
Finding Monotone Patterns in Sublinear Time

Erik Waingarten (Columbia University)

Clément Canonne (Stanford University)
Omri Ben-Eliezer (Tel-Aviv University)

Shoham Letzter (ETH Zurich)

1 / 14



Testing Monotonicity of an Array: Sortedness

1  3  2  3  6  7  1  9  4 2  5  6  7

Given query access to an unknown f : [n]→ R and a parameter ε > 0:

If f monotone, accept w.p. > 2/3;

If f is ε-far from monotone, reject w.p. > 2/3;

Minimum query complexity in terms of n and ε?

If f is ε-far from monotone, find evidence:
I i , j ∈ [n] where i < j and f (i) > f (j).

one-sided error.

2 / 14



Testing Monotonicity of an Array: Sortedness

1  3  2  3  6  7  1  9  4 2  5  6  7

Given query access to an unknown f : [n]→ R and a parameter ε > 0:

If f monotone, accept w.p. > 2/3;

If f is ε-far from monotone, reject w.p. > 2/3;

Minimum query complexity in terms of n and ε?

If f is ε-far from monotone, find evidence:
I i , j ∈ [n] where i < j and f (i) > f (j).

one-sided error.

2 / 14



Testing Monotonicity of an Array: Sortedness

1  3  2  3  6  7  1  9  4 2  5  6  7

Given query access to an unknown f : [n]→ R and a parameter ε > 0:

If f monotone, accept w.p. > 2/3;

If f is ε-far from monotone, reject w.p. > 2/3;

Minimum query complexity in terms of n and ε?

If f is ε-far from monotone, find evidence:
I i , j ∈ [n] where i < j and f (i) > f (j). one-sided error.

2 / 14



ε-Far-From-Monotone Sequences

f is ε-far from monotone: for any monotone g : [n]→ R,

1

n

n∑
i=1

1{f (i) 6= g(i)} ≥ ε.

Lemma

Let f : [n]→ R be ε-far from monotone. There exists set of disjoint pairs,

T =
{

(i , j) ∈ [n]2 : i < j and f (i) > f (j)
}

of size |T | ≥ εn/2.

3 / 14



ε-Far-From-Monotone Sequences

f is ε-far from monotone: for any monotone g : [n]→ R,

1

n

n∑
i=1

1{f (i) 6= g(i)} ≥ ε.

Lemma

Let f : [n]→ R be ε-far from monotone. There exists set of disjoint pairs,

T =
{

(i , j) ∈ [n]2 : i < j and f (i) > f (j)
}

of size |T | ≥ εn/2.

3 / 14



Monotonicity Testing

Theorem (Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity
of f : [n]→ R making O((log n)/ε) queries.

Ω((log n)/ε) queries needed for non-adaptive algorithms.

Ω((log n)/ε) queries needed for adaptive algorithms too! [Fischer 04].

4 / 14



Monotonicity Testing

Theorem (Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity
of f : [n]→ R making O((log n)/ε) queries.

Ω((log n)/ε) queries needed for non-adaptive algorithms.

Ω((log n)/ε) queries needed for adaptive algorithms too! [Fischer 04].

4 / 14



Monotonicity Testing

Theorem (Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99)

There exists a non-adaptive, one-sided algorithm for testing monotonicity
of f : [n]→ R making O((log n)/ε) queries.

Ω((log n)/ε) queries needed for non-adaptive algorithms.

Ω((log n)/ε) queries needed for adaptive algorithms too! [Fischer 04].

4 / 14



Testing Forbidden Order Patterns
[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let k ∈ N and π = (π1, . . . , πk) be a permutation of [k]. Given
f : [n]→ R, the k-tuple (i1, . . . , ik) has order pattern π if:

f (i`) < f (im) whenever π` < πm.

If f : [n]→ R is ε-far from π-free, then there exists T ⊂ [n]k of disjoint
violating k-tuples (i1, . . . , ik) with order pattern π of size at least εn/k .

For fixed k and π, query complexity of testing
π-freeness?

Some sublinear in n upper bounds for general π.

π = (132) requires Ω(
√
n) queries for non-adaptive, one-sided

algorithms.

[Ben-Eliezer, Canonne 18] Many π have complexity a n1−1/(k−Θ(1)).

5 / 14



Testing Forbidden Order Patterns
[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let k ∈ N and π = (π1, . . . , πk) be a permutation of [k]. Given
f : [n]→ R, the k-tuple (i1, . . . , ik) has order pattern π if:

f (i`) < f (im) whenever π` < πm.

If f : [n]→ R is ε-far from π-free, then there exists T ⊂ [n]k of disjoint
violating k-tuples (i1, . . . , ik) with order pattern π of size at least εn/k .

For fixed k and π, query complexity of testing
π-freeness?

Some sublinear in n upper bounds for general π.

π = (132) requires Ω(
√
n) queries for non-adaptive, one-sided

algorithms.

[Ben-Eliezer, Canonne 18] Many π have complexity a n1−1/(k−Θ(1)).

5 / 14



Testing Forbidden Order Patterns
[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let k ∈ N and π = (π1, . . . , πk) be a permutation of [k]. Given
f : [n]→ R, the k-tuple (i1, . . . , ik) has order pattern π if:

f (i`) < f (im) whenever π` < πm.

If f : [n]→ R is ε-far from π-free, then there exists T ⊂ [n]k of disjoint
violating k-tuples (i1, . . . , ik) with order pattern π of size at least εn/k .

For fixed k and π, query complexity of testing
π-freeness?

Some sublinear in n upper bounds for general π.

π = (132) requires Ω(
√
n) queries for non-adaptive, one-sided

algorithms.

[Ben-Eliezer, Canonne 18] Many π have complexity a n1−1/(k−Θ(1)).

5 / 14



Testing Forbidden Order Patterns
[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let k ∈ N and π = (π1, . . . , πk) be a permutation of [k]. Given
f : [n]→ R, the k-tuple (i1, . . . , ik) has order pattern π if:

f (i`) < f (im) whenever π` < πm.

If f : [n]→ R is ε-far from π-free, then there exists T ⊂ [n]k of disjoint
violating k-tuples (i1, . . . , ik) with order pattern π of size at least εn/k .

For fixed k and π, query complexity of testing
π-freeness?

Some sublinear in n upper bounds for general π.

π = (132) requires Ω(
√
n) queries for non-adaptive, one-sided

algorithms.

[Ben-Eliezer, Canonne 18] Many π have complexity a n1−1/(k−Θ(1)).

5 / 14



Testing Forbidden Order Patterns
[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let k ∈ N and π = (π1, . . . , πk) be a permutation of [k]. Given
f : [n]→ R, the k-tuple (i1, . . . , ik) has order pattern π if:

f (i`) < f (im) whenever π` < πm.

If f : [n]→ R is ε-far from π-free, then there exists T ⊂ [n]k of disjoint
violating k-tuples (i1, . . . , ik) with order pattern π of size at least εn/k .

For fixed k and π, query complexity of testing
π-freeness?

Some sublinear in n upper bounds for general π.

π = (132) requires Ω(
√
n) queries for non-adaptive, one-sided

algorithms.

[Ben-Eliezer, Canonne 18] Many π have complexity a n1−1/(k−Θ(1)).

5 / 14



Testing Forbidden Order Patterns
[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let k ∈ N and π = (π1, . . . , πk) be a permutation of [k]. Given
f : [n]→ R, the k-tuple (i1, . . . , ik) has order pattern π if:

f (i`) < f (im) whenever π` < πm.

If f : [n]→ R is ε-far from π-free, then there exists T ⊂ [n]k of disjoint
violating k-tuples (i1, . . . , ik) with order pattern π of size at least εn/k .

For fixed k and π, query complexity of testing
π-freeness?

Some sublinear in n upper bounds for general π.

π = (132) requires Ω(
√
n) queries for non-adaptive, one-sided

algorithms.

[Ben-Eliezer, Canonne 18] Many π have complexity a n1−1/(k−Θ(1)).

5 / 14



Testing Forbidden Order Patterns
[Newman, Rabinovich, Rajendraprasad, Sohler 17]

Definition

Let k ∈ N and π = (π1, . . . , πk) be a permutation of [k]. Given
f : [n]→ R, the k-tuple (i1, . . . , ik) has order pattern π if:

f (i`) < f (im) whenever π` < πm.

If f : [n]→ R is ε-far from π-free, then there exists T ⊂ [n]k of disjoint
violating k-tuples (i1, . . . , ik) with order pattern π of size at least εn/k .

For fixed k and π, query complexity of testing
π-freeness?

Some sublinear in n upper bounds for general π.

π = (132) requires Ω(
√
n) queries for non-adaptive, one-sided

algorithms.

[Ben-Eliezer, Canonne 18] Many π have complexity a n1−1/(k−Θ(1)).

5 / 14



Finding Monotone Patterns: π = (12 . . . k)

Given query access to f : [n]→ R and a parameter ε > 0 where:

There exists T ⊂ [n]k of disjoint violating k-tuples

T = {(i1, . . . , ik) : i1 < · · · < ik and f (i1) < · · · < f (ik)}

of size |T | ≥ εn/k.

Find i1 < · · · < ik where f (i1) < · · · < f (ik).

Theorem (NRRS17)

There is a non-adaptive algorithm with query complexity ((log n)/ε)O(k2).

6 / 14



Finding Monotone Patterns: π = (12 . . . k)

Given query access to f : [n]→ R and a parameter ε > 0 where:

There exists T ⊂ [n]k of disjoint violating k-tuples

T = {(i1, . . . , ik) : i1 < · · · < ik and f (i1) < · · · < f (ik)}

of size |T | ≥ εn/k.

Find i1 < · · · < ik where f (i1) < · · · < f (ik).

Theorem (NRRS17)

There is a non-adaptive algorithm with query complexity ((log n)/ε)O(k2).

6 / 14



Finding Monotone Patterns: π = (12 . . . k)

Given query access to f : [n]→ R and a parameter ε > 0 where:

There exists T ⊂ [n]k of disjoint violating k-tuples

T = {(i1, . . . , ik) : i1 < · · · < ik and f (i1) < · · · < f (ik)}

of size |T | ≥ εn/k.

Find i1 < · · · < ik where f (i1) < · · · < f (ik).

Theorem (NRRS17)

There is a non-adaptive algorithm with query complexity ((log n)/ε)O(k2).

6 / 14



Finding Monotone Patterns: π = (12 . . . k)

Given query access to f : [n]→ R and a parameter ε > 0 where:

There exists T ⊂ [n]k of disjoint violating k-tuples

T = {(i1, . . . , ik) : i1 < · · · < ik and f (i1) < · · · < f (ik)}

of size |T | ≥ εn/k.

Find i1 < · · · < ik where f (i1) < · · · < f (ik).

Theorem (NRRS17)

There is a non-adaptive algorithm with query complexity ((log n)/ε)O(k2).

6 / 14



Finding Monotone Patterns: π = (12 . . . k)

Given query access to f : [n]→ R and a parameter ε > 0 where:

There exists T ⊂ [n]k of disjoint violating k-tuples

T = {(i1, . . . , ik) : i1 < · · · < ik and f (i1) < · · · < f (ik)}

of size |T | ≥ εn/k.

Find i1 < · · · < ik where f (i1) < · · · < f (ik).

Theorem (NRRS17)

There is a non-adaptive algorithm with query complexity ((log n)/ε)O(k2).

6 / 14



Finding Monotone Patterns: π = (12 . . . k)

Theorem (Upper bound)

For k ∈ N, there exists a non-adaptive algorithm with query complexity

(log n)blog2 kc · poly(1/ε).

Theorem (Lower bound)

Any non-adaptive algorithm needs to make Ω
(
(log n)blog2 kc

)
queries.

7 / 14



Finding Monotone Patterns: π = (12 . . . k)

Theorem (Upper bound)

For k ∈ N, there exists a non-adaptive algorithm with query complexity

(log n)blog2 kc · poly(1/ε).

Theorem (Lower bound)

Any non-adaptive algorithm needs to make Ω
(
(log n)blog2 kc

)
queries.

7 / 14



Finding Monotone Patterns: π = (12 . . . k)

Theorem (Upper bound)

For k ∈ N, there exists a non-adaptive algorithm with query complexity

(log n)blog2 kc · poly(1/ε).

Theorem (Lower bound)

Any non-adaptive algorithm needs to make Ω
(
(log n)blog2 kc

)
queries.

7 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:

I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:

I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:

I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:

I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:
I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).

I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:
I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:
I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:
I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`

i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:
I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`

i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:
I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5

j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:
I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5

j 1 j 2 j 3 j 4 j 5

8 / 14



The Case of k = 2

Let f : [n]→ R and disjoint subset of pairs T of size εn/2 with

T = {(i , j) ∈ [n]2 : i < j and f (i) < f (j)}.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanathan 99] Find increasing pair:

Sample ` ∼ [n] uniformly and repeat the following for t iterations:
I Sample s ∼ {0, . . . , log2 n} and i ∼ [`− 2s , `] and query f (i ).
I Sample s ∼ {0, . . . , log2 n} and j ∼ [`, ` + 2s ] and query f (j ).

f =

`i 1 i 2 i 3 i 4 i 5 j 1 j 2 j 3 j 4 j 5

8 / 14



Analysis

f =

R

i j≈ 2s

Let T be set of monotone pairs.
(i , j) ∈ T .

(i , j) scale s when j − i ≈ 2s .

Pr
`∼[n]

[i ≤ ` ≤ j ] ≈ 2s

n
.

9 / 14



Analysis

f =

R

i j≈ 2s

Let T be set of monotone pairs.

(i , j) ∈ T .

(i , j) scale s when j − i ≈ 2s .

Pr
`∼[n]

[i ≤ ` ≤ j ] ≈ 2s

n
.

9 / 14



Analysis

f =

R

i j

≈ 2s

Let T be set of monotone pairs.
(i , j) ∈ T .

(i , j) scale s when j − i ≈ 2s .

Pr
`∼[n]

[i ≤ ` ≤ j ] ≈ 2s

n
.

9 / 14



Analysis

f =

R

i j≈ 2s

Let T be set of monotone pairs.
(i , j) ∈ T . (i , j) scale s when j − i ≈ 2s .

Pr
`∼[n]

[i ≤ ` ≤ j ] ≈ 2s

n
.

9 / 14



Analysis

f =

R

E
`∼[n]

[
log n∑
s=1

# (i , j) scale s cut

2s+1

]
& ε.

10 / 14



Analysis

f =

R

`

`

Sample ` such that:

log n∑
s=1

# (i , j) scale s cut

2s+1
=

log n∑
s=1

(density of T at 2s+1) & ε.

11 / 14



Analysis

f =

R

`

`

Sample ` such that:

log n∑
s=1

# (i , j) scale s cut

2s+1
=

log n∑
s=1

(density of T at 2s+1) & ε.

11 / 14



Analysis

f =

R

`

`

Sample ` such that:

log n∑
s=1

# (i , j) scale s cut

2s+1
=

log n∑
s=1

(density of T at 2s+1) & ε.

11 / 14



Analysis

f =

R

`

`

Sample ` such that:

log n∑
s=1

# (i , j) scale s cut

2s+1
=

log n∑
s=1

(density of T at 2s+1) & ε.

11 / 14



Analysis

f =

R

`

`

Sample ` such that:

log n∑
s=1

# (i , j) scale s cut

2s+1
=

log n∑
s=1

(density of T at 2s+1) & ε.

11 / 14



Analysis

f =

R

`

Density δ−s and δ+
s :
∑log n

s=1 δ
−
s ≥ ε and

∑log n
s=1 δ

+
s ≥ ε.

Pr
i 1,...,i t
j 1,...,j t

[avoid pair] ≤

(
1

log n

log n∑
s=1

(1− δ−s )

)t

+

(
1

log n

log n∑
s=1

(1− δ+
s )

)t

≤ 1

3
.

12 / 14



Monotone patterns for k > 2?
New algorithm for finding (12 . . . k) patterns:

Round 1: Sample O(1/ε) indices from [n], include them in a set A.

Round r , 2 ≤ r ≤ blog2 kc+ 1: For each i ∈ A and s ∈ {1, . . . , log n},
sample O(1/ε) indices from [i − 2s , i + 2s ] and include them in A.

Query f (i) for all i ∈ A.

f =

`

Query Complexity: O(1/ε) · (O(log n/ε))blog2 kc .

Theorem

Suppose f : [n]→ R contains εn/k disjoint (12 . . . k)-patterns, algorithm
finds one w.p ≥ 2/3.

13 / 14



Monotone patterns for k > 2?
New algorithm for finding (12 . . . k) patterns:

Round 1: Sample O(1/ε) indices from [n], include them in a set A.

Round r , 2 ≤ r ≤ blog2 kc+ 1: For each i ∈ A and s ∈ {1, . . . , log n},
sample O(1/ε) indices from [i − 2s , i + 2s ] and include them in A.

Query f (i) for all i ∈ A.

f =

`

Query Complexity: O(1/ε) · (O(log n/ε))blog2 kc .

Theorem

Suppose f : [n]→ R contains εn/k disjoint (12 . . . k)-patterns, algorithm
finds one w.p ≥ 2/3.

13 / 14



Monotone patterns for k > 2?
New algorithm for finding (12 . . . k) patterns:

Round 1: Sample O(1/ε) indices from [n], include them in a set A.

Round r , 2 ≤ r ≤ blog2 kc+ 1: For each i ∈ A and s ∈ {1, . . . , log n},
sample O(1/ε) indices from [i − 2s , i + 2s ] and include them in A.

Query f (i) for all i ∈ A.

f =

`

Query Complexity: O(1/ε) · (O(log n/ε))blog2 kc .

Theorem

Suppose f : [n]→ R contains εn/k disjoint (12 . . . k)-patterns, algorithm
finds one w.p ≥ 2/3.

13 / 14



Monotone patterns for k > 2?
New algorithm for finding (12 . . . k) patterns:

Round 1: Sample O(1/ε) indices from [n], include them in a set A.

Round r , 2 ≤ r ≤ blog2 kc+ 1: For each i ∈ A and s ∈ {1, . . . , log n},
sample O(1/ε) indices from [i − 2s , i + 2s ] and include them in A.

Query f (i) for all i ∈ A.

f =

`

Query Complexity: O(1/ε) · (O(log n/ε))blog2 kc .

Theorem

Suppose f : [n]→ R contains εn/k disjoint (12 . . . k)-patterns, algorithm
finds one w.p ≥ 2/3.

13 / 14



Monotone patterns for k > 2?
New algorithm for finding (12 . . . k) patterns:

Round 1: Sample O(1/ε) indices from [n], include them in a set A.

Round r , 2 ≤ r ≤ blog2 kc+ 1: For each i ∈ A and s ∈ {1, . . . , log n},
sample O(1/ε) indices from [i − 2s , i + 2s ] and include them in A.

Query f (i) for all i ∈ A.

f =

`

Query Complexity: O(1/ε) · (O(log n/ε))blog2 kc .

Theorem

Suppose f : [n]→ R contains εn/k disjoint (12 . . . k)-patterns, algorithm
finds one w.p ≥ 2/3.

13 / 14



Monotone patterns for k > 2?
New algorithm for finding (12 . . . k) patterns:

Round 1: Sample O(1/ε) indices from [n], include them in a set A.

Round r , 2 ≤ r ≤ blog2 kc+ 1: For each i ∈ A and s ∈ {1, . . . , log n},
sample O(1/ε) indices from [i − 2s , i + 2s ] and include them in A.

Query f (i) for all i ∈ A.

f =

`

Query Complexity: O(1/ε) · (O(log n/ε))blog2 kc .

Theorem

Suppose f : [n]→ R contains εn/k disjoint (12 . . . k)-patterns, algorithm
finds one w.p ≥ 2/3.

13 / 14



Monotone patterns for k > 2?
New algorithm for finding (12 . . . k) patterns:

Round 1: Sample O(1/ε) indices from [n], include them in a set A.

Round r , 2 ≤ r ≤ blog2 kc+ 1: For each i ∈ A and s ∈ {1, . . . , log n},
sample O(1/ε) indices from [i − 2s , i + 2s ] and include them in A.

Query f (i) for all i ∈ A.

f =

`

Query Complexity: O(1/ε) · (O(log n/ε))blog2 kc .

Theorem

Suppose f : [n]→ R contains εn/k disjoint (12 . . . k)-patterns, algorithm
finds one w.p ≥ 2/3.

13 / 14



Open Problems

More efficient tests for two-sided error testing for (12 . . . k)-freeness.

Adaptive algorithms for finding π-patterns?

I Possibly poly(log n) adaptive queries for any pattern π?

Thanks!

14 / 14



Open Problems

More efficient tests for two-sided error testing for (12 . . . k)-freeness.

Adaptive algorithms for finding π-patterns?

I Possibly poly(log n) adaptive queries for any pattern π?

Thanks!

14 / 14



Open Problems

More efficient tests for two-sided error testing for (12 . . . k)-freeness.

Adaptive algorithms for finding π-patterns?

I Possibly poly(log n) adaptive queries for any pattern π?

Thanks!

14 / 14



Open Problems

More efficient tests for two-sided error testing for (12 . . . k)-freeness.

Adaptive algorithms for finding π-patterns?
I Possibly poly(log n) adaptive queries for any pattern π?

Thanks!

14 / 14



Open Problems

More efficient tests for two-sided error testing for (12 . . . k)-freeness.

Adaptive algorithms for finding π-patterns?
I Possibly poly(log n) adaptive queries for any pattern π?

Thanks!

14 / 14


