Finding Monotone Patterns in Sublinear Time

Erik Waingarten (Columbia University)

Clément Canonne (Stanford University)
Omri Ben-Eliezer (Tel-Aviv University)
Shoham Letzter (ETH Zurich)

1/14

Testing Monotonicity of an Array: Sortedness

[1[3[2]3]6]7/1]9/42[56 7]

Given query access to an unknown f: [n] — R and a parameter € > 0:

e If f monotone, accept w.p. > 2/3;

e If f is e-far from monotone, reject w.p. > 2/3;

[Minimum query complexity in terms of n and &7

] 2/ 14

Testing Monotonicity of an Array: Sortedness

[1[3[2]3]6]7/1]9/42[56 7]

Given query access to an unknown f: [n] — R and a parameter € > 0:

e If f monotone, accept w.p. > 2/3;

e If f is e-far from monotone, reject w.p. > 2/3;

[Minimum query complexity in terms of n and &7

o If f is e-far from monotone, find evidence:
> i,j € [n] where i < j and f(i) > f(j).

] 2/ 14

Testing Monotonicity of an Array: Sortedness

[1[3[2]3]6]7/1]9/42[56 7]

Given query access to an unknown f: [n] — R and a parameter € > 0:

e If f monotone, accept w.p. > 2/3;

e If f is e-far from monotone, reject w.p. > 2/3;

[Minimum query complexity in terms of n and &7

o If f is e-far from monotone, find evidence:
> i,j € [n] where i < j and f(i) > f(j). one-sided error.

] 2/ 14

e-Far-From-Monotone Sequences

@ f is e-far from monotone: for any monotone g: [n] — R,

—Zl{f (i)} >e.

] 3/ 14

e-Far-From-Monotone Sequences

@ f is e-far from monotone: for any monotone g: [n] — R,

—Zl{f (i)} >e.

Lemma
Let f: [n] — R be e-far from monotone. There exists set of disjoint pairs,

T={(i,j) € [nP:i<jand f(i) > f(j)}

of size |[T| > en/2.

L e

Monotonicity Testing

Theorem (Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity
of f: [n] = R making O((log n)/e) queries.

] 4/ 14

Monotonicity Testing

Theorem (Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity
of f: [n] = R making O((log n)/e) queries.

o Q((logn)/e) queries needed for non-adaptive algorithms.

4/14

Monotonicity Testing

Theorem (Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity
of f: [n] = R making O((log n)/e) queries.

o Q((logn)/e) queries needed for non-adaptive algorithms.
o Q((logn)/e) queries needed for adaptive algorithms too! [Fischer 04].

4/14

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition
Let k € N and m = (71,...,7mk) be a permutation of [k]. Given
f: [n] = R, the k-tuple (i1, ..., ix) has order pattern if:

f(ig) < f(im) whenever 7y < 7p,.

L 7T

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition
Let k € N and m = (71,...,7mk) be a permutation of [k]. Given
f: [n] = R, the k-tuple (i1, ..., ix) has order pattern if:

f(ig) < f(im) whenever 7y < 7p,.

If £: [n] — R is e-far from 7-free, then there exists T C [n]* of disjoint
violating k-tuples (i1, ..., ix) with order pattern 7 of size at least en/k.

L 7T

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition
Let k € N and m = (m1,...,7k) be a permutation of [k]. Given
f: [n] = R, the k-tuple (i1, ..., ix) has order pattern if:

f(ig) < f(im) whenever 7y < 7p,.

If £: [n] — R is e-far from 7-free, then there exists T C [n]* of disjoint
violating k-tuples (i1, ..., ix) with order pattern 7 of size at least en/k.

For fixed k and 7, query complexity of testing
m-freeness?

L 7T

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition
Let k € N and m = (m1,...,7k) be a permutation of [k]. Given
f: [n] = R, the k-tuple (i1, ..., ix) has order pattern if:

f(ig) < f(im) whenever 7y < 7p,.

If £: [n] — R is e-far from 7-free, then there exists T C [n]* of disjoint
violating k-tuples (i1, ..., ix) with order pattern 7 of size at least en/k.

For fixed k and 7, query complexity of testing
m-freeness?

@ Some sublinear in n upper bounds for general 7.

L 7T

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition
Let k € N and m = (m1,...,7k) be a permutation of [k]. Given
f: [n] = R, the k-tuple (i1, ..., ix) has order pattern if:

f(ig) < f(im) whenever 7y < 7p,.

If £: [n] — R is e-far from 7-free, then there exists T C [n]* of disjoint
violating k-tuples (i1, ..., ix) with order pattern 7 of size at least en/k.

For fixed k and 7, query complexity of testing
m-freeness?

@ Some sublinear in n upper bounds for general 7.
o 7 = (132) requires Q(y/n) queries for non-adaptive, one-sided
algorithms.

L 7T

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition
Let k € N and m = (m1,...,7k) be a permutation of [k]. Given
f: [n] = R, the k-tuple (i1, ..., ik) has order pattern = if:

f(ig) < f(im) whenever 7y < 7p,.

If £: [n] — R is e-far from 7-free, then there exists T C [n]* of disjoint
violating k-tuples (i1, ..., ix) with order pattern 7 of size at least en/k.

For fixed k and 7, query complexity of testing
m-freeness?

@ Some sublinear in n upper bounds for general 7.
o 7 = (132) requires Q(y/n) queries for non-adaptive, one-sided
algorithms.

@ [Ben-Eliezer, Canonne 18] Many 7 have complexity a nl—1/(k=0Q1),

L 7T

Finding Monotone Patterns: m = (12... k)

Finding Monotone Patterns: m = (12... k)

Given query access to f: [n] — R and a parameter ¢ > 0 where:

Finding Monotone Patterns: m = (12... k)

Given query access to f: [n] — R and a parameter ¢ > 0 where:

o There exists T C [n]¥ of disjoint violating k-tuples
T={(h,...,ik) it <---<ligand f(ir) <--- < f(ix)}

of size |T| > en/k.

6/ 14

Finding Monotone Patterns: m = (12... k)

Given query access to f: [n] — R and a parameter ¢ > 0 where:

o There exists T C [n]¥ of disjoint violating k-tuples
T={(h,...,ik) it <---<ligand f(ir) <--- < f(ix)}

of size |T| > en/k.
e Find iy < --- < iy where f(i) <--- < f(ix).

6/ 14

Finding Monotone Patterns: m = (12... k)

Given query access to f: [n] — R and a parameter ¢ > 0 where:
o There exists T C [n]¥ of disjoint violating k-tuples

T={(h,...,ik) it <---<ligand f(ir) <--- < f(ix)}

of size |T| > en/k.
e Find iy < --- < iy where f(i) <--- < f(ix).

Theorem (NRRS17)

There is a non-adaptive algorithm with query complexity ((log n) /e)o(k2). }

6/ 14

Finding Monotone Patterns: m = (12... k)

Finding Monotone Patterns: m = (12... k)

Theorem (Upper bound)

For k € N, there exists a non-adaptive algorithm with query complexity
(log n)H82*) . poly(1/e).

L 7T

Finding Monotone Patterns: m = (12... k)

Theorem (Upper bound)

For k € N, there exists a non-adaptive algorithm with query complexity

(log n)l°&24) . poly(1/e).

Theorem (Lower bound) J

Any non-adaptive algorithm needs to make Q2 ((Iog n)Lloe: kJ) queries.

] 7/ 14

The Case of k =2

The Case of k =2

Let f: [n] — R and disjoint subset of pairs T of size en/2 with

T ={(i,j) € [n?:i<jand f(i) < f(j)}.

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T ={(i,j) € [n?:i<jand f(i) < f(j)}.

[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

L o7

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T ={(i,j) € [n*:i<jand f(i) < f(j)}.

[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

@ Sample £ ~ [n] uniformly and repeat the following for t iterations:

L o7

The Case of k =2
Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T={(i,j) €[n?:i<jand f(i) < f(j)}.

[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

@ Sample £ ~ [n] uniformly and repeat the following for t iterations:
» Sample s ~ {0,...,log, n} and i ~ [— 25 £] and query f(i).

L o7

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T ={(i,j) € [n*:i<jand f(i) < f(j)}.
[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:
@ Sample £ ~ [n] uniformly and repeat the following for t iterations:

» Sample s ~ {0,...,log, n} and i ~ [— 25 £] and query f(i).
» Sample s ~ {0,...,log, n} and j ~ [£, £+ 2°] and query f(j).

L o7

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T={(i,j) €[n?:i<jand f(i) < f(j)}.
[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:
@ Sample £ ~ [n] uniformly and repeat the following for t iterations:

» Sample s ~ {0,...,log, n} and i ~ [€ — 2% £] and query ().
» Sample s ~ {0,...,log, n} and j ~ [£,£+ 2°] and query f(j).

] 8/ 14

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T={(i,j) €[n?:i<jand f(i) < f(j)}.
[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:
@ Sample £ ~ [n] uniformly and repeat the following for t iterations:

» Sample s ~ {0,...,log, n} and i ~ [€ — 2% £] and query ().
» Sample s ~ {0,...,log, n} and j ~ [£,£+ 2°] and query f(j).

>

] 8/ 14

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T ={(i,j) € [n*:i<jand f(i) < f(j)}.
[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:
@ Sample £ ~ [n] uniformly and repeat the following for t iterations:

» Sample s ~ {0,...,log, n} and i ~ [— 25 £] and query f(i).
» Sample s ~ {0,...,log, n} and j ~ [£, £+ 2°] and query f(j).

Y S—— |

L o7

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T={(i,j) €[n?:i<jand f(i) < f(j)}.
[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:
@ Sample £ ~ [n] uniformly and repeat the following for t iterations:

» Sample s ~ {0,...,log, n} and i ~ [€ — 2% £] and query ().
» Sample s ~ {0,...,log, n} and j ~ [£,£+ 2°] and query f(j).

] 8/ 14

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T={(i,j) €[n?:i<jand f(i) < f(j)}.
[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:
@ Sample £ ~ [n] uniformly and repeat the following for t iterations:

» Sample s ~ {0,...,log, n} and i ~ [€ — 2% £] and query ().
» Sample s ~ {0,...,log, n} and j ~ [£,£+ 2°] and query f(j).

] 8/ 14

The Case of k =2

Let 7: [n] — R and disjoint subset of pairs T of size en/2 with
T={(i,j) €[n?:i<jand f(i) < f(j)}.
[Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:
@ Sample £ ~ [n] uniformly and repeat the following for t iterations:

» Sample s ~ {0,...,log, n} and i ~ [€ — 2% £] and query ().
» Sample s ~ {0,...,log, n} and j ~ [£,£+ 2°] and query f(j).

i i i3 iqg is€ ji joj3Ja Js

A A A4

] 8/ 14

Analysis

f:|

L o7

Analysis

f:|

@ Let T be set of monotone pairs.

L o7

Analysis

L 4

*

f:|

@ Let T be set of monotone pairs.
e (i,j)eT.

9/ 14

Analysis

L 4

*

f:|

@ Let T be set of monotone pairs.
e (i,j)e T. (i,j) scale s when j — i ~ 2°.
S

2
Prji<e</l~Z.
i r[/ J] p

9/ 14

Analysis

*
*

f=]

log n ..
i,j) scale s cut
E Z # (i,J)) >

2$+1

£~[n] s=1

] 10 / 14

Analysis

°
R
°
f= |)
@ Sample £ such that:
log n .. logn
I t
Z i (I’J);iale S Z (density of T at 2571) > ¢.
s=1 s=1

] 11/ 14

Analysis

f=

@ Sample £ such that:

log n

2s+1

Z# i,j) scale s cut

logn
Z (density of T at 2571) > ¢.
s=1

11/ 14

Analysis

f=

@ Sample £ such that:

log n

2s+1

Z# i,j) scale s cut

logn
Z (density of T at 2571) > ¢.
s=1

11/ 14

Analysis

f=

@ Sample £ such that:

log n

25+1

Z# i,j) scale s cut

log n
Z (density of T at 2571) > ¢.
s=1

11/ 14

Analysis

J4
@ Sample £ such that:
log n .. logn
(i,J) scale s cut .
Z ()25+1 = Z (density of T at 2571) > ¢.
s=1 s=1

] 11/ 14

Analysis

I

o Density 7 and 67 Y6767 > ¢ and 38/ 6 > e.

logn ¢ log n t
r [avoid pair] < (Io;n Z(l — 55_)) + <Io;n Z(l - 5:)) <

s=1 s=1

W[=

'1, Jt
.’17 :.It

] 12/ 14

Monotone patterns for k > 27
New algorithm for finding (12... k) patterns:

Monotone patterns for k > 27
New algorithm for finding (12... k) patterns:
@ Round 1: Sample O(1/¢) indices from [n], include them in a set A.

] 13/ 14

Monotone patterns for k > 27
New algorithm for finding (12... k) patterns:
@ Round 1: Sample O(1/¢) indices from [n], include them in a set A.

@ Round r, 2 < r < |logy, k| +1: Foreachi€ Aand s € {1,...,logn},
sample O(1/¢) indices from [i — 2%, i + 2°] and include them in A.

] 13/ 14

Monotone patterns for k > 27
New algorithm for finding (12... k) patterns:
@ Round 1: Sample O(1/¢) indices from [n], include them in a set A.

@ Round r, 2 < r < |logy, k| +1: Foreachi€ Aand s € {1,...,logn},
sample O(1/¢) indices from [i — 2%, i + 2°] and include them in A.
e Query f(i) for all i € A.

] 13/ 14

Monotone patterns for k > 27
New algorithm for finding (12... k) patterns:
@ Round 1: Sample O(1/¢) indices from [n], include them in a set A.

@ Round r, 2 < r < |logy, k| +1: Foreachi€ Aand s € {1,...,logn},
sample O(1/¢) indices from [i — 2%, i + 2°] and include them in A.
e Query f(i) for all i € A.

- T TTHAMTT []

£

] 13/ 14

Monotone patterns for k > 27
New algorithm for finding (12... k) patterns:
@ Round 1: Sample O(1/¢) indices from [n], include them in a set A.

@ Round r, 2 < r < |logy, k| +1: Foreachi€ Aand s € {1,...,logn},
sample O(1/¢) indices from [i — 2%, i + 2°] and include them in A.
e Query f(i) for all i € A.

- T TTHAMTT []

£

Query Complexity: O(1/¢) - (O(log n/g))Uogz k]

] 13/ 14

Monotone patterns for k > 27
New algorithm for finding (12... k) patterns:
@ Round 1: Sample O(1/¢) indices from [n], include them in a set A.

@ Round r, 2 < r < |logy, k| +1: Foreachi€ Aand s € {1,...,logn},
sample O(1/¢) indices from [i — 2%, i + 2°] and include them in A.
e Query f(i) for all i € A.

- T TTHAMTT []

0
Query Complexity: O(1/¢) - (O(log n/g))Uogz k]

Theorem

Suppose f: [n] — R contains en/k disjoint (12. .. k)-patterns, algorithm
finds one w.p > 2/3.

] 13/ 14

Open Problems

Open Problems

@ More efficient tests for two-sided error testing for (12. .. k)-freeness.

Open Problems

@ More efficient tests for two-sided error testing for (12... k)-freeness.
@ Adaptive algorithms for finding 7-patterns?

] 14/ 14

Open Problems

@ More efficient tests for two-sided error testing for (12... k)-freeness.
@ Adaptive algorithms for finding 7-patterns?
» Possibly poly(log n) adaptive queries for any pattern 77

] 14/ 14

Open Problems

@ More efficient tests for two-sided error testing for (12... k)-freeness.
@ Adaptive algorithms for finding 7-patterns?
» Possibly poly(log n) adaptive queries for any pattern 77

Thanks!

] 14/ 14

