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Testing Monotonicity of an Array: Sortedness

[1[3[2]3]6]7/1]9/42[56 7]

Given query access to an unknown f: [n] — R and a parameter € > 0:

e If f monotone, accept w.p. > 2/3;

e If f is e-far from monotone, reject w.p. > 2/3;

[ Minimum query complexity in terms of n and &7
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e-Far-From-Monotone Sequences

@ f is e-far from monotone: for any monotone g: [n] — R,

—Zl{f (i)} >e.
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e-Far-From-Monotone Sequences

@ f is e-far from monotone: for any monotone g: [n] — R,

—Zl{f (i)} >e.

Lemma
Let f: [n] — R be e-far from monotone. There exists set of disjoint pairs,

T={(i,j) € [nP:i<jand f(i) > f(j)}

of size |[T| > en/2.
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Monotonicity Testing

Theorem (Ergiin, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity
of f: [n] = R making O((log n)/e) queries.
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There exists a non-adaptive, one-sided algorithm for testing monotonicity
of f: [n] = R making O((log n)/e) queries.

o Q((logn)/e) queries needed for non-adaptive algorithms.
o Q((logn)/e) queries needed for adaptive algorithms too! [Fischer 04].
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Definition
Let k € N and m = (71,...,7mk) be a permutation of [k]. Given
f: [n] = R, the k-tuple (i1, ..., ix) has order pattern  if:

f(ig) < f(im) whenever 7y < 7p,.
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Testing Forbidden Order Patterns

[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition
Let k € N and m = (m1,...,7k) be a permutation of [k]. Given
f: [n] = R, the k-tuple (i1, ..., ik) has order pattern = if:

f(ig) < f(im) whenever 7y < 7p,.

If £: [n] — R is e-far from 7-free, then there exists T C [n]* of disjoint
violating k-tuples (i1, ..., ix) with order pattern 7 of size at least en/k.

For fixed k and 7, query complexity of testing
m-freeness?

@ Some sublinear in n upper bounds for general 7.
o 7 = (132) requires Q(y/n) queries for non-adaptive, one-sided
algorithms.

@ [Ben-Eliezer, Canonne 18] Many 7 have complexity a nl—1/(k=0Q1),
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Finding Monotone Patterns: m = (12... k)

Given query access to f: [n] — R and a parameter ¢ > 0 where:
o There exists T C [n]¥ of disjoint violating k-tuples

T={(h,...,ik) it <---<ligand f(ir) <--- < f(ix)}

of size |T| > en/k.
e Find iy < --- < iy where f(i) <--- < f(ix).

Theorem (NRRS17)

There is a non-adaptive algorithm with query complexity ((log n) /e)o(k2). }
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Finding Monotone Patterns: m = (12... k)

Theorem (Upper bound)

For k € N, there exists a non-adaptive algorithm with query complexity
(log n)H82*) . poly(1/e).
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Finding Monotone Patterns: m = (12... k)

Theorem (Upper bound)

For k € N, there exists a non-adaptive algorithm with query complexity

(log n)l°&24) . poly(1/e).

Theorem (Lower bound) J

Any non-adaptive algorithm needs to make Q2 ((Iog n)Lloe: kJ) queries.
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*

f:|

@ Let T be set of monotone pairs.
e (i,j)e T. (i,j) scale s when j — i ~ 2°.
S

2
Prji<e</l~Z.
i r[/ J] p
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Analysis

*
*

f=]

log n ..
i,j) scale s cut
E Z # (i,J)) >

2$+1

£~[n] s=1

] 10 / 14



Analysis

°
R
°
f= | )
@ Sample £ such that:
log n .. logn
I t
Z i (I’J);iale S Z (density of T at 2571) > ¢.
s=1 s=1
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Analysis

J4
@ Sample £ such that:
log n .. logn
# (i,J) scale s cut .
Z ( )25+1 = Z (density of T at 2571) > ¢.
s=1 s=1
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Analysis

I

o Density 7 and 67 Y6767 > ¢ and 38/ 6 > e.

logn ¢ log n t
r [avoid pair] < (Io;n Z(l — 55_)) + <Io;n Z(l - 5:)) <

s=1 s=1

W[ =

'1, Jt
.’17 :.It
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Monotone patterns for k > 27
New algorithm for finding (12... k) patterns:
@ Round 1: Sample O(1/¢) indices from [n], include them in a set A.
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- T TTHAMTT [ ]

0
Query Complexity: O(1/¢) - (O(log n/g))Uogz k]

Theorem

Suppose f: [n] — R contains en/k disjoint (12. .. k)-patterns, algorithm
finds one w.p > 2/3.

] 13/ 14



Open Problems



Open Problems

@ More efficient tests for two-sided error testing for (12. .. k)-freeness.



Open Problems

@ More efficient tests for two-sided error testing for (12... k)-freeness.
@ Adaptive algorithms for finding 7-patterns?

] 14/ 14



Open Problems

@ More efficient tests for two-sided error testing for (12... k)-freeness.
@ Adaptive algorithms for finding 7-patterns?
» Possibly poly(log n) adaptive queries for any pattern 77

] 14/ 14



Open Problems

@ More efficient tests for two-sided error testing for (12... k)-freeness.
@ Adaptive algorithms for finding 7-patterns?
» Possibly poly(log n) adaptive queries for any pattern 77

Thanks!
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