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INDEPENDENT SET

Undirected graph G = (V, E):

Independent set: subset of vertices with no adjacent pairs.
Let {2 = all independent sets (of all sizes).
Our Goal:

@ Counting problem: Estimate |{2|.

© Sampling problem: Sample uniformly at random from (2.



Given G = (V, E), Markov chain (X;) on {2 = all independent sets.

Transitions Xy — Xi41:
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Given G = (V, E), Markov chain (X;) on {2 = all independent sets.

Transitions Xy — Xey1:

@ Choose v uniformly at random from V.

X' — Xe U{v} with probability 1/2
X\ {v}  with probability 1/2

Q If X' € 12, then Xi11 = X', otherwise X;11 = X;

Stationary distribution is o = uniform(£2).
Mixing Time: Thix ;= min{t : for all Xp, dp, (Xe, ) <1/4}
Then Thix(€) < log(1/€) Tiix-
Recall, drv(p,v) = 52 ,cn (o) = v(o)].
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INDEPENDENT SETS

Given input graph G = (V, E) with n = |V/| vertices,
let {2 = set of all independent sets in G.

Typically, |£2] is HUGE = exponentially large in n.
Goal: in time poly(n):

@ Counting: Compute |2,

@ Sampling: generate random element of f2.

Exactly computing |{2| is #P-complete,
even for maximum degree A = 3. [Greenhill '00]

Approximate |£2|:
FPRAS for Z: Given G, ¢,6 > 0, output EST where:
Pr(EST(1—¢) < Z<EST(1+¢€))>1-4,
in time poly(|G|,1/¢,log(1/9)).
FPTAS for Z: FPRAS with § = 0.
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INDEPENDENT SETS

Given input graph G = (V, E) with n = |V/| vertices,
let {2 = set of all independent sets in G.

Typically, |£2] is HUGE = exponentially large in n.
Goal: in time poly(n):
Compute |£2| or sample from uniform(£2)?

General graphs:
NP-hard to approx. |£2| within 27 for any € > 0.

Restricted graphs: Given graph G with maximum degree A:
For : for |£2]. [Weitz '06]

For A > 6, 36 > 0, no poly-time to approx |{2| within on’
unless NP = RP. [Sly "10]

What happens between A =5 « 67
Statistical physics phase transition on infinite A-regular tree!



Graph G = (V, E), fugacity A > 0, for o € §2:

o]
Gibbs distribution:  p(o) = )\7

where
Partition function: Z = Z Al
o

A =1, Z = || = # of independent sets.



HARD-CORE GAS MODEL

Graph G = (V, E), fugacity A > 0, for o € (2:

Aol

Gibbs distribution: (o) >

where

Partition function: Z = Z p\d
g

A =1, Z = || = # of independent sets.

Inuition: Small X easier: for A < 1 prefer smaller sets.
Large A harder: for A > 1 prefer max independent sets.
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KRR
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PHASE TRANSITION ON TREES

For A-regular tree of height ¢:

Let py := Pr(root is occupied)

PN TTN

Extremal cases: even versus odd height.
Does lim poy = lim popy1 ?
{—00 {—00

A— A—-1 e
Ac(4) = ((A_l)z)A N A3
A < Ac(AQ): No boundary affects root.

A > Ac(A): Exist boundaries affect root.

Example: A =5, A = 1.05:
Peven = -250, podq = .250




PHASE TRANSITION ON TREES

For A-regular tree of height ¢:

Let py := Pr(root is occupied)

PN TTN

Extremal cases: even versus odd height.
Does lim poy = lim popy1 ?
{—00 {—00

A— A—-1 e
Ac(4) = ((A_l)z)A N A3
A < Ac(AQ): No boundary affects root.

A > Ac(A): Exist boundaries affect root.

Example: A =5, A = 1.06:
Peven = -283, Podd = 219



PHASE TRANSITION ON TREES

For A-regular tree of height ¢:

Let py := Pr(root is occupied)

KA RER

Extremal cases: even versus odd height.
Does lim poy = lim popy1 ?
{—00 {—00

A-1)4-1
Ac(4) = ((A7)2)4 X a3
A < Ac(AQ): No boundary affects root.
A > A(A): Exist boundaries affect root.
A(1—py)2 !

Tree/BP recursions: Pi+1 = W

Key: Unique vs. Multiple fixed points of 2-level recursions.



PHASE TRANSITION ON TREES

For A-regular tree of height ¢:

Let py := Pr(root is occupied)

KRR,

Extremal cases: even versus odd height.
Does lim poy = lim popy1 ?
{—o0 L—o0

A-1)4-1
AC(A) = ((A_)2)A ~ Ae,2-
A < Ac(AQ): No boundary affects root.

A > A(A): Exist boundaries affect root.

For 2-dimensional integer lattice Z?:
Conjecture: Ae(Z?) =~ 3.79
Best bounds:  2.53 < A(Z?) < 5.36



A-1)4-1 }
Tree threshold: A\ (4) := ﬁ— ~ 3
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APPROXIMATING PARTITION FUNCTION

Tree threshold: A\.(4) = % ~ £

e All constant A, all A < A\.(A), FPTAS for Z. [Weitz '06]
e FPTAS using Barvinok's approach. [Patel,Regts '17, Peters,Regts '19]

BUT:  Ford,e >0, A>3, exists C = C(0),
for X\ < (1 — &)\, running time (n/e)€ o84,

e Al A>3, all A > A\ (A): No poly-time to approx. Z for
A-regular, triangle-free G, unless NP = RP
[Sly '10,Galanis,Stefankovic,V '13, Sly,Sun '13, GSV '15]

What happens at Ac(A)?
Statistical physics phase transition on infinite A-regular tree

Computational phase transition on general max deg. A graphs



HIGH-LEVEL IDEA OF FPTAS’S

[Weitz '06]: For G = (V, E) and vertex a € V, consider Tgay:

Pro.r (root¢ o) = Pro~ug (vio)

[Barvinok '14]: Consider Z(\) for complex A.
Suppose Z(x) # 0 for all x in an open disk D around interval [0, A].

Look at Taylor of f(x) = log Z(x), then:  f(\) = > 2, j‘—!]f(j)(O)
and O(log(n)) terms gives good approx.

Poly-time for constant A: [Patel,Regts '17]
No complex zeros: [Peters,Regts '19]
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GLAUBER DYNAMICS (X;) = GIBBS SAMPLER

Xt — Xiq1 is defined as follows:
@ Choose v uniformly at random from V.

, ) XeU{v} with probability A/(1+))
X:\ {v}  with probability 1/(1+ \)

@ If X’ is independent set, then X; 1 = X', otherwise X; 11 = X;
Stationary distribution is Gibbs distribution:  pu(X) = 25¢
Mixing Time:  Tpix := min{t : for all Xo, dp (Xe, p) < 1/4}

Then Thix(€) < log(1/€) Tiix-
Recall, dry(j1.) = 3 e () — (o).






For all 6 > 0, there exists Ag = Ag(6):
all G = (V,E) of max degree A > Aq and girth > 7,
all A < (1 —0)Ac(4),

Tmix = O (nlogn).




Our RESULTS

THEOREM

For all 6 > 0, there exists Ag = Ag(6):
all G = (V,E) of max degree A > Aq and girth > 7,
all X < (1 —90)Ac(4),

Tmix = O (nlogn).

o An O*(n?) FPRAS for estimating the partition function Z.
@ Tpix = O(nlog n) when A\ < (1 —d)Ac(A) for:

e random A-regular graphs

e random A-regular bipartite graphs




COUPLING OF MARKOV CHAINS

Consider a Markov chain ({2, P).
Coupling is a joint process w = (X¢, Y;) on §2 x {2 where:

Xt ~ P and Yt ~ P
More precisely, for all A, B, C € {2,

PI’(Xt+1:C|Xt:A, Yt:B) = P(A, C)
Pr(Xe1=C|Xe=AY:=B) = P(B,C)
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COUPLING OF MARKOV CHAINS

Consider a Markov chain ({2, P).
Coupling is a joint process w = (X¢, Y;) on §2 x {2 where:

Xt ~ P and Yt ~ P
More precisely, for all A, B, C € {2,
Pr(Xes1=C | Xe=AY:=B) = P(ACQ)
Pr(Xe;1=C | Xe =AYy =B) = P(B, ()

Intuition:
(Xt = Xty1) ~ P and (Y: = Yir1) ~ P can correlate by w.

Let Xo be arbitrary, and Yy ~ 7. Once X7 = Y7 then X7 ~ 7.
Coupling time:
Teouple = Ar7rl13a€xQ min{t:Pr(X: # Y: | Xo=A,Yo=B) <1/4.}

Tmix < Tcouple
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COUPLING FOR INDEPENDENT SETS

Consider a pair of independent sets X; and Y;:

Xt .
Look at VZ

Identity Coupling:
Update same v;, attempt to add to both or remove from both.
How to analyze???



COUPLING FOR BOUNDING T ix

For all X;, Y;, define a coupling: (X¢, Yi) = (Xet1, Yer1).
Look at Hamming distance: H(X:, Y:) = [{v : Xe(v) # Yi(v)}.
If for all X;, Y4,

E[H(Xtx1, Yer1)| Xe, Y] < (1= C/n)H(X:, Y:),

Then, Pr(Ar # Br) E[H(AT, BT)]
H(Ao, Bo)(1— C/n)T
nexp(—C/n)

1/4 for T = O(nlogn).
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Path coupling: Suffices to consider pairs where H(X;, Y:) = 1.



COUPLING FOR BOUNDING T ix

For all X;, Y;, define a coupling: (X¢, Yi) = (Xet1, Yer1).
Look at Hamming distance: H(X:, Y:) = [{v : Xe(v) # Yi(v)}.
If for all X;, Y4,

E[H(Xtx1, Yer1)| Xe, Y] < (1= C/n)H(X:, Y:),

Then, Pr(Ar # Br) E[H(AT, BT)]
H(Ao, Bo)(1— C/n)T
nexp(—C/n)

1/4 for T = O(nlogn).

VAN VAN VAR VAN

Path coupling: Suffices to consider pairs where H(X;, Y:) = 1.

Can replace H():
For@:V = Rop, let &(X,Y) =3 cxay Pv
Key: if X # Y then (X, Y) > 1.
Hence, Pr(X: # Y:) < E[P(X:, Yi)].
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PaTH CouPLING WITH HAMMING DISTANCE

1
E[H(Xer1, Yer1)] = H(Xe, Ye) =+ > Prlzi € Yeu]

Zj

1 1 A
= (1--)+- E 1{z locked } ——
( n) n2 {z; unbloc ed}1 3

Zj

1 A A

IA
|
\
|

A

—

Requires: A <1/(A—1)

Blocked

Coupling: update same vertex, attempt add 1%\ remove 14%\
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1
n

E [¢(Xf+17 Yt+1)| Xt, Yt] = (1 — ) @v + Z PI’[Z,' € Yt_|_1] . @z’.

Zj




1
E [¢(Xf+17 Yt+1)| Xt, Yt] = (1 — ;) @v + Z Pr[z,- € Yt+1] . @z’.

Zj




1
E [¢(Xf+17 Yt+1)| Xt, Yt] = (1 — ;) @v + Z Pr[z,- € Yt+1] . @z’.

Zj

Blocked




PAaTH COUPLING WITH @

1
E [@(Xt-i—l, Yt+1)’ Xta Yt] = <1 - n) va + Z PI’[Z,- c Yt+1] 'szf

Zj

1 1 A
=(1l——-)P,+— 1{z; unblocked} ——@,.
< n> +n§: {zj un oce}1+)\ ,

Blocked




PAaTH COUPLING WITH @

1
E [@(Xt—Fla Yt+1)’ Xt7 Yt] = <]_ — n) @v + Z Pr[zi S Yt—|—1] . sz,-

1 1 A
=(1—--)d,+— 1{z unblocked} ——®, < @,
< n> +”Z {zj un oce}1+)\ . <

Want: &, > Ty Zl{z, unblocked in Y:} - &,

Blocked

\

Y,

X




BELIEF PROPAGATION ON TREES

For tree T and given A, compute:

q(v,w) = p(v occupied|w unoccupied)

_q(v,w)
RHW_l—q(v,W)
1
Row=A [ o
1+ Ry
zeN(v)\{w} + Rz

BP starts from arbitrary R9_,
then iterates:

R\I;HW =A H !

i—1
zeN(v)\{w} 1+ RZ%V



For i > max-depth, for every initial (RO):

Ryw = th—)W
In turn
R*
. ied) = gf = —vow
p(v occupied|w unoccupied) = ¢ TR

BP is an elaborate version of Dynamic Programing



BP CONVERGENCE FOR GIRTH > 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all
veV,we N(v):

i
Rv—)w

1+ RI

vV—w

. 1 ,
R, .., =X H ——— and q'(v,w)=
1+ RSy
zeN(v)\{w}
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BP CONVERGENCE FOR GIRTH > 6

Loopy Belief Propagation: Run BP on general G = (V, E). For all
veV,we N(v):
Ri

vV—w

. 1 ,
R, .., =X H ————— and q'(v,w)= 1T R
vV—w

i—1
zeN(v)\{w} 1+ Ry
Does it converge? If so, to what?

For A < Ac: R() has a unique fixed point R*.
THEOREM

Let 0,¢ >0, Ag = Ag(d,€) and C = C(4,€).
For G of max degree A > Aq and girth > 6, all A < (1 — §)A\(A):
fori > C, forallveV,we N(v),

q'(v,w)

. . . — =l fec
wu(v is occupied | w is unoccupied)




UNBLOCKED NEIGHBORS AND LOOPY BP

Recall, loopy BP estimate that z is unoccupied:
R — ) H #
‘ 1+R!
yeN(v)

Loopy BP estimate that z is unblocked:

1
=11 ——=
yeN(Z)l—l—)\-wy

For A < Ac:
Since R converges to unique fixed point R*,
thus w converges to unique fixed point w™.

We'll prove (but don't know a priori):

w*(z) =~ p(z is unblocked)



BAack ToO PATH COUPLING

worst case condition

A
o, > Ton ZZ: 1{z; unblocked} - @,

when X;, Y; “behave” like w*
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Define n x n matrix C

Aw* .
Cv,2) = HXT(*Z()Z) if ze N(v)
0 otherwise




Goal: Find @ such that

5, > Z 1)\w*(z)

2N ) + Aw (z)
Define n x n matrix C
Aw*(2) .
Clv,2) = l—i—ﬁT*z(z) if ze N(v)
0 otherwise

Rephrased: Find vector & € ]Rgl such that

Co< o




CONNECTIONS WITH LLoory BP

1

Recall, BP operator for unblocked: F(w)(z) = H T ()
wly

yeN(z)

AF(w)(v) fue N
It has Jacobian:  J(v,u) = ‘Oggu()u()v) = {5+’\w(u) Iot:llerwisi‘/)

Let J* = J|,__ - denote the Jacobian at the fixed point w*.

Key fact: C=D"tJ'D,
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CONNECTIONS WITH LLoory BP

1

Recall, BP operator for unblocked: F(w)(z) = H T ()
wly

yeN(z)

AF(w)(v) fue N
It has Jacobian:  J(v,u) = ‘OI;SJ()U()V) = {5+’\w(u) Iot:llerwisi‘/)

Let J* = J|,__ - denote the Jacobian at the fixed point w*.

Key fact: C=D"tJ'D,
where D is diagonal matrix with D(v, v) = w*(v)

Fixed point w* is Jacobian attractive so all eigenvalues < 1.
Principal eigenvector @ is good coupling distance.



KEY RESuULTS

Proof approach:
o Find good @ when locally X;, Y; "behave” like w*
o dynamics gets “local uniformity ":
O(nlog A) steps looks locally like w*.  builds on [Hayes '13]

o Disagreements don't spread too fast
builds on [Dyer-Frieze-Hayes-V '13]
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OUTLINE

Proof approach:
e Find good @ when locally X;, Y; “behave” like w*
—dynamics gets “local uniformity " builds on [Hayes '13]

For any Xp, when A < A and girth > 7,
with prob. > 1 —exp(—£2(4)), for t = 2(nlog A):

#{Unblocked Neighbors of v in X;} < Z w*(z) + €A.
zeN(v)

e Disagreements don't spread too fast:
builds on [Dyer-Frieze-Hayes-V '13]

For (Xo, Yo) differ only at v, for T = O(nlog A), r = O(\/A),
Pr (X7 @ Y7 C Bi(v)) > 1 — exp(£2(VA))



@ Initially: single disagreement at v.
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RAPID MIXING WITH UNIFORMITY [Dyer-Frieze-HAvEs-V '13]

Initially: single disagreement at v.

Run the chains for O(nlog A) steps: “burn-in".
The disagreements might spread during this burn-in.
The disagreements do not escape the ball B, whp.
The entire ball B has uniformity, whp.

Interpolate and do path coupling for the disagree pairs in B,
... pairs have local uniformity and & gives contraction

© 060660060

Run O(n) steps to get expected # of disagreements < 1/8.



What happens at A.?



What happens at A.?

THANK YOU!



