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Abstract
For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its incident
edges, presented by the labels of their other endpoints. The extended rotation system of the drawing
is the collection of the rotations of all vertices and crossings. A drawing is simple if each pair of
edges has at most one common point. Gioan’s Theorem states that for any two simple drawings of
the complete graph Kn with the same crossing edge pairs, one drawing can be transformed into
the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3). Intuitively, this
operation refers to the act of moving one edge of a triangular cell formed by three pairwise crossing
edges over the opposite vertex of the cell.

We investigate to what extent Gioan’s Theorem generalizes to other classes of graphs. On
the one hand, we show that it holds for complete bipartite graphs Km,n, provided that the two
drawings share the same extended rotation system. Note that the assumption is also implicit in
Gioan’s Theorem, because for simple drawings of the complete graph the crossing edge pairs uniquely
determine the extended rotation system; however, this is not the case for complete bipartite graphs.
Our proof uses a Carathéodory-type theorem for simple drawings of complete bipartite graphs, which
may be of independent interest. On the other hand, we show that the theorem does not hold if the
graph is slightly sparser: When removing two edges from Km,n, there exist two simple drawings with
the same extended rotation system that cannot be transformed into each other using triangle flips.

1 Introduction

Given a simple drawing of a graph G = (V,E) on the sphere S, an edge fragment is a maximal
connected part of an edge that does not contain any endpoint or crossing. The rotation of a
vertex is the clockwise circular order of incident edges. The rotation of a crossing ‰ is the
clockwise cyclic order of the four vertices of the crossing edge pair which is induced by the
cyclic order of edge fragments around ‰. (In other words, the rotation of a crossing ‰ is the
rotation of an additional degree-4 vertex v‰ obtained by splitting the crossing edge pair at ‰
and replacing ‰ by v‰.) The extended rotation system (ERS) of a drawing is the collection of
rotations of all vertices and crossings.
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A crossing triangle is a cell in the subdrawing of three pairwise crossing edges that is
bounded by three edge fragments. To define the orientation of a crossing triangle, we fix
an arbitrary orientation for each edge of G. The orientation of a crossing triangle � is the
parity (odd or even) of the number of edges that bound � and where � lies to the left of the
edge. A crossing triangle � is invertible if there exists another simple drawing of the same
graph and with the same extended rotation system (ERS) in which � appears in the opposite
orientation. A triangle flip is the elementary operation of changing the orientation of an
unintersected crossing triangle by a local transformation of the given drawing; see Figure 1.
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Figure 1 Two drawings of K3,3 that can be transformed into each other via one triangle flip.

Two simple drawings “ and ÷ of G are strongly isomorphic, denoted by “ ≥= ÷, if there
exists an orientation-preserving homeomorphism of S that maps “ to ÷, that is, “v ‘æ ÷v, for
all v œ V , and “e ‘æ ÷e, for all e œ E. By Kyn�l [5], the following combinatorial formulation
is equivalent for connected drawings: (1) the same pairs of edges cross (this is called weak
isomorphism); (2) the order of crossings along each edge is the same; and (3) the drawings
have the same ERS. In this work, strongly isomorphic drawings are considered the same.

Gioan’s Theorem [4] states that any two weakly isomorphic simple drawings of Kn can be
transformed into each other via a sequence of triangle flips. Gioan announced his theorem in
2005 [4]. The original presentation contained a proof sketch, but a full proof was published
only 10 years later by Arroyo, McQuillan, Richter, and Salazar [1], who also coined the
name “Gioan’s Theorem”. In 2021, Schaefer generalized Gioan’s Theorem to slightly sparser
graphs by proving that any two weakly isomorphic simple drawings of Kn \M , where M is
a non-perfect matching, can be transformed into each other using triangle flips [7]. His work
also includes an alternative proof for Gioan’s Theorem.

Our main result is that an analogue of Gioan’s Theorem also holds for simple drawings
of much sparser graphs, namely, for complete bipartite graphs. To show this, we rephrase
the statement to require both drawings to have the same ERS.

I Theorem 1.1. Let D1 and D2 be two simple drawings of Km,n, m,n Ø 1, on the sphere
with the same ERS. Then there is a sequence of triangle flips that transforms D1 into D2.

Note that triangle flips only change the order of crossings along edges. Hence, having the
same ERS is a necessary requirement for any two drawings of any graph to be transformable
into each other via triangle flips. For the complete graph, the requirement that the drawings
have the same crossing edge pairs is equivalent to the requirement that they have the same
ERS because the crossing edge pairs of a drawing uniquely determine its ERS [5, 6]. However,
for complete bipartite graphs this is not the case, as two simple drawings of Km,n with the
same crossing edge pairs might have di�erent ERSs; see Figure 2 for an example.

We also show that both Gioan’s Theorem and our Theorem 1.1 are almost tight.

I Theorem 1.2. For any m Ø 2 and n Ø 3 and Km,n minus two edges, there exist two
simple drawings with the same ERS that cannot be transformed into each other using triangle
flips. The same holds for any n Ø 5 and Kn minus a four-cycle C4.
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Figure 2 Two simple drawings of K3,3 with the same crossing edge pairs but di�erent ERSs.

In particular, the first part of Theorem 1.2 implies that an analogue to Schaefer’s
generalization of Gioan’s Theorem for Kn minus a non-perfect matching cannot be achieved
for complete bipartite graphs, as not even a generalization from Km,n to Km,n minus a
matching of size two holds. Moreover, note that Km,n with m Ø 4 and n Ø 1 is a subgraph of
Kn+m\C4. Hence the second part of Theorem 1.2 implies that—quite counterintuitively—the
set of graphs for which a Gioan-type statement holds is not closed under adding edges.

To prove Theorem 1.1, we use a similar approach as Arroyo et al. [1]. In their proof, they
iteratively transform one of the drawings so as to increase the parts of both drawings that are
strongly isomorphic. However, several ingredients that are necessary for this transformation
are known properties of drawings of complete graphs or follow directly, while it was unknown
whether analogous statements hold for drawings of complete bipartite graphs. Hence, for our
proof, we discover a number of useful, fundamental properties of simple drawings of complete
bipartite graphs. For example, we establish an analogue to Carathéodory’s Theorem for
simple drawings of Km,n.

The classic Carathéodory Theorem states that if a point p œ R2 lies in the convex hull
of a set A µ R2 of n Ø 3 points, then there exists a triangle spanned by points of A that
contains p. In the terminology of drawings, this means that if a point p lies in a bounded
cell of a straight-line drawing D of Kn in the plane, then there also exists a 3-cycle C of D
so that p lies in the bounded cell of C. This statement has been generalized to simple (not
necessarily straight-line) drawings of Kn [2, 3]. However, it clearly does not generalize to
arbitrary (non-complete) graphs. A natural question is, for which classes of graphs this
statement, or a variation of it, holds. We show that it holds for complete bipartite graphs if
we replace the (non-existing) 3-cycle by a 4-cycle, which is the shortest available cycle.

I Theorem 1.3 (Carathéodory’s Theorem for simple drawings of Km,n). Let D be a simple
drawing of Km,n in the plane, for m,n Ø 2, and let p be a point in some bounded cell of D.
Then there exists a 4-cycle C of D such that p is contained in a bounded cell of C. This
statement is tight in the sense that it does not hold for Km,n minus one edge.

Outline. We prove Theorem 1.1 in Section 2. The proof relies on several lemmata, whose
proofs are deferred to the upcoming full version of this paper. A sketch of the proof of
Theorem 1.2 can be found in Section 3.

2 Proof of Gioan’s Theorem for simple drawings of Km,n

Denote the bipartition sets by B = {b1, b2, ..., bm} and R = {r1, r2, ..., rn}. Let D :≥= D1.
We will do triangle flips in D, by this changing D, until we obtain D ≥= D2. We iteratively
consider the vertices r1, . . . , rn. For each vertex ri, we iteratively consider the incident
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edges rib1 . . . , ribm. We denote by Km,i the subgraph of Km,n induced by B and the vertices
r1, r2, . . . , ri, and let Xi,j = Km,i≠1 fi {ribk : 1 Æ k Æ j} for 0 Æ k Æ m, with Xi,0 = Km,i≠1.

When considering an edge ribj , the goal is to establish D[Xi,j ] ≥= D2[Xi,j ], where D[Xi,j ]
and D2[Xi,j ] are the according subdrawings of D and D2, respectively.

For the base case i = 1 observe that D[Km,1] ≥= D2[Km,1] because there is only one
simple drawing of Km,1 (our graphs are labeled but the ERS is given).

For the general case 2 Æ i Æ n and 1 Æ j Æ m, assume that D[Xi,j≠1] ≥= D2[Xi,j≠1].
To handle the case j = 1, we first argue that the position of vertex ri is consistent be-
tween D[Km,i≠1] and D2[Km,i≠1]. To show this, we use the following lemma, whose proof
relies on Theorem 1.3 (Carathéodory’s Theorem for simple drawings of Km,n).

I Lemma 2.1. Let F be a simple drawing of Km,n, m,n Ø 1, on the sphere. For any vertex v
in F , the ERS of F uniquely determines in which cell of F Õ := F \ {v} the vertex v lies.

Since D[Km,i≠1] ≥= D2[Km,i≠1], the two drawings topologically have the same cells. As
D and D2 have the same ERS, by Lemma 2.1 applied to F = D[Km,i] and to D2[Km,i], both
times with v = ri, we conclude that ri lies in the same cell in D[Km,i≠1] and D2[Km,i≠1].

Now consider the edge ribj . The aim is to use a sequence of triangle flips to transform D
such that D[Xi,j ] ≥= D2[Xi,j ]. Let e1 denote the curve that represents ribj in D. We imagine
to add another copy Âe2 of ribj to D, which corresponds to the curve e2 that represents the
edge ribj in D2 and serves as a “target” curve which we aim to transform e1 into.

I Lemma 2.2. There exists a simple curve Âe2 such that D[Xi,j≠1] fi Âe2 ≥= D2[Xi,j ] and e1
and Âe2 have finitely many intersections in D[Xi,j ] fi Âe2.

Now fix such a curve Âe2. Then � = e1 fi Âe2 forms a (not necessarily simple) closed curve.
With the next lemma, we show that there is a lens in � which we can use as a starting point
for transforming e1 to Âe2. A lens in � is a cell whose boundary is formed by exactly two
edge fragments of �, one from e1 and one from Âe2.

I Lemma 2.3. In � there is a lens that does not contain any vertex of Km,i.

Now consider a lens L as guaranteed by Lemma 2.3. While L does not contain any vertex
of D[Xi,j≠1], it may contain crossings of D[Xi,j≠1]. As a next step, we aim to transform D
using triangle flips such that L does not contain any crossings of D[Xi,j≠1]. Let ‰ œ L be
a crossing of two edges a1, a2 in D[Xi,j≠1]. As ri and bj are the only vertices on e1 fi Âe2,
it follows that each of a1, a2 crosses ˆL twice; as both D and D2 are simple drawings,
one of these crossings is with e1 and the other is with Âe2. Thus, a1, a2, and e1 form a
crossing triangle �e1 . Moreover, the corresponding crossing triangle in D2 has the opposite
orientation, and hence �e1 is invertible. By the following lemma, �e1 is empty of all vertices
of D (we already knew this for the vertices of Km,i, but not yet for ri+1, . . . , rn).

I Lemma 2.4 (Invertible triangles are empty). Let D be a simple drawing of Km,n and � be
an invertible crossing triangle in D. Then all vertices of D lie outside �.

Since �e1 is empty of all vertices, all edges crossing �e1 can be “swept” outside �e1

using a finite sequence of triangle flips (analogous to topological sweeps). None of those flips
increases the number of crossings in L (while some of them might decrease this number) and
after them, �e1 is unintersected. Finally, we also flip �e1 so that ‰ ”œ L.

Processing all remaining crossings inside L in the described fashion, we establish that
in the resulting drawing, the lens L does not contain any vertex or crossing of D[Xi,j≠1].
In other words, locally around L, the edge e1 is topologically identical to Âe2 with respect
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to D[Xi,j≠1]. Thus, we can adapt Âe2 by replacing its edge part on ˆL with a close copy of
the edge part of e1 on ˆL, e�ectively removing the lens L from �. As a result, the edges e1
and Âe2 have fewer crossings than before in D, and the parameters D and � = e1 fi Âe2 again
meet the conditions of Lemma 2.3. Repeatedly applying this procedure to the next cell
(which exists by Lemma 2.3), we eventually obtain a drawing D[Xi,j ]fi Âe2 where e1 and Âe2 do
not cross, and hence � is a simple closed curve. By Lemma 2.3, one of the two cells bounded
by � contains no vertices of D[Xi,j ]. So after one last round of transformations as described
above, we obtain a drawing D[Xi,j ] fi Âe2 in which all vertices and crossings lie on one side
of �. Hence we have obtained D[Xi,j ] ≥= D2[Xi,j ]. Processing all vertices ri, for i = 2, . . . , n,
and in turn handling all edges incident to ri eventually yields a drawing D ≥= D2.

3 Sketch of the proof of Theorem 1.2

Figure 3 depicts the drawings we use in the proof of Theorem 1.2. The first row contains
drawings of Km,n minus two adjacent edges, the second one drawings of Km,n minus two
disjoint edges, and the third row is for Kn+m minus a C4. In each row, the (green) edge r1b1
crosses b2r2 and b2r3 in a di�erent order and these three edges do not form any crossing
triangle. Thus, the drawings cannot be transformed into each other via triangle flips.

4 Conclusion & Open Questions

We have shown Gioan’s Theorem for complete bipartite graphs (Theorem 1.1) and that an
according statement does not hold for Km,n minus two edges or Kn minus a C4 (Theorem 1.2).
These results relevantly extend previous results [1, 4, 7] and show that the class of graphs for
which an according statement holds is also not closed under adding edges. We believe that
our result can be extended to complete k-partite graphs. But a complete characterization of
graphs for which an according statement holds remains open.

I Question 1. What is a complete characterization of all graphs for which Gioan’s Theorem
holds, that is, for which graphs is it true that any two drawings with the same ERS can be
transformed into each other?

Further, we have shown that an analogue of Caratheorody’s Theorem holds for simple
drawings of Km,n (Theorem 1.3). It would be interesting to know for which further graphs a
similar statement is true.

Finally, in our proof of Theorem 1.1, we did not address algorithmical questions, and
neither did the according proofs for Gioan’s Theorem for Kn. Naturally, the minimum flip
distance, that is, the minimum number of triangle flips that need to be done to transform
the drawings, is of interest.

I Question 2. What is the worst case minimum flip distance between two simple drawings
of Km,n with the same ERS? And what is the worst case minimum flip distance between two
simple drawings of Kn with the same rotation system?
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