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Abstract

Let G = (S,E) be a plane straight line graph on a
finite point set S ⊂ R2 in general position. For a point
p ∈ S let the maximum incident angle of p in G be
the maximum angle between any two edges of G that
appear consecutively in the circular order of the edges
incident to p. A plane straight line graph is called ϕ-
open if each vertex has an incident angle of size at
least ϕ. In this paper we study the following type of
question: What is the maximum angle ϕ such that for
any finite set S ⊂ R2 of points in general position we
can find a graph from a certain class of graphs on S
that is ϕ-open? In particular, we consider the classes
of triangulations, spanning trees, and paths on S and
give tight bounds in all but one cases.

1 Introduction

Conditions on angles in plane straight-line graphs
have been studied extensively in discrete and com-
putational geometry. It is well known that Delau-
nay triangulations maximize the minimum angle over
all triangulations, and that in a (Euclidean) mini-
mum weight spanning tree each angle is at least π

3 .
In this paper we address the fundamental combina-
torial question, what is the maximum value α such
that for each finite point set in general position there
exists a plane straight-line graph (of a certain type)
where each vertex has an incident angle of size at least
α. We present bounds on this value for three classes
of graphs: spanning paths (general and bounded de-
gree), spanning trees, and triangulations. Most of the
bounds we give are tight. In order to show that, we
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describe families of point sets for which no graph from
the respective class can achieve a greater incident an-
gle at all vertices.

Background. Our motivation for this research stems
from the investigation of “pseudo-triangulations”, a
straight-line framework which, apart from deep com-
binatorial properties, has applications in motion plan-
ning, collision detection, ray shooting and visibility;
see [1, 9, 10, 12, 13] and references therein. Pseudo-
triangulations with a minimum number of pseudo-
triangles (among all pseudo-triangulations for a given
point set) are called minimum (or pointed) pseudo-
triangulations. They can be characterized as plane
straight-line graphs where each vertex has an incident
angle greater than π. Furthermore, the number of
edges in a minimum pseudo-triangulation is maximal,
in the sense that the addition of any edge produces
an edge-crossing or negates the angle condition.

In comparison to these properties, we consider con-
nected plane straight-line graphs where each vertex
has an incident angle α – to be maximized – and the
number of edges is minimal (spanning trees) and the
vertex degree is bounded (spanning trees of bounded
degree and spanning paths, respectively). We further
show that any planar point set has a triangulation in
which each vertex has an incident angle of at least 2π

3 .
Observe that perfect matchings can be described as
plane straight-line graphs where each vertex has an
incident angle of 2π and the number of edges is max-
imal.

Related Work. There is a vast literature on triangu-
lations that are optimal according to certain criteria.
Similar to Delaunay triangulations which maximize
the smallest angle over all triangulations for a point
set, farthest point Delaunay triangulations minimize
the smallest angle over all triangulations for a convex
polygon [6]. If all angles in a triangulation are ≥ π

6 ,
then it contains the relative neighborhood graph as a
subgraph [11]. The relative neighborhood graph for a
point set connects any pair of points which are mu-
tually closest to each other (among all points from
the set). Edelsbrunner et al. [7] showed how to con-
struct a triangulation that minimizes the maximum
angle among all triangulations for a set of n points in
O(n2 log n) time.
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In applications where small angles have to be
avoided by all means, a Delaunay triangulation may
not be sufficient in spite of its optimality because even
there arbitrarily small angles can occur. By adding so-
called Steiner points one can construct a triangulation
on a superset of the original points in which there is
some absolute lower bound on the size of the smallest
angle [4]. Dai et al. [5] describe several heuristics to
construct minimum weight triangulations (triangula-
tions which minimize the total sum of edge lengths)
subject to absolute lower or upper bounds on the oc-
curring angles.

Spanning cycles with angle constraints can be re-
garded as a variation of the traveling salesman prob-
lem. Fekete and Woeginger [8] showed that if the cycle
may cross itself then any set of at least five points ad-
mits a locally convex tour, that is, a tour in which the
angle between any three consecutive points is positive.
Aggarwal et al. [2] prove that finding a spanning cycle
for a point set which has minimal total angle cost is
NP-hard, where the angle cost is defined as the sum
of direction changes at the points.

Regarding spanning paths, it has been conjectured
that each planar point set admits a spanning path
with minimum angle at least π

6 [8]; recently, a lower
bound of π

9 has been presented [3].

Definitions and Notation. Let S ⊂ R2 be a fi-
nite set of points in general position, that is, no
three points of S are collinear. In this paper we
consider plane straight line graphs G = (S,E) on
S. The vertices of G are precisely the points in
S, the edges of G are straight line segments that
connect two points in S, and two edges of G do
not intersect except possibly at their endpoints.

p q
α

β
γ

δ

Figure 1: Incident
angles of p.

For a point p ∈ S the max-
imum incident angle opG(p)
of p in G is the maximum an-
gle between any two edges of
G that appear consecutively
in the circular order of the
edges incident to p. For a ver-
tex p ∈ S of degree at most
one we set opG(p) = 2π. We
also refer to opG(p) as the
openness of p in G and call p ∈ S ϕ-open in G for
some angle ϕ if opG(p) ≥ ϕ. Consider, for example,
the graph depicted in Figure 1. The point p has four
incident edges in G and, therefore, four incident an-
gles. Its openness is opG(p) = α. The point q has only
one incident angle and correspondingly opG(q) = 2π.

Similarly we define the openness of a plane straight
line graph G = (S,E) as op(G) = minp∈S opG(p) and
call G ϕ-open for some angle ϕ if op(G) ≥ ϕ. In other
words, a graph is ϕ-open if and only if every vertex
has an incident angle of size at least ϕ. The openness
of a class G of graphs is the supremum over all angles

ϕ such that for every finite point set S ⊂ R2 in gen-
eral position there exists a ϕ-open connected plane
straight line graph G on S and G is an embedding
of some graph from G. For example, the openness of
minimum pseudo-triangulations is π.

Observe that without the general position assump-
tion many of the questions become trivial because for
a set of collinear points the non-crossing spanning tree
is unique – the path that connects them along the line
– and its interior points have no incident angle greater
than π.

Let a, b, and c be three points in the plane that
are not collinear. With ∠abc we denote the counter-
clockwise angle between the segment (b, a) and the
segment (b, c) at b.

Results. In this paper we study the openness of sev-
eral well known classes of plane straight line graphs,
such as triangulations (2π

3 , Section 2), spanning trees
(Section 3) in general (5π

3 ) and with maximum degree
three ( 3π

2 ), and spanning paths (3π
2 for sets in convex

position, Section 4).

2 Triangulations

Theorem 1 Every finite point set in general position
in the plane has a triangulation that is 2π

3 -open and
this is the best possible bound.

Proof. Consider a point set S ⊂ R2 in general posi-
tion. Clearly, opG(p) > π for every point p ∈ CH(S)
and every plane straight line graph G on S. We re-
cursively construct a 2π

3 -open triangulation T of S by
first triangulating CH(S); every recursive subproblem
consists of a point set with a triangular convex hull.

Let S be a point set with a triangular convex hull
and denote the three points of CH(S) with a, b, and
c. If S has no interior points, then we are done. Oth-
erwise, let a′, b′ and c′ be (not necessarily distinct) in-
terior points of S such that the triangles ∆a′bc, ∆ab′c
and ∆abc′ are empty (see Figure 2). Since the sum of
the six exterior angles of the hexagon bc′ab′ca′ equals
8π, the sum of the three angels ∠ac′b, ∠ba′c, and
∠cb′a is at least 2π. In particular, one of them, say
∠cb′a, is at least 2π/3. We then recurse on the two
subsets of S that have ∆bb′c and ∆ab′b as their re-
spective convex hulls.

a b

c

a′
b′

c′

Figure 2: Constructing a 2π
3 -open triangulation.
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Sa Sb

p
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Figure 3: The openness of triangulations of this
point set approaches 2π

3 .

The upper bound is attained by a set S of n points
as depicted in Figure 3. S consists of a point p and
of three sets Sa, Sb, and Sc that each contain n−1

3
points. Sa, Sb, and Sc are placed at the vertices of an
equilateral triangle ∆ and p is placed at the barycen-
ter of ∆. Any triangulation T of S must connect p
with at least one point of each of Sa, Sb, and Sc and
hence opT (p) approaches 2π

3 arbitrarily close. �

3 Spanning Trees

In this section we give tight bounds on the ϕ-openness
of two basic types of spanning trees, namely general
spanning trees and spanning trees with bounded ver-
tex degree. Consider a point set S ⊂ R2 in general
position and let p and q be two arbitrary points of S.
Assume w.l.o.g. that p has smaller x-coordinate than
q. Let lp and lq denote the lines through p and q that
are perpendicular to the edge (p, q). We refer to the
region bounded by lp and lq as the orthogonal slab of
(p, q).

Observation 1 Assume that r ∈ S \ {p, q} lies in
the orthogonal slab of (p, q) and above (p, q). Then
∠qpr ≤ π

2 and ∠rqp ≤ π
2 . A symmetric observation

holds if r lies below (p, q).

Recall that the diameter of a point set is a pair of
points that are furthest away from each other. Let
a and b define the diameter of S and assume w.l.o.g.
that a has a smaller x-coordinate than b. Clearly, all
points in S \ {a, b} lie in the orthogonal slab of (a, b).

Observation 2 Assume that r ∈ S \{a, b} lies above
a diametrical segment (a, b) for S. Then ∠arb ≥ π

3
and hence at least one of the angles ∠bar and ∠rba
is at most π

3 . A symmetric observation holds if r lies
below (a, b).

These two simple observations can be used to obtain
the following results on spanning trees.

Theorem 2 Every finite point set in general position
in the plane has a spanning tree that is 5π

3 -open, and
this bound is tight.

Theorem 3 Let S ⊂ R2 be a set of n points in gen-
eral position. There exists a 3π

2 -open spanning tree T
of S such that every point from S has vertex degree at
most 3 in T . The angle bound is best possible, even
for the much broader class of spanning trees of vertex
degree at most n − 2.

Both proofs for the above theorems are based on an
extensive case analysis. Therefore we omit them in
this extended abstract. The interested reader can find
all details in the full version of the paper or in [14].

4 Spanning Paths

For spanning paths, the upper bound for trees with
bounded vertex degree can be applied as well. The
resulting bound of 3π

2 is tight for points in convex
position, even in a very strong sense: There exists a
3π
2 -open spanning path starting from any point. We

also give examples showing that our construction can-
not be extended to general point sets.

4.1 Point Sets in Convex Position

Consider a set S ⊂ R2 of n points in convex position.
We can construct a spanning path for S by starting
at an arbitrary point p ∈ S and recursively taking
one of the tangents from p to CH(S \{p}). As long as
|S| > 2, there are two tangents from p to CH(S \{p}):
the left tangent is the oriented line t� through p and
a point from p� ∈ S \ {p} (oriented in direction from
p to p�) such that no point from S is to the left of
t�. Similarly, the right tangent is the oriented line tr
through p and a point from pr ∈ S \ {p} (oriented
in direction from p to pr) such that no point from S
is to the right of tr. If we take the left and the right
tangent alternately, we call the resulting path a zigzag
path for S.

Theorem 4 Every finite point set in convex position
in the plane admits a spanning path that is 3π

2 -open,
and this bound is best possible.

In the full version of the paper, we present two dif-
ferent proofs for this theorem, an existential proof
using counting arguments and a constructive proof.
In addition, the latter provides the following stronger
statement.

Corollary 5 For any finite set S ⊂ R2 of points in
convex position and any p ∈ S there exists a 3π

2 -open
spanning path for S which has p as an endpoint.
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4.2 General Point Sets

So far we have not been able to generalize the results
of Theorem 4 and Corollary 5 to general point sets.
In this Section we present a few examples to indicate
where the difficulties lie.

p1

Figure 4: Starting at interior point p1 results in an
at most (π + ε)-open spanning path.

Figure 4 depicts a configuration where any span-
ning path starting at the interior point p1 is at most
(π + ε)-open. Figure 5 shows a configuration that has
a similar property. Here point p5 is positioned arbi-
trarily far to the left and β = π

3 . If we require the
edge (p1, p2) to be part of the spanning path, then we
can construct at most a

(
4π
3 + ε

)
-open spanning path.

p4

p1

p3

p2

β
p5

p5p5

β

β

Figure 5: If edge (p1, p2) is forced we get at most a(
4π
3 + ε

)
-open spanning path.

Both examples show that, whatever approach is
used to generate a spanning path, we have to be care-
ful when forcing points or edges to play a specific role
in the construction. Especially starting at a fixed in-
terior point has to be avoided.

A direct generalization of the constructive approach
for convex sets would be a path which starts at a given
extreme point and recursively continues only along
tangents to the remaining point set. But there exist
examples where this approach generates an at most
(π + ε)-open spanning path. Details on this construc-
tion and the examples presented above, as well as a
large variety of much more involved approaches can
be found in [14].

On the other hand, and despite the above presented
constructions, we have not been able to provide a sin-
gle point set, which does not contain a 3π

2 -open span-
ning path. To the contrary, computational investiga-
tions on several billion random point sets (in the range
of 4 ≤ n ≤ 20 points) provided for each set a 3π

2 -open
spanning path, even if we required the path to start
with a prefixed extreme point. Thus we conclude this
section with the following conjecture.

Conjecture 1 Spanning paths for general point sets
are 3π

2 -open.
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