for estimating the partition function $Z$.
- $T_{\text {mix }}=O(n \log n)$ when $\lambda \leq(1-\delta) \lambda_{c}(\Delta)$ for:
- random $\Delta$-regular graphs
- random $\Delta$-regular bipartite graphs


## Coupling of Markov Chains

Consider a Markov chain $(\Omega, P)$.
Coupling is a joint process $\omega=\left(X_{t}, Y_{t}\right)$ on $\Omega \times \Omega$ where:

$$
X_{t} \sim P \text { and } Y_{t} \sim P
$$

More precisely, for all $A, B, C \in \Omega$,

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{t+1}=C \mid X_{t}=A, Y_{t}=B\right)=P(A, C) \\
& \operatorname{Pr}\left(X_{t+1}=C \mid X_{t}=A, Y_{t}=B\right)=P(B, C)
\end{aligned}
$$

## Coupling of Markov Chains

Consider a Markov chain $(\Omega, P)$.
Coupling is a joint process $\omega=\left(X_{t}, Y_{t}\right)$ on $\Omega \times \Omega$ where:

$$
X_{t} \sim P \text { and } Y_{t} \sim P
$$

More precisely, for all $A, B, C \in \Omega$,

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{t+1}=C \mid X_{t}=A, Y_{t}=B\right)=P(A, C) \\
& \operatorname{Pr}\left(X_{t+1}=C \mid X_{t}=A, Y_{t}=B\right)=P(B, C)
\end{aligned}
$$

Intuition:
$\left(X_{t} \rightarrow X_{t+1}\right) \sim P$ and $\left(Y_{t} \rightarrow Y_{t+1}\right) \sim P$ can correlate by $\omega$.
Let $X_{0}$ be arbitrary, and $Y_{0} \sim \pi$. Once $X_{T}=Y_{T}$ then $X_{T} \sim \pi$.

## Coupling of Markov Chains

Consider a Markov chain $(\Omega, P)$.
Coupling is a joint process $\omega=\left(X_{t}, Y_{t}\right)$ on $\Omega \times \Omega$ where:

$$
X_{t} \sim P \text { and } Y_{t} \sim P
$$

More precisely, for all $A, B, C \in \Omega$,

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{t+1}=C \mid X_{t}=A, Y_{t}=B\right)=P(A, C) \\
& \operatorname{Pr}\left(X_{t+1}=C \mid X_{t}=A, Y_{t}=B\right)=P(B, C)
\end{aligned}
$$

Intuition:
$\left(X_{t} \rightarrow X_{t+1}\right) \sim P$ and $\left(Y_{t} \rightarrow Y_{t+1}\right) \sim P$ can correlate by $\omega$.
Let $X_{0}$ be arbitrary, and $Y_{0} \sim \pi$. Once $X_{T}=Y_{T}$ then $X_{T} \sim \pi$.
Coupling time:

$$
\begin{gathered}
T_{\text {couple }}=\max _{A, B \in \Omega} \min \{t: \\
\left.P r\left(X_{t} \neq Y_{t} \mid X_{0}=A, Y_{0}=B\right) \leq 1 / 4 .\right\} \\
T_{\text {mix }} \leq T_{\text {couple }}
\end{gathered}
$$

## Coupling for Independent Sets

Consider a pair of independent sets $X_{t}$ and $Y_{t}$ :


## Coupling for Independent Sets

Consider a pair of independent sets $X_{t}$ and $Y_{t}$ :


Look at $\frac{X_{t}}{Y_{t}}$ :


## Coupling for Independent Sets

Consider a pair of independent sets $X_{t}$ and $Y_{t}$ :


Look at $\frac{X_{t}}{Y_{t}}$ :


Identity Coupling:
Update same $v_{t}$, attempt to add to both or remove from both.

## Coupling for Independent Sets

Consider a pair of independent sets $X_{t}$ and $Y_{t}$ :


Look at $\frac{X_{t}}{Y_{t}}$ :


Identity Coupling:
Update same $v_{t}$, attempt to add to both or remove from both.
How to analyze???

## Coupling for bounding $T_{\text {mix }}$

For all $X_{t}, Y_{t}$, define a coupling: $\left(X_{t}, Y_{t}\right) \rightarrow\left(X_{t+1}, Y_{t+1}\right)$.
Look at Hamming distance: $H\left(X_{t}, Y_{t}\right)=\left|\left\{v: X_{t}(v) \neq Y_{t}(v)\right\}\right|$.
If for all $X_{t}, Y_{t}$,

$$
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right] \leq(1-C / n) H\left(X_{t}, Y_{t}\right)
$$

Then, $\operatorname{Pr}\left(A_{T} \neq B_{T}\right) \leq \mathbb{E}\left[H\left(A_{T}, B_{T}\right)\right]$

$$
\begin{aligned}
& \leq H\left(A_{0}, B_{0}\right)(1-C / n)^{T} \\
& \leq n \exp (-C / n) \\
& \leq 1 / 4 \text { for } T=O(n \log n)
\end{aligned}
$$

Path coupling: Suffices to consider pairs where $H\left(X_{t}, Y_{t}\right)=1$.

## Coupling for bounding $T_{\text {mix }}$

For all $X_{t}, Y_{t}$, define a coupling: $\left(X_{t}, Y_{t}\right) \rightarrow\left(X_{t+1}, Y_{t+1}\right)$.
Look at Hamming distance: $H\left(X_{t}, Y_{t}\right)=\left|\left\{v: X_{t}(v) \neq Y_{t}(v)\right\}\right|$.
If for all $X_{t}, Y_{t}$,

$$
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right] \leq(1-C / n) H\left(X_{t}, Y_{t}\right)
$$

Then, $\operatorname{Pr}\left(A_{T} \neq B_{T}\right) \leq \mathbb{E}\left[H\left(A_{T}, B_{T}\right)\right]$ $\leq H\left(A_{0}, B_{0}\right)(1-C / n)^{T}$
$\leq n \exp (-C / n)$

$$
\leq 1 / 4 \text { for } T=O(n \log n)
$$

Path coupling: Suffices to consider pairs where $H\left(X_{t}, Y_{t}\right)=1$.
Can replace $H()$ :
For $\Phi: V \rightarrow \mathbb{R}_{\geq 1}$, let $\Phi(X, Y)=\sum_{v \in X \oplus Y} \Phi_{V}$. Key: if $X \neq Y$ then $\Phi(X, Y) \geq 1$.
Hence, $\operatorname{Pr}\left(X_{t} \neq Y_{t}\right) \leq \mathbb{E}\left[\Phi\left(X_{t}, Y_{t}\right)\right]$.

$$
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right)\right]=H\left(X_{t}, Y_{t}\right)-\frac{1}{n}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right]
$$



Coupling: update same vertex, attempt add $\frac{\lambda}{1+\lambda}$, remove $\frac{1}{1+\lambda}$.

$$
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right)\right]=H\left(X_{t}, Y_{t}\right)-\frac{1}{n}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right]
$$



Coupling: update same vertex, attempt add $\frac{\lambda}{1+\lambda}$, remove $\frac{1}{1+\lambda}$.

$$
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right)\right]=H\left(X_{t}, Y_{t}\right)-\frac{1}{n}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right]
$$



Coupling: update same vertex, attempt add $\frac{\lambda}{1+\lambda}$, remove $\frac{1}{1+\lambda}$.

$$
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right)\right]=H\left(X_{t}, Y_{t}\right)-\frac{1}{n}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right]
$$



Coupling: update same vertex, attempt add $\frac{\lambda}{1+\lambda}$, remove $\frac{1}{1+\lambda}$.

## Path Coupling with Hamming Distance

$$
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right)\right]=H\left(X_{t}, Y_{t}\right)-\frac{1}{n}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right]
$$



Coupling: update same vertex, attempt add $\frac{\lambda}{1+\lambda}$, remove $\frac{1}{1+\lambda}$.

## Path Coupling with Hamming Distance

$$
\begin{aligned}
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right)\right] & =H\left(X_{t}, Y_{t}\right)-\frac{1}{n}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \\
& =\left(1-\frac{1}{n}\right)+\frac{1}{n} \sum_{z_{i}} \mathbf{1}\left\{z_{i} \text { unblocked }\right\} \frac{\lambda}{1+\lambda} \\
& \leq 1-\frac{1}{n}+\frac{\Delta}{n} \frac{\lambda}{1+\lambda}
\end{aligned}
$$



Coupling: update same vertex, attempt add $\frac{\lambda}{1+\lambda}$, remove $\frac{1}{1+\lambda}$.

## Path Coupling with Hamming Distance

$$
\begin{aligned}
\mathbb{E}\left[H\left(X_{t+1}, Y_{t+1}\right)\right] & =H\left(X_{t}, Y_{t}\right)-\frac{1}{n}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \\
= & \left(1-\frac{1}{n}\right)+\frac{1}{n} \sum_{z_{i}} \mathbf{1}\left\{z_{i} \text { unblocked }\right\} \frac{\lambda}{1+\lambda} \\
\leq & 1-\frac{1}{n}+\frac{\Delta}{n} \frac{\lambda}{1+\lambda}<1 \\
& \quad \text { Requires: } \quad \lambda<1 /(\Delta-1)
\end{aligned}
$$



Coupling: update same vertex, attempt add $\frac{\lambda}{1+\lambda}$, remove $\frac{1}{1+\lambda}$.

$$
\mathbb{E}\left[\Phi\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right]=\left(1-\frac{1}{n}\right) \Phi_{v}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \cdot \Phi_{z_{i}}
$$

## Path Coupling with $\Phi$

$$
\mathbb{E}\left[\Phi\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right]=\left(1-\frac{1}{n}\right) \Phi_{v}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \cdot \Phi_{z_{i}}
$$



## Path Coupling with $\Phi$

$$
\mathbb{E}\left[\Phi\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right]=\left(1-\frac{1}{n}\right) \Phi_{v}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \cdot \Phi_{z_{i}}
$$



## Path Coupling with $\Phi$

$$
\mathbb{E}\left[\Phi\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right]=\left(1-\frac{1}{n}\right) \Phi_{v}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \cdot \Phi_{z_{i}}
$$



## Path Coupling with $\Phi$

$$
\mathbb{E}\left[\Phi\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right]=\left(1-\frac{1}{n}\right) \Phi_{v}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \cdot \Phi_{z_{i}}
$$



## Path Coupling with $\Phi$

$$
\begin{gathered}
\mathbb{E}\left[\Phi\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right]=\left(1-\frac{1}{n}\right) \Phi_{v}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \cdot \Phi_{z_{i}} \\
=\left(1-\frac{1}{n}\right) \Phi_{v}+\frac{1}{n} \sum_{z_{i}} 1\left\{z_{i} \text { unblocked }\right\} \frac{\lambda}{1+\lambda} \Phi_{z_{i}}
\end{gathered}
$$



## Path Coupling with $\Phi$

$\mathbb{E}\left[\Phi\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right]=\left(1-\frac{1}{n}\right) \Phi_{v}+\sum_{z_{i}} \operatorname{Pr}\left[z_{i} \in Y_{t+1}\right] \cdot \Phi_{z_{i}}$

$$
=\left(1-\frac{1}{n}\right) \Phi_{v}+\frac{1}{n} \sum_{z_{i}} 1\left\{z_{i} \text { unblocked }\right\} \frac{\lambda}{1+\lambda} \Phi_{z_{i}}<\Phi_{v}
$$

Want: $\quad \Phi_{v}>\frac{\lambda}{1+\lambda} \sum_{z_{i}} \mathbf{1}\left\{z_{i}\right.$ unblocked in $\left.Y_{t}\right\} \cdot \Phi_{z_{i}}$


For tree $T$ and given $\lambda$, compute:
$q(v, w)=\mu(v$ occupied $\mid w$ unoccupied $)$

$$
R_{v \rightarrow w}=\frac{q(v, w)}{1-q(v, w)}
$$

$$
R_{v \rightarrow w}=\lambda \prod_{z \in N(v) \backslash\{w\}} \frac{1}{1+R_{z \rightarrow v}}
$$

BP starts from arbitrary $R_{v \rightarrow w}^{0}$, then iterates:

$$
R_{v \rightarrow w}^{i}=\lambda \prod_{z \in N(v) \backslash\{w\}} \frac{1}{1+R_{z \rightarrow v}^{i-1}}
$$

## BP AND GIBBS DISTRIBUTION ON TREES

## Convergence on trees

For $i>$ max-depth, for every initial $\left(R^{0}\right)$ :

$$
R_{v \rightarrow w}^{i}=R_{v \rightarrow w}^{*}
$$

In turn

$$
\mu(v \text { occupied } \mid w \text { unoccupied })=q^{*}=\frac{R_{v \rightarrow w}^{*}}{1+R_{v \rightarrow w}^{*}}
$$

BP is an elaborate version of Dynamic Programing

## BP CONVERGENCE FOR GIRTH $\geq 6$

Loopy Belief Propagation: Run BP on general $G=(V, E)$. For all $v \in V, w \in N(v):$

$$
R_{v \rightarrow w}^{i}=\lambda \prod_{z \in N(v) \backslash\{w\}} \frac{1}{1+R_{z \rightarrow v}^{i-1}} \quad \text { and } \quad q^{i}(v, w)=\frac{R_{v \rightarrow w}^{i}}{1+R_{v \rightarrow w}^{i}}
$$

## BP CONVERGENCE FOR GIRTH $\geq 6$

Loopy Belief Propagation: Run BP on general $G=(V, E)$. For all $v \in V, w \in N(v):$

$$
R_{v \rightarrow w}^{i}=\lambda \prod_{z \in N(v) \backslash\{w\}} \frac{1}{1+R_{z \rightarrow v}^{i-1}} \quad \text { and } \quad q^{i}(v, w)=\frac{R_{v \rightarrow w}^{i}}{1+R_{v \rightarrow w}^{i}}
$$

Does it converge? If so, to what?

## BP CONVERGENCE FOR GIRTH $\geq 6$

Loopy Belief Propagation: Run BP on general $G=(V, E)$. For all $v \in V, w \in N(v):$

$$
R_{v \rightarrow w}^{i}=\lambda \prod_{z \in N(v) \backslash\{w\}} \frac{1}{1+R_{z \rightarrow v}^{i-1}} \quad \text { and } \quad q^{i}(v, w)=\frac{R_{v \rightarrow w}^{i}}{1+R_{v \rightarrow w}^{i}}
$$

Does it converge? If so, to what?
For $\lambda<\lambda_{c}$ : $R()$ has a unique fixed point $R^{*}$.

## BP Convergence for girth $\geq 6$

Loopy Belief Propagation: Run BP on general $G=(V, E)$. For all $v \in V, w \in N(v):$

$$
R_{v \rightarrow w}^{i}=\lambda \prod_{z \in N(v) \backslash\{w\}} \frac{1}{1+R_{z \rightarrow v}^{i-1}} \quad \text { and } \quad q^{i}(v, w)=\frac{R_{v \rightarrow w}^{i}}{1+R_{v \rightarrow w}^{i}}
$$

Does it converge? If so, to what?
For $\lambda<\lambda_{c}$ : $R()$ has a unique fixed point $R^{*}$.

## Theorem

Let $\delta, \epsilon>0, \Delta_{0}=\Delta_{0}(\delta, \epsilon)$ and $C=C(\delta, \epsilon)$.
For $G$ of max degree $\Delta \geq \Delta_{0}$ and girth $\geq 6$, all $\lambda<(1-\delta) \lambda_{c}(\Delta)$ : for $i \geq C$, for all $v \in V, w \in N(v)$,

$$
\left|\frac{q^{i}(v, w)}{\mu(v \text { is occupied } \mid w \text { is unoccupied })}-1\right| \leq \epsilon
$$

## Unblocked Neighbors and loopy BP

Recall, loopy BP estimate that $z$ is unoccupied:

$$
R_{z}^{i}=\lambda \prod_{y \in N(v)} \frac{1}{1+R_{y}^{i-1}}
$$

Loopy BP estimate that $z$ is unblocked:

$$
\omega_{z}^{i}=\prod_{y \in N(z)} \frac{1}{1+\lambda \cdot \omega_{y}^{i-1}}
$$

For $\lambda<\lambda_{c}$ :
Since $R$ converges to unique fixed point $R^{*}$, thus $\omega$ converges to unique fixed point $\omega^{*}$.

We'll prove (but don't know a priori):

$$
\omega^{*}(z) \approx \mu(z \text { is unblocked })
$$

## Back to Path Coupling

worst case condition

$$
\Phi_{v}>\frac{\lambda}{1+\lambda} \sum_{z_{i}} 1\left\{z_{i} \text { unblocked }\right\} \cdot \Phi_{z_{i}}
$$

when $X_{t}, Y_{t}$ "behave" like $\omega^{*}$

$$
\Phi_{v}>\frac{\lambda}{1+\lambda} \sum_{z_{i}} \omega^{*}\left(z_{i}\right) \cdot \Phi_{z_{i}}
$$



## Reformulation

Goal: Find $\Phi$ such that

$$
\Phi_{v}>\sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1+\lambda \omega^{*}(z)} \Phi_{z}
$$

## Finding $\Phi$

## Reformulation

Goal: Find $\Phi$ such that

$$
\Phi_{v}>\sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1+\lambda \omega^{*}(z)} \Phi_{z}
$$

Define $n \times n$ matrix $\mathcal{C}$

$$
\mathcal{C}(v, z)= \begin{cases}\frac{\lambda \omega^{*}(z)}{1+\lambda \omega^{*}(z)} & \text { if } z \in N(v) \\ 0 & \text { otherwise }\end{cases}
$$

## Finding $\Phi$

## Reformulation

Goal: Find $\Phi$ such that

$$
\Phi_{v}>\sum_{z \in N(v)} \frac{\lambda \omega^{*}(z)}{1+\lambda \omega^{*}(z)} \Phi_{z}
$$

Define $n \times n$ matrix $\mathcal{C}$

$$
\mathcal{C}(v, z)= \begin{cases}\frac{\lambda \omega^{*}(z)}{1+\lambda \omega^{*}(z)} & \text { if } z \in N(v) \\ 0 & \text { otherwise }\end{cases}
$$

Rephrased: Find vector $\Phi \in \mathbb{R}_{\geq 1}^{V}$ such that

$$
\mathcal{C} \Phi<\Phi
$$

## Connections with Loopy BP

Recall, $B P$ operator for unblocked: $\quad F(\omega)(z)=\prod_{y \in N(z)} \frac{1}{1+\lambda \omega(y)}$

It has Jacobian: $J(v, u)=\left|\frac{\partial F(\omega)(v)}{\partial \omega(u)}\right|= \begin{cases}\frac{\lambda F(\omega)(v)}{1+\lambda \omega(u)} & \text { if } u \in N(v) \\ 0 & \text { otherwise }\end{cases}$
Let $J^{*}=\left.J\right|_{\omega=\omega^{*}}$ denote the Jacobian at the fixed point $\omega^{*}$.

$$
\text { Key fact: } \quad \mathcal{C}=D^{-1} J^{*} D,
$$

where $D$ is diagonal matrix with $D(v, v)=\omega^{*}(v)$

## Connections with Loopy BP

Recall, $B P$ operator for unblocked: $\quad F(\omega)(z)=\prod_{y \in N(z)} \frac{1}{1+\lambda \omega(y)}$

It has Jacobian: $J(v, u)=\left|\frac{\partial F(\omega)(v)}{\partial \omega(u)}\right|= \begin{cases}\frac{\lambda F(\omega)(v)}{1+\lambda \omega(u)} & \text { if } u \in N(v) \\ 0 & \text { otherwise }\end{cases}$
Let $J^{*}=\left.J\right|_{\omega=\omega^{*}}$ denote the Jacobian at the fixed point $\omega^{*}$.

$$
\text { Key fact: } \quad \mathcal{C}=D^{-1} J^{*} D,
$$

where $D$ is diagonal matrix with $D(v, v)=\omega^{*}(v)$
Fixed point $\omega^{*}$ is Jacobian attractive so all eigenvalues $<1$.
Principal eigenvector $\Phi$ is good coupling distance.

Proof approach:

- Find good $\Phi$ when locally $X_{t}, Y_{t}$ "behave" like $\omega^{*}$
- dynamics gets "local uniformity": $O(n \log \Delta)$ steps looks locally like $\omega^{*}$. builds on [Hayes '13]
- Disagreements don't spread too fast
builds on [Dyer-Frieze-Hayes-V '13]

Proof approach:

- Find good $\Phi$ when locally $X_{t}, Y_{t}$ "behave" like $\omega^{*}$ -dynamics gets "local uniformity" builds on [Hayes '13]
- Disagreements don't spread too fast:
builds on [Dyer-Frieze-Hayes-V '13]

Proof approach:

- Find good $\Phi$ when locally $X_{t}, Y_{t}$ "behave" like $\omega^{*}$
-dynamics gets "local uniformity"
For any $X_{0}$, when $\lambda<\lambda_{c}$ and girth $\geq 7$, with prob. $\geq 1-\exp (-\Omega(\Delta))$, for $t=\Omega(n \log \Delta)$ :
$\#\left\{\right.$ Unblocked Neighbors of $v$ in $\left.X_{t}\right\}<\sum_{z \in N(v)} \omega^{*}(z)+\epsilon \Delta$.
- Disagreements don't spread too fast:
builds on [Dyer-Frieze-Hayes-V '13]

Proof approach:

- Find good $\Phi$ when locally $X_{t}, Y_{t}$ "behave" like $\omega^{*}$ -dynamics gets "local uniformity" builds on [Hayes '13]

For any $X_{0}$, when $\lambda<\lambda_{c}$ and girth $\geq 7$, with prob. $\geq 1-\exp (-\Omega(\Delta))$, for $t=\Omega(n \log \Delta)$ :
$\#\left\{\right.$ Unblocked Neighbors of $v$ in $\left.X_{t}\right\}<\sum_{z \in N(v)} \omega^{*}(z)+\epsilon \Delta$.

- Disagreements don't spread too fast:
builds on [Dyer-Frieze-Hayes-V '13]
For $\left(X_{0}, Y_{0}\right)$ differ only at $v$, for $T=O(n \log \Delta), r=O(\sqrt{\Delta})$,

$$
\operatorname{Pr}\left(X_{T} \oplus Y_{T} \subset B_{r}(v)\right) \geq 1-\exp (\Omega(\sqrt{\bar{\Delta}}))
$$

# Rapid Mixing with Uniformity [Dyer-Frieze-Hayes-v '13] 


(1) Initially: single disagreement at $v$.

(1) Initially: single disagreement at $v$.
(2) Run the chains for $O(n \log \Delta)$ steps: "burn-in".

(1) Initially: single disagreement at $v$.
(2) Run the chains for $O(n \log \Delta)$ steps: "burn-in".
(3) The disagreements might spread during this burn-in.

(1) Initially: single disagreement at $v$.
(2) Run the chains for $O(n \log \Delta)$ steps: "burn-in".
(3) The disagreements might spread during this burn-in.
(9) The disagreements do not escape the ball $B$, whp.

(1) Initially: single disagreement at $v$.
(2) Run the chains for $O(n \log \Delta)$ steps: "burn-in".
(3) The disagreements might spread during this burn-in.
(1) The disagreements do not escape the ball $B$, whp.
(0) The entire ball $B$ has uniformity, whp.

(1) Initially: single disagreement at $v$.
(2) Run the chains for $O(n \log \Delta)$ steps: "burn-in".
(3) The disagreements might spread during this burn-in.
(9) The disagreements do not escape the ball $B$, whp.
(0) The entire ball $B$ has uniformity, whp.
(0) Interpolate and do path coupling for the disagree pairs in $B$, ... pairs have local uniformity

(1) Initially: single disagreement at $v$.
(2) Run the chains for $O(n \log \Delta)$ steps: "burn-in".
(3) The disagreements might spread during this burn-in.
(9) The disagreements do not escape the ball $B$, whp.
(0) The entire ball $B$ has uniformity, whp.
(0) Interpolate and do path coupling for the disagree pairs in $B$, ... pairs have local uniformity and $\Phi$ gives contraction

(1) Initially: single disagreement at $v$.
(2) Run the chains for $O(n \log \Delta)$ steps: "burn-in".
(3) The disagreements might spread during this burn-in.
(9) The disagreements do not escape the ball $B$, whp.
(0) The entire ball $B$ has uniformity, whp.
(0) Interpolate and do path coupling for the disagree pairs in $B$, ... pairs have local uniformity and $\Phi$ gives contraction
(1) Run $O(n)$ steps to get expected $\#$ of disagreements $<1 / 8$.

## Questions

What happens at $\lambda_{c}$ ?

## QuESTIONS

What happens at $\lambda_{c}$ ?

## THANK YOU!

