
Local Markov Chains, Path Coupling
and Belief Propagation (BP)

Eric Vigoda

Georgia Tech

joint work with:

Charis Efthymiou (Warwick)
Tom Hayes (New Mexico)
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Independent Set

Undirected graph G = (V ,E ):

Independent set: subset of vertices with no adjacent pairs.

Let Ω = all independent sets (of all sizes).

Our Goal:

1 Counting problem: Estimate |Ω|.
2 Sampling problem: Sample uniformly at random from Ω.



Glauber dynamics = Gibbs Sampler

Given G = (V ,E ), Markov chain (Xt) on Ω = all independent sets.

Transitions Xt → Xt+1:

1 Choose v uniformly at random from V .

X ′ =

{
Xt ∪ {v} with probability 1/2

Xt \ {v} with probability 1/2

2 If X ′ ∈ Ω, then Xt+1 = X ′, otherwise Xt+1 = Xt

Stationary distribution is µ = uniform(Ω).

Mixing Time: Tmix := min{t : for all X0, dtv (Xt , µ) ≤ 1/4 }
Then Tmix(ε) ≤ log(1/ε)Tmix.

Recall, dTV(µ, ν) = 1
2

∑
σ∈Ω |µ(σ)− ν(σ)|.
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Independent Sets

Given input graph G = (V ,E ) with n = |V | vertices,
let Ω = set of all independent sets in G .

Typically, |Ω| is HUGE = exponentially large in n.

Goal: in time poly(n):

1 Counting: Compute |Ω|,
2 Sampling: generate random element of Ω.

Exactly computing |Ω| is #P-complete,
even for maximum degree ∆ = 3. [Greenhill ’00]

Approximate |Ω|:
FPRAS for Z : Given G , ε, δ > 0, output EST where:

Pr (EST(1− ε) ≤ Z ≤ EST(1 + ε)) ≥ 1− δ,
in time poly(|G |, 1/ε, log(1/δ)).

FPTAS for Z : FPRAS with δ = 0.
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Independent Sets

Given input graph G = (V ,E ) with n = |V | vertices,
let Ω = set of all independent sets in G .

Typically, |Ω| is HUGE = exponentially large in n.

Goal: in time poly(n):
Compute |Ω| or sample from uniform(Ω)?

General graphs:
NP-hard to approx. |Ω| within 2n

1−ε
for any ε > 0.

Restricted graphs: Given graph G with maximum degree ∆:
For ∆ ≤ 5, FPTAS for |Ω|. [Weitz ’06]

For ∆ ≥ 6, ∃δ > 0, no poly-time to approx |Ω| within 2n
δ

unless NP = RP. [Sly ’10]

What happens between ∆ = 5↔ 6?
Statistical physics phase transition on infinite ∆-regular tree!
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Hard-Core Gas Model

Graph G = (V ,E ), fugacity λ > 0, for σ ∈ Ω:

Gibbs distribution: µ(σ) =
λ|σ|

Z

where
Partition function: Z =

∑
σ

λ|σ|

λ = 1, Z = |Ω| = # of independent sets.



Hard-Core Gas Model

Graph G = (V ,E ), fugacity λ > 0, for σ ∈ Ω:

Gibbs distribution: µ(σ) =
λ|σ|

Z

where
Partition function: Z =

∑
σ

λ|σ|

λ = 1, Z = |Ω| = # of independent sets.

Inuition: Small λ easier: for λ < 1 prefer smaller sets.
Large λ harder: for λ > 1 prefer max independent sets.



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.

Does lim
`→∞

p2` = lim
`→∞

p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root.

uniqueness

λ > λc(∆): Exist boundaries affect root.

non-uniqueness
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peven = .245, podd = .245
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Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
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λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root. uniqueness
λ > λc(∆): Exist boundaries affect root. non-uniqueness

Example: ∆ = 5, λ = 1.05:
peven = .250, podd = .250



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root. uniqueness
λ > λc(∆): Exist boundaries affect root. non-uniqueness

Example: ∆ = 5, λ = 1.06:
peven = .283, podd = .219



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root. uniqueness
λ > λc(∆): Exist boundaries affect root. non-uniqueness

Tree/BP recursions: p`+1 = λ(1−p`)∆−1

1+λ(1−p`)∆−1

Key: Unique vs. Multiple fixed points of 2-level recursions.



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
p2`+1 ?

λc(∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

λ ≤ λc(∆): No boundary affects root. uniqueness
λ > λc(∆): Exist boundaries affect root. non-uniqueness

For 2-dimensional integer lattice Z2:
Conjecture: λc(Z2) ≈ 3.79
Best bounds: 2.53 < λc(Z2) < 5.36



Approximating Partition Function

Tree threshold: λc(∆) := (∆−1)∆−1

(∆−2)∆ ∼ e
∆ :

• All constant ∆, all λ < λc(∆), FPTAS for Z . [Weitz ’06]

• FPTAS using Barvinok’s approach. [Patel,Regts ’17, Peters,Regts ’19]

BUT: For δ, ε > 0, ∆ ≥ 3, exists C = C (δ),
for λ < (1− δ)λc , running time (n/ε)C log∆.

• All ∆ ≥ 3, all λ > λc(∆): No poly-time to approx. Z for
∆-regular, triangle-free G , unless NP = RP

[Sly ’10,Galanis,Stefankovic,V ’13, Sly,Sun ’13, GSV ’15]

What happens at λc(∆)?

Statistical physics phase transition on infinite ∆-regular tree

Computational phase transition on general max deg. ∆ graphs
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High-level idea of FPTAS’s

[Weitz ’06]: For G = (V ,E ) and vertex a ∈ V , consider Tsaw:
a

d b

e ce

b f

c

a b c

d e f
f

c

b

d f

c

f

e

d

g

i g

j

i

b

e c

d f

c

f

e

d

j i j

j

i

i

j

Prσ∼µT (root /∈ σ) = Prσ∼µG (v /∈ σ)

[Barvinok ’14]: Consider Z (λ) for complex λ.
Suppose Z (x) 6= 0 for all x in an open disk D around interval [0, λ].

Look at Taylor of f (x) = logZ (x), then: f (λ) =
∑∞

j=0
λj

j! f
(j)(0)

and O(log(n)) terms gives good approx.

Poly-time for constant ∆: [Patel,Regts ’17]
No complex zeros: [Peters,Regts ’19]



Glauber dynamics (Xt) = Gibbs Sampler

Xt → Xt+1 is defined as follows:

1 Choose v uniformly at random from V .

X ′ =

{
Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ)

2 If X ′ is independent set, then Xt+1 = X ′, otherwise Xt+1 = Xt

Stationary distribution is Gibbs distribution: µ(X ) = λ|X |

Z

Mixing Time: Tmix := min{t : for all X0, dtv (Xt , µ) ≤ 1/4}

Then Tmix(ε) ≤ log(1/ε)Tmix.

Recall, dTV(µ, ν) = 1
2

∑
σ∈Ω |µ(σ)− ν(σ)|.
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2 If X ′ is independent set, then Xt+1 = X ′, otherwise Xt+1 = Xt

Stationary distribution is Gibbs distribution: µ(X ) = λ|X |

Z

Mixing Time: Tmix := min{t : for all X0, dtv (Xt , µ) ≤ 1/4}

Then Tmix(ε) ≤ log(1/ε)Tmix.

Recall, dTV(µ, ν) = 1
2

∑
σ∈Ω |µ(σ)− ν(σ)|.



Our Results
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For all δ > 0, there exists ∆0 = ∆0(δ):
all G = (V ,E ) of max degree ∆ ≥ ∆0 and girth ≥ 7,
all λ < (1− δ)λc(∆),

Tmix = O (n log n) .

Corollaries

An O∗(n2) FPRAS for estimating the partition function Z .

Tmix = O(n log n) when λ ≤ (1− δ)λc(∆) for:

random ∆-regular graphs
random ∆-regular bipartite graphs
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Coupling of Markov Chains

Consider a Markov chain (Ω,P).
Coupling is a joint process ω = (Xt ,Yt) on Ω ×Ω where:

Xt ∼ P and Yt ∼ P

More precisely, for all A,B,C ∈ Ω,

Pr (Xt+1 = C | Xt = A,Yt = B) = P(A,C )

Pr (Xt+1 = C | Xt = A,Yt = B) = P(B,C )

Intuition:
(Xt → Xt+1) ∼ P and (Yt → Yt+1) ∼ P can correlate by ω.

Let X0 be arbitrary, and Y0 ∼ π. Once XT = YT then XT ∼ π.

Coupling time:

Tcouple = max
A,B∈Ω

min{t : Pr (Xt 6= Yt | X0 = A,Y0 = B) ≤ 1/4.}

Tmix ≤ Tcouple
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Coupling for Independent Sets

Consider a pair of independent sets Xt and Yt :

Look at Xt
Yt

:

Identity Coupling:
Update same vt , attempt to add to both or remove from both.

How to analyze???
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Coupling for bounding Tmix

For all Xt ,Yt , define a coupling: (Xt ,Yt)→ (Xt+1,Yt+1).

Look at Hamming distance: H(Xt ,Yt) = |{v : Xt(v) 6= Yt(v)}|.

If for all Xt ,Yt ,

E [H(Xt+1,Yt+1)|Xt ,Yt ] ≤ (1− C/n)H(Xt ,Yt),

Then, Pr (AT 6= BT ) ≤ E [H(AT ,BT )]

≤ H(A0,B0)(1− C/n)T

≤ n exp(−C/n)

≤ 1/4 for T = O(n log n).

Path coupling: Suffices to consider pairs where H(Xt ,Yt) = 1.

Can replace H():
For Φ : V → R≥1 , let Φ(X ,Y ) =

∑
v∈X⊕Y Φv .

Key: if X 6= Y then Φ(X ,Y ) ≥ 1.
Hence, Pr (Xt 6= Yt) ≤ E [Φ(Xt ,Yt)].
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Path Coupling with Hamming Distance

E [H(Xt+1,Yt+1)] = H(Xt ,Yt)−
1

n
+
∑
zi

Pr[zi ∈ Yt+1]

= (1− 1

n
) +

1

n

∑
zi

1{zi unblocked}
λ

1 + λ

≤ 1− 1

n
+
∆

n

λ

1 + λ

< 1

Requires: λ < 1/(∆− 1)

v

z1

z2

z`

w1

w2

w3

w4

ws

Yt

Xt

Blocked

Coupling: update same vertex, attempt add λ
1+λ , remove 1

1+λ .
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Path Coupling with Φ

E [Φ(Xt+1,Yt+1)|Xt ,Yt ] =

(
1− 1

n

)
Φv +

∑
zi

Pr[zi ∈ Yt+1] · Φzi

=

(
1− 1

n

)
Φv +

1

n

∑
zi

1{zi unblocked}
λ

1 + λ
Φzi

< Φv

Want: Φv >
λ

1 + λ

∑
zi

1{zi unblocked in Yt} · Φzi
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Belief Propagation on trees

For tree T and given λ, compute:

q(v ,w) = µ(v occupied|w unoccupied)

Rv→w =
q(v ,w)

1− q(v ,w)

Rv→w = λ
∏

z∈N(v)\{w}

1

1 + Rz→v

BP starts from arbitrary R0
v→w ,

then iterates:

R i
v→w = λ

∏
z∈N(v)\{w}

1

1 + R i−1
z→v

v

w

Rv→w

z ẑ

Rz→v Rẑ→v



BP and Gibbs distribution on trees

Convergence on trees

For i > max-depth, for every initial (R0):

R i
v→w = R∗v→w

In turn

µ(v occupied|w unoccupied) = q∗ =
R∗v→w

1 + R∗v→w

BP is an elaborate version of Dynamic Programing



BP Convergence for girth ≥ 6

Loopy Belief Propagation: Run BP on general G = (V ,E ). For all
v ∈ V ,w ∈ N(v):

R i
v→w = λ

∏
z∈N(v)\{w}

1

1 + R i−1
z→v

and qi (v ,w) =
R i
v→w

1 + R i
v→w

Does it converge? If so, to what?

For λ < λc : R() has a unique fixed point R∗.

Theorem

Let δ, ε > 0, ∆0 = ∆0(δ, ε) and C = C (δ, ε).
For G of max degree ∆ ≥ ∆0 and girth ≥ 6, all λ < (1− δ)λc(∆):

for i ≥ C , for all v ∈ V , w ∈ N(v),∣∣∣∣ qi (v ,w)

µ(v is occupied | w is unoccupied)
− 1

∣∣∣∣ ≤ ε
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Unblocked Neighbors and loopy BP

Recall, loopy BP estimate that z is unoccupied:

R i
z = λ

∏
y∈N(v)

1

1 + R i−1
y

Loopy BP estimate that z is unblocked:

ωi
z =

∏
y∈N(z)

1

1 + λ · ωi−1
y

For λ < λc :
Since R converges to unique fixed point R∗,

thus ω converges to unique fixed point ω∗.

We’ll prove (but don’t know a priori):

ω∗(z) ≈ µ(z is unblocked)



Back to Path Coupling

worst case condition

Φv >
λ

1 + λ

∑
zi

1{zi unblocked} · Φzi

when Xt ,Yt “behave” like ω∗

Φv >
λ

1 + λ

∑
zi

ω∗(zi ) · Φzi

v

z1

z2

z`

w1

w2

w3

w4

ws

Yt

Xt

Blocked



Finding Φ

Reformulation

Goal: Find Φ such that

Φv >
∑

z∈N(v)

λω∗(z)

1 + λω∗(z)
Φz

Define n × n matrix C

C(v , z) =

{
λω∗(z)

1+λω∗(z) if z ∈ N(v)

0 otherwise

Rephrased: Find vector Φ ∈ RV
≥1 such that

C Φ < Φ
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Connections with Loopy BP

Recall, BP operator for unblocked: F (ω)(z) =
∏

y∈N(z)

1

1 + λω(y)

It has Jacobian: J(v , u) =

∣∣∣∣∂F (ω)(v)

∂ω(u)

∣∣∣∣ =

{
λF (ω)(v)
1+λω(u) if u ∈ N(v)

0 otherwise

Let J∗ = J|ω=ω∗ denote the Jacobian at the fixed point ω∗.

Key fact: C = D−1J∗D,

where D is diagonal matrix with D(v , v) = ω∗(v)

Fixed point ω∗ is Jacobian attractive so all eigenvalues < 1.
Principal eigenvector Φ is good coupling distance.
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Key Results

Proof approach:

Find good Φ when locally Xt ,Yt “behave” like ω∗

dynamics gets “local uniformity ”:
O(n log∆) steps looks locally like ω∗. builds on [Hayes ’13]

Disagreements don’t spread too fast
builds on [Dyer-Frieze-Hayes-V ’13]
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Proof approach:
• Find good Φ when locally Xt ,Yt “behave” like ω∗

–dynamics gets “local uniformity ” builds on [Hayes ’13]

For any X0, when λ < λc and girth ≥ 7,
with prob. ≥ 1− exp(−Ω(∆)), for t = Ω(n log∆):

#{Unblocked Neighbors of v in Xt} <
∑

z∈N(v)

ω∗(z) + ε∆.

• Disagreements don’t spread too fast:
builds on [Dyer-Frieze-Hayes-V ’13]

For (X0,Y0) differ only at v , for T = O(n log∆), r = O(
√
∆),

Pr (XT ⊕ YT ⊂ Br (v)) ≥ 1− exp(Ω(
√
∆))
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Rapid Mixing with Uniformity [Dyer-Frieze-Hayes-V ’13]

v √
∆

disagerement
area

G

1 Initially: single disagreement at v .

2 Run the chains for O(n log∆) steps: “burn-in”.

3 The disagreements might spread during this burn-in.

4 The disagreements do not escape the ball B, whp.

5 The entire ball B has uniformity, whp.

6 Interpolate and do path coupling for the disagree pairs in B,
. . . pairs have local uniformity

and Φ gives contraction

7 Run O(n) steps to get expected # of disagreements < 1/8.
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