Finding Monotone Patterns in Sublinear Time

Erik Waingarten (Columbia University)
Clément Canonne (Stanford University) Omri Ben-Eliezer (Tel-Aviv University) Shoham Letzter (ETH Zurich)

Testing Monotonicity of an Array: Sortedness

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 2 & 3 & 6 & 7 & 1 & 9 & 4 & 2 & 5 & 6 & 7 \\
\hline
\end{array}
$$

Given query access to an unknown $f:[n] \rightarrow \mathbb{R}$ and a parameter $\varepsilon>0$:

- If f monotone, accept w.p. $>2 / 3$;
- If f is ε-far from monotone, reject w.p. $>2 / 3$;

Minimum query complexity in terms of n and ε ?

Testing Monotonicity of an Array: Sortedness

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 2 & 3 & 6 & 7 & 1 & 9 & 4 & 2 & 5 & 6 & 7 \\
\hline
\end{array}
$$

Given query access to an unknown $f:[n] \rightarrow \mathbb{R}$ and a parameter $\varepsilon>0$:

- If f monotone, accept w.p. $>2 / 3$;
- If f is ε-far from monotone, reject w.p. $>2 / 3$;

Minimum query complexity in terms of n and ε ?

- If f is ε-far from monotone, find evidence:
- $i, j \in[n]$ where $i<j$ and $f(i)>f(j)$.

Testing Monotonicity of an Array: Sortedness

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 2 & 3 & 6 & 7 & 1 & 9 & 4 & 2 & 5 & 6 & 7 \\
\hline
\end{array}
$$

Given query access to an unknown $f:[n] \rightarrow \mathbb{R}$ and a parameter $\varepsilon>0$:

- If f monotone, accept w.p. $>2 / 3$;
- If f is ε-far from monotone, reject w.p. $>2 / 3$;

Minimum query complexity in terms of n and ε ?

- If f is ε-far from monotone, find evidence:
- $i, j \in[n]$ where $i<j$ and $f(i)>f(j)$. one-sided error.

ε-Far-From-Monotone Sequences

- f is ε-far from monotone: for any monotone $g:[n] \rightarrow \mathbb{R}$,

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{f(i) \neq g(i)\} \geq \varepsilon
$$

ε-Far-From-Monotone Sequences

- f is ε-far from monotone: for any monotone $g:[n] \rightarrow \mathbb{R}$,

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{f(i) \neq g(i)\} \geq \varepsilon
$$

Lemma

Let $f:[n] \rightarrow \mathbb{R}$ be ε-far from monotone. There exists set of disjoint pairs,

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)>f(j)\right\}
$$

of size $|T| \geq \varepsilon n / 2$.

Monotonicity Testing

Theorem (Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99)
There exists a non-adaptive, one-sided algorithm for testing monotonicity of $f:[n] \rightarrow \mathbb{R}$ making $O((\log n) / \varepsilon)$ queries.

Monotonicity Testing

Theorem (Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity of $f:[n] \rightarrow \mathbb{R}$ making $O((\log n) / \varepsilon)$ queries.

- $\Omega((\log n) / \varepsilon)$ queries needed for non-adaptive algorithms.

Monotonicity Testing

Theorem (Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity of $f:[n] \rightarrow \mathbb{R}$ making $O((\log n) / \varepsilon)$ queries.

- $\Omega((\log n) / \varepsilon)$ queries needed for non-adaptive algorithms.
- $\Omega((\log n) / \varepsilon)$ queries needed for adaptive algorithms too! [Fischer 04].

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let $k \in \mathbb{N}$ and $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ be a permutation of $[k]$. Given $f:[n] \rightarrow \mathbb{R}$, the k-tuple $\left(i_{1}, \ldots, i_{k}\right)$ has order pattern π if:

$$
f\left(i_{\ell}\right)<f\left(i_{m}\right) \text { whenever } \pi_{\ell}<\pi_{m} .
$$

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let $k \in \mathbb{N}$ and $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ be a permutation of $[k]$. Given $f:[n] \rightarrow \mathbb{R}$, the k-tuple $\left(i_{1}, \ldots, i_{k}\right)$ has order pattern π if:

$$
f\left(i_{\ell}\right)<f\left(i_{m}\right) \text { whenever } \pi_{\ell}<\pi_{m} .
$$

If $f:[n] \rightarrow \mathbb{R}$ is ε-far from π-free, then there exists $T \subset[n]^{k}$ of disjoint violating k-tuples $\left(i_{1}, \ldots, i_{k}\right)$ with order pattern π of size at least $\varepsilon n / k$.

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let $k \in \mathbb{N}$ and $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ be a permutation of $[k]$. Given $f:[n] \rightarrow \mathbb{R}$, the k-tuple $\left(i_{1}, \ldots, i_{k}\right)$ has order pattern π if:

$$
f\left(i_{\ell}\right)<f\left(i_{m}\right) \text { whenever } \pi_{\ell}<\pi_{m} .
$$

If $f:[n] \rightarrow \mathbb{R}$ is ε-far from π-free, then there exists $T \subset[n]^{k}$ of disjoint violating k-tuples $\left(i_{1}, \ldots, i_{k}\right)$ with order pattern π of size at least $\varepsilon n / k$.

For fixed k and π, query complexity of testing π-freeness?

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let $k \in \mathbb{N}$ and $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ be a permutation of $[k]$. Given $f:[n] \rightarrow \mathbb{R}$, the k-tuple $\left(i_{1}, \ldots, i_{k}\right)$ has order pattern π if:

$$
f\left(i_{\ell}\right)<f\left(i_{m}\right) \text { whenever } \pi_{\ell}<\pi_{m} .
$$

If $f:[n] \rightarrow \mathbb{R}$ is ε-far from π-free, then there exists $T \subset[n]^{k}$ of disjoint violating k-tuples $\left(i_{1}, \ldots, i_{k}\right)$ with order pattern π of size at least $\varepsilon n / k$.

For fixed k and π, query complexity of testing π-freeness?

- Some sublinear in n upper bounds for general π.

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let $k \in \mathbb{N}$ and $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ be a permutation of $[k]$. Given $f:[n] \rightarrow \mathbb{R}$, the k-tuple $\left(i_{1}, \ldots, i_{k}\right)$ has order pattern π if:

$$
f\left(i_{\ell}\right)<f\left(i_{m}\right) \text { whenever } \pi_{\ell}<\pi_{m} .
$$

If $f:[n] \rightarrow \mathbb{R}$ is ε-far from π-free, then there exists $T \subset[n]^{k}$ of disjoint violating k-tuples $\left(i_{1}, \ldots, i_{k}\right)$ with order pattern π of size at least $\varepsilon n / k$.

For fixed k and π, query complexity of testing π-freeness?

- Some sublinear in n upper bounds for general π.
- $\pi=(132)$ requires $\Omega(\sqrt{n})$ queries for non-adaptive, one-sided algorithms.

Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let $k \in \mathbb{N}$ and $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ be a permutation of $[k]$. Given $f:[n] \rightarrow \mathbb{R}$, the k-tuple $\left(i_{1}, \ldots, i_{k}\right)$ has order pattern π if:

$$
f\left(i_{\ell}\right)<f\left(i_{m}\right) \text { whenever } \pi_{\ell}<\pi_{m} .
$$

If $f:[n] \rightarrow \mathbb{R}$ is ε-far from π-free, then there exists $T \subset[n]^{k}$ of disjoint violating k-tuples $\left(i_{1}, \ldots, i_{k}\right)$ with order pattern π of size at least $\varepsilon n / k$.

For fixed k and π, query complexity of testing π-freeness?

- Some sublinear in n upper bounds for general π.
- $\pi=(132)$ requires $\Omega(\sqrt{n})$ queries for non-adaptive, one-sided algorithms.
- [Ben-Eliezer, Canonne 18] Many π have complexity a $n^{1-1 /(k-\Theta(1))}$.

Finding Monotone Patterns: $\pi=(12 \ldots k)$

Finding Monotone Patterns: $\pi=(12 \ldots k)$

Given query access to $f:[n] \rightarrow \mathbb{R}$ and a parameter $\varepsilon>0$ where:

Finding Monotone Patterns: $\pi=(12 \ldots k)$

Given query access to $f:[n] \rightarrow \mathbb{R}$ and a parameter $\varepsilon>0$ where:

- There exists $T \subset[n]^{k}$ of disjoint violating k-tuples

$$
\begin{aligned}
& \qquad T=\left\{\left(i_{1}, \ldots, i_{k}\right): i_{1}<\cdots<i_{k} \text { and } f\left(i_{1}\right)<\cdots<f\left(i_{k}\right)\right\} \\
& \text { of size }|T| \geq \varepsilon n / k .
\end{aligned}
$$

Finding Monotone Patterns: $\pi=(12 \ldots k)$

Given query access to $f:[n] \rightarrow \mathbb{R}$ and a parameter $\varepsilon>0$ where:

- There exists $T \subset[n]^{k}$ of disjoint violating k-tuples

$$
T=\left\{\left(i_{1}, \ldots, i_{k}\right): i_{1}<\cdots<i_{k} \text { and } f\left(i_{1}\right)<\cdots<f\left(i_{k}\right)\right\}
$$

of size $|T| \geq \varepsilon n / k$.

- Find $i_{1}<\cdots<i_{k}$ where $f\left(i_{1}\right)<\cdots<f\left(i_{k}\right)$.

Finding Monotone Patterns: $\pi=(12 \ldots k)$

Given query access to $f:[n] \rightarrow \mathbb{R}$ and a parameter $\varepsilon>0$ where:

- There exists $T \subset[n]^{k}$ of disjoint violating k-tuples

$$
T=\left\{\left(i_{1}, \ldots, i_{k}\right): i_{1}<\cdots<i_{k} \text { and } f\left(i_{1}\right)<\cdots<f\left(i_{k}\right)\right\}
$$

$$
\text { of size }|T| \geq \varepsilon n / k
$$

- Find $i_{1}<\cdots<i_{k}$ where $f\left(i_{1}\right)<\cdots<f\left(i_{k}\right)$.

Theorem (NRRS17)

There is a non-adaptive algorithm with query complexity $((\log n) / \varepsilon)^{O\left(k^{2}\right)}$.

Finding Monotone Patterns: $\pi=(12 \ldots k)$

Finding Monotone Patterns: $\pi=(12 \ldots k)$

Theorem (Upper bound)
For $k \in \mathbb{N}$, there exists a non-adaptive algorithm with query complexity
$(\log n)^{\left\lfloor\log _{2} k\right\rfloor} \cdot \operatorname{poly}(1 / \varepsilon)$.

Finding Monotone Patterns: $\pi=(12 \ldots k)$

Theorem (Upper bound)
For $k \in \mathbb{N}$, there exists a non-adaptive algorithm with query complexity

$$
(\log n)^{\left\lfloor\log _{2} k\right\rfloor} \cdot \operatorname{poly}(1 / \varepsilon) .
$$

Theorem (Lower bound)
Any non-adaptive algorithm needs to make $\Omega\left((\log n)^{\left\lfloor\log _{2} k\right\rfloor}\right)$ queries.

The Case of $k=2$

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\}
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{i} \sim\left[\ell-2^{\boldsymbol{s}}, \ell\right]$ and query $f(\boldsymbol{i})$.

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\}
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{i} \sim\left[\ell-2^{\boldsymbol{s}}, \ell\right]$ and query $f(\boldsymbol{i})$.
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{j} \sim\left[\ell, \ell+2^{s}\right]$ and query $f(\boldsymbol{j})$.

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{i} \sim\left[\ell-2^{\boldsymbol{s}}, \ell\right]$ and query $f(\boldsymbol{i})$.
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{j} \sim\left[\ell, \ell+2^{s}\right]$ and query $f(\boldsymbol{j})$.

$f=\square$

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{i} \sim\left[\ell-2^{\boldsymbol{s}}, \ell\right]$ and query $f(\boldsymbol{i})$.
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{j} \sim\left[\ell, \ell+2^{s}\right]$ and query $f(\boldsymbol{j})$.

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{i} \sim\left[\ell-2^{\boldsymbol{s}}, \ell\right]$ and query $f(\boldsymbol{i})$.
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{j} \sim\left[\ell, \ell+2^{s}\right]$ and query $f(\boldsymbol{j})$.

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{i} \sim\left[\ell-2^{\boldsymbol{s}}, \ell\right]$ and query $f(\boldsymbol{i})$.
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{j} \sim\left[\ell, \ell+2^{s}\right]$ and query $f(j)$.

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{i} \sim\left[\ell-2^{\boldsymbol{s}}, \ell\right]$ and query $f(\boldsymbol{i})$.
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{j} \sim\left[\ell, \ell+2^{s}\right]$ and query $f(j)$.

The Case of $k=2$

Let $f:[n] \rightarrow \mathbb{R}$ and disjoint subset of pairs T of size $\varepsilon n / 2$ with

$$
T=\left\{(i, j) \in[n]^{2}: i<j \text { and } f(i)<f(j)\right\} .
$$

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

- Sample $\ell \sim[n]$ uniformly and repeat the following for t iterations:
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{i} \sim\left[\ell-2^{\boldsymbol{s}}, \ell\right]$ and query $f(\boldsymbol{i})$.
- Sample $\boldsymbol{s} \sim\left\{0, \ldots, \log _{2} n\right\}$ and $\boldsymbol{j} \sim\left[\ell, \ell+2^{s}\right]$ and query $f(j)$.

Analysis
\mathbb{R}

Analysis

\square

- Let T be set of monotone pairs.

Analysis

- Let T be set of monotone pairs.
- $(i, j) \in T$.

Analysis

- Let T be set of monotone pairs.
- $(i, j) \in T$. (i, j) scale s when $j-i \approx 2^{s}$.

$$
\operatorname{Pr}_{\ell \sim[n]}[i \leq \ell \leq j] \approx \frac{2^{s}}{n}
$$

Analysis

$$
\underset{\ell \sim[n]}{\mathbb{E}}\left[\sum_{s=1}^{\log n} \frac{\#(i, j) \text { scale } s \text { cut }}{2^{s+1}}\right] \gtrsim \varepsilon
$$

Analysis

- Sample ℓ such that:

$$
\sum_{s=1}^{\log n} \frac{\#(i, j) \text { scale } s \text { cut }}{2^{s+1}}=\sum_{s=1}^{\log n}\left(\text { density of } T \text { at } 2^{s+1}\right) \gtrsim \varepsilon .
$$

Analysis

- Sample ℓ such that:

$$
\sum_{s=1}^{\log n} \frac{\#(i, j) \text { scale } s \text { cut }}{2^{s+1}}=\sum_{s=1}^{\log n}\left(\text { density of } T \text { at } 2^{s+1}\right) \gtrsim \varepsilon .
$$

Analysis

- Sample ℓ such that:

$$
\sum_{s=1}^{\log n} \frac{\#(i, j) \text { scale } s \text { cut }}{2^{s+1}}=\sum_{s=1}^{\log n}\left(\text { density of } T \text { at } 2^{s+1}\right) \gtrsim \varepsilon
$$

Analysis

- Sample ℓ such that:

$$
\sum_{s=1}^{\log n} \frac{\#(i, j) \text { scale } s \text { cut }}{2^{s+1}}=\sum_{s=1}^{\log n}\left(\text { density of } T \text { at } 2^{s+1}\right) \gtrsim \varepsilon
$$

Analysis

- Sample ℓ such that:

$$
\sum_{s=1}^{\log n} \frac{\#(i, j) \text { scale } s \text { cut }}{2^{s+1}}=\sum_{s=1}^{\log n}\left(\text { density of } T \text { at } 2^{s+1}\right) \gtrsim \varepsilon .
$$

Analysis

- Density δ_{s}^{-}and $\delta_{s}^{+}: \sum_{s=1}^{\log n} \delta_{s}^{-} \geq \varepsilon$ and $\sum_{s=1}^{\log n} \delta_{s}^{+} \geq \varepsilon$.
$\underset{\substack{\boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{t} \\ \boldsymbol{j}_{1}, \ldots, \boldsymbol{j}_{t}}}{\operatorname{Pr}}$ [avoid pair] $\leq\left(\frac{1}{\log n} \sum_{s=1}^{\log n}\left(1-\delta_{s}^{-}\right)\right)^{t}+\left(\frac{1}{\log n} \sum_{s=1}^{\log n}\left(1-\delta_{s}^{+}\right)\right)^{t} \leq \frac{1}{3}$.

Monotone patterns for $k>2$?
New algorithm for finding ($12 \ldots k$) patterns:

Monotone patterns for $k>2$?

New algorithm for finding ($12 \ldots k$) patterns:

- Round 1: Sample $O(1 / \varepsilon)$ indices from [n], include them in a set \boldsymbol{A}.

Monotone patterns for $k>2$?

New algorithm for finding ($12 \ldots k$) patterns:

- Round 1: Sample $O(1 / \varepsilon)$ indices from [n], include them in a set \boldsymbol{A}.
- Round $r, 2 \leq r \leq\left\lfloor\log _{2} k\right\rfloor+1$: For each $i \in \boldsymbol{A}$ and $s \in\{1, \ldots, \log n\}$, sample $O(1 / \varepsilon)$ indices from $\left[i-2^{s}, i+2^{s}\right]$ and include them in \boldsymbol{A}.

Monotone patterns for $k>2$?

New algorithm for finding ($12 \ldots k$) patterns:

- Round 1: Sample $O(1 / \varepsilon)$ indices from [n], include them in a set \boldsymbol{A}.
- Round $r, 2 \leq r \leq\left\lfloor\log _{2} k\right\rfloor+1$: For each $i \in \boldsymbol{A}$ and $s \in\{1, \ldots, \log n\}$, sample $O(1 / \varepsilon)$ indices from $\left[i-2^{s}, i+2^{s}\right]$ and include them in \boldsymbol{A}.
- Query $f(i)$ for all $i \in \boldsymbol{A}$.

Monotone patterns for $k>2$?

New algorithm for finding ($12 \ldots k$) patterns:

- Round 1: Sample $O(1 / \varepsilon)$ indices from [n], include them in a set \boldsymbol{A}.
- Round $r, 2 \leq r \leq\left\lfloor\log _{2} k\right\rfloor+1$: For each $i \in \boldsymbol{A}$ and $s \in\{1, \ldots, \log n\}$, sample $O(1 / \varepsilon)$ indices from $\left[i-2^{s}, i+2^{s}\right]$ and include them in \boldsymbol{A}.
- Query $f(i)$ for all $i \in \boldsymbol{A}$.

Monotone patterns for $k>2$?

New algorithm for finding ($12 \ldots k$) patterns:

- Round 1: Sample $O(1 / \varepsilon)$ indices from [n], include them in a set \boldsymbol{A}.
- Round $r, 2 \leq r \leq\left\lfloor\log _{2} k\right\rfloor+1$: For each $i \in \boldsymbol{A}$ and $s \in\{1, \ldots, \log n\}$, sample $O(1 / \varepsilon)$ indices from $\left[i-2^{s}, i+2^{s}\right]$ and include them in \boldsymbol{A}.
- Query $f(i)$ for all $i \in \boldsymbol{A}$.

Query Complexity: $\quad O(1 / \varepsilon) \cdot(O(\log n / \varepsilon))^{\left\lfloor\log _{2} k\right\rfloor}$.

Monotone patterns for $k>2$?

New algorithm for finding ($12 \ldots k$) patterns:

- Round 1: Sample $O(1 / \varepsilon)$ indices from [n], include them in a set \boldsymbol{A}.
- Round $r, 2 \leq r \leq\left\lfloor\log _{2} k\right\rfloor+1$: For each $i \in \boldsymbol{A}$ and $s \in\{1, \ldots, \log n\}$, sample $O(1 / \varepsilon)$ indices from $\left[i-2^{s}, i+2^{s}\right]$ and include them in \boldsymbol{A}.
- Query $f(i)$ for all $i \in \boldsymbol{A}$.

Query Complexity: $\quad O(1 / \varepsilon) \cdot(O(\log n / \varepsilon))^{\left\lfloor\log _{2} k\right\rfloor}$.

Theorem

Suppose $f:[n] \rightarrow \mathbb{R}$ contains $\varepsilon n / k$ disjoint ($12 \ldots k$)-patterns, algorithm finds one w.p $\geq 2 / 3$.

Open Problems

Open Problems

- More efficient tests for two-sided error testing for ($12 \ldots k$)-freeness.

Open Problems

- More efficient tests for two-sided error testing for ($12 \ldots k$)-freeness.
- Adaptive algorithms for finding π-patterns?

Open Problems

- More efficient tests for two-sided error testing for ($12 \ldots k$)-freeness.
- Adaptive algorithms for finding π-patterns?
- Possibly poly $(\log n)$ adaptive queries for any pattern π ?

Open Problems

- More efficient tests for two-sided error testing for ($12 \ldots k$)-freeness.
- Adaptive algorithms for finding π-patterns?
- Possibly poly $(\log n)$ adaptive queries for any pattern π ?

Thanks!

