
ParkView: Visualizing Monotone Interleavings
Thijs Beurskens1, Steven van den Broek1, Arjen Simons1,
Willem Sonke1, Kevin Verbeek1, Tim Ophelders1,2,
Michael Ho�mann3, and Bettina Speckmann1

1 Dept. of Mathematics and Computer Science, TU Eindhoven, The Netherlands
[t.p.j.beurskens | s.w.v.d.broek | a.simons1 | w.m.sonke | k.a.b.verbeek |

b.speckmann]@tue.nl

2 Dept. of Information and Computing Science, Utrecht University, The
Netherlands
t.a.e.ophelders@uu.nl

3 Dept. of Computer Science, ETH Zürich, Switzerland
hoffmann@inf.ethz.ch

Abstract
We introduce ParkView: a schematic, scalable encoding for monotone interleavings on ordered merge
trees. ParkView captures both maps of the interleaving using an optimal decomposition of the trees
into paths. We prove several structural properties of monotone interleavings that enable a sparse
visual encoding using a maximum of 6 colors for merge trees of arbitrary size.

Related Version arXiv:2501.10728

1 Introduction

A merge tree is a topological summary of a scalar field, which shows how the minima,
maxima, and saddle points of the scalar field are connected (see Figure 1). The interleaving
distance [4, 5, 7] is a similarity measure that captures how far two merge trees are from being
isomorphic. Intuitively, it “weaves” the two trees together via two shift maps that take points
from one tree to points a fixed distance higher in the other tree while preserving ancestry.
Computing the interleaving distance is NP-hard [1] and in practice it is often desirable
to introduce additional geometric constraints. The monotone interleaving distance [2]
implements such constraints; it requires a prior ordering on the leaves of the merge trees
that respects the tree structure. Given such an ordering, for example based on the spatial
structure of the data, the monotone interleaving distance can be computed e�ciently.

An ordered merge tree is a tree T equipped with a height function f and a total order on
its leaves that respects T ’s structure. We think of T as a topological space; as such, we refer

T T 0
↵

�

�
u2

u1

u3

v1

v2

Figure 1 Left: a scalar field with its merge tree. Right: a ”-interleaving (–, —). We draw the
trees rectilinearly; each horizontal line segment represents a single point, namely a non-leaf vertex.

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

29:2 ParkView: Visualizing Monotone Interleavings

d

1

1

Figure 2 Example ParkView visualization of a monotone interleaving.

to not just the vertices, but also each point on the interior of an edge, as a point of T . The
highest vertex of T is called the root, from which an edge extends upwards to infinity. The
height function f has to be continuous and strictly increasing along each leaf-to-root path
of T . A monotone ”-shift map – takes points in T and maps them continuously to points
in T Õ exactly ” higher such that it preserves the order of any two points of T . A monotone
”-interleaving consists of two monotone ”-shift maps (– from T to T Õ and — from T Õ to T)
such that for any point x œ T , the point —(–(x)) is an ancestor of x and for any point y œ T Õ,
the point –(—(y)) is an ancestor of y. Figure 1 shows an example. The monotone interleaving
distance is then the smallest ” for which a monotone ”-interleaving exists. In the remainder
of this paper, we use “interleaving” to mean “monotone interleaving”.

Interleavings on merge trees can have a complex structure, and hence to gain insight in their
behavior, it is useful to visualize them. However, existing visualizations (e.g. [1, 3, 4, 5, 6, 7])
are mostly designed to visually explain the concept of interleavings on small examples, and
not suitable for actual data exploration. We introduce ParkView: a schematic and scalable
visual encoding for interleavings. To represent a shift map, ParkView decomposes the two
merge trees into few components such that a component in one tree maps entirely to one
component in the other tree. See Figure 2: the points in the left tree enclosed by shape 1 (a
hedge) map to the points in the right tree on segment 1 (an active path). ParkView draws
a merge tree rectilinearly, with the leaves drawn in separate columns according to the leaf
order (Figure 3). The properties of a monotone interleaving allow us to match components

hedges

draw ⇧2’s branches
and active paths

active paths

draw paths
vertically

draw ⇧1’s branches
and active paths

T T 0

path decompositions
⇧1 and ⇧2 of T and T 0

thin column if it has
no active path

T

ParkView

T 0

Figure 3 ParkView draws an interleaving (–, —) by superimposing drawings of heavy path-branch
decomposition of both – and —.

T. Beurskens et al. 29:3

left to right, based on the position of the lowest leaf for hedges and the x-position for active
paths. Matching components are also assigned the same color. The drawings of the two shift
maps combine and together show the interleaving.

In this paper, we detail two aspects of ParkView. First we define an optimal way of
decomposing merge trees and show how to compute it (Section 2). Then we explain how
we draw hedges and show that the set of hedges is 3-colorable (Section 3). The full version
details the algorithmic pipeline for computing ParkView, and includes a showcase of ParkView
on several real-world datasets.

2 Path-Branch Decomposition

The input for ParkView consists of two ordered merge trees T and T Õ and two shift maps –
and —. We now describe the decomposition based on the shift map –; the decomposition based
on — is symmetric. We decompose T Õ into a path decomposition �: a set of height-monotone
paths fi that each start at a leaf (the bottom of fi) and end at an internal vertex of T Õ (the
top of fi) or, for one path, at infinity. To make sure the paths of � are disjoint and exactly
cover T Õ, we consider each path fi to be open at its top. Alternatively, we can define a
path decomposition bottom-up. For a vertex v of T Õ, let the up edge be the one edge with
increasing height incident to v, and let the down edges be the other edges incident to v. We
now define a path decomposition by selecting, for each internal vertex v, one of the down
edges of v as the through edge of v. The path decomposition is then built by starting a path
at each leaf of T Õ, and for each internal vertex v letting the incoming path from the through
edge continue, while the incoming paths from the remaining down edges end at v.

Each path fi œ � induces a branch Bfi in T : the part of T that – maps to fi. The branch
Bfi can either be empty, consist of a single connected component (a simple branch), or
consist of multiple connected components (a compound branch) (see Figure 4). The complete
set of branches Bfi forms a decomposition of T , which we call the branch decomposition
of T . Together, we call the paths in T Õ and the branches in T a path-branch decomposition
for –. To minimize visual complexity, we now show how to construct an optimal path-branch
decomposition: one that minimizes (1) the maximum number of branch components per
path and (2) the total number of branch components.

As noted before, we can define a path decomposition of T Õ by selecting a through edge
for each internal vertex v. For an edge e, let Be be the part of T that – maps to the interior
of e, and let the weight of e be the number of connected components of Be. We define a
heavy path decomposition by selecting the through edge of v to be a down edge of v with
maximum weight. We now prove that a heavy path-branch decomposition is optimal. We
refer to the highest edge fi traverses as its top edge. We define the size of a branch B as the
number of connected components it consists of. We first show that for a given path fi, the
size of its induced branch is equal to the weight of fi’s top edge.

T T 0

Bp p

T T 0

Bp p

T T 0

p

Figure 4 Examples of a simple branch, a compound branch, and an empty branch Bfi.

EuroCG’25

29:4 ParkView: Visualizing Monotone Interleavings

I Lemma 1. Let fi be a path with top edge e. Then the size of Bfi is equal to e’s weight.

Proof. Let v be the top of fi and let h := f(v) ≠ ”. As e is in fi, we have that Be ™ Bfi.
It hence su�ces to argue that each connected component C of Bfi contains exactly one
connected component of Be. To show that C contains at least one connected component
of Be, we show that C contains a point x in Be. Take any point xÕ œ C. If –(xÕ) lies in the
interior of e, then we take x := xÕ. Otherwise, we continuously follow the path from xÕ to
the root of T . As – is continuous, the images of the points on the path (in T Õ) also form a
continuous path. Furthermore, as – is a ”-shift map, the images of these points also have a
continuously increasing height value. It follows that there is a point x that maps to e. By
definition x œ Be (and thus also in Bfi). Furthermore, all points between xÕ and x on our
path map to points on fi in T Õ. Therefore, they are all part of Bfi; hence, they are all part of
the same connected component of Bfi, namely C.

To show that C contains at most one connected component of Be, assume for a contra-
diction that there are two distinct connected components C1 and C2 of Be in C. As before,
these components respectively contain points x1 and x2, both at height h ≠ Á for some Á > 0
chosen such that no vertices of T have height between h and h ≠ Á. Now there is a path fl
from x1 to x2 entirely within C, as C is connected. There also is a distinct path flÕ from x1
to x2 via the lowest common ancestor x3 in T of x1 and x2. Note that f(x3) Ø h, so flÕ is not
entirely within C; that is, fl ”= flÕ. The union of fl and flÕ hence contains a cycle, contradicting
the fact that T is a tree. J

I Theorem 2. Any heavy path-branch decomposition is optimal.

Proof. Let � be a path decomposition. Recall that � selects one through edge for each
vertex v in T Õ. Define the cost of v as the sum of the weights of v’s down edges, excluding its
through edge. As these edges are exactly the top edges ending at v, by Theorem 1, the cost
of v is the number of branch components belonging to the paths ending at v. Then, the sum
of costs of all vertices in T Õ is the total number of branch components induced by �. This
sum is minimized by minimizing the cost for each vertex v. This is achieved by maximizing
the weight of its through edge, that is, picking a heavy edge as the through edge. A similar
argument holds for minimizing the maximum number of branch components per path. J

3 Hedge Coloring

We represent each branch Bfi by a hedge Hfi: a rectilinear shape enclosing Bfi (see Figure 5).
Each hedge is a histogram: the union of a set of axis-aligned rectangles called bars whose
tops are aligned. We call the height of the highest (lowest) point in a branch Bfi its top
(bottom) height. A hedge consists of three types of bars: tree bars, fillers, and bridges. For
each path ‡ in the path decomposition of T that contains points in Bfi, in the column of ‡
we add a tree bar whose bottom height is the height of the lowest point on ‡ that is in Bfi.

bridgefiller

Figure 5 The types of bars that make up a hedge (left) and the resulting hedge (right).

T. Beurskens et al. 29:5

. . .

Figure 6 Illustrations of Observation 3 (left) and Observation 4 (right).

The union of these bars may not be connected; in this case, we connect consecutive leaves in
the same branch component by adding fillers in the columns between them. The height of
such a sequence of fillers is the smallest height of the two bars they connect (Figure 5). For
a compound branch Bfi, we draw its connected components like before, and then between
them we add a bridge: a horizontal connector at the top of the hedge (Figure 5). The height
of the bridge is less than the height of the shortest bar in the hedge.

A hedge H has a left (right) side which is the left (right) side of its leftmost (rightmost)
bar. Two distinct hedges are adjacent if their boundaries, excluding corners, overlap. A
hedge P is the parent of H if P is adjacent to the top of H; then H is a child of P .

It is desirable to use as few colors as possible for the hedges, while ensuring adjacent
hedges have distinct colors. In fact, we show that the set of hedges in ParkView is 3-colorable.
The proof makes use of three properties: hedges (i) are pairwise interior disjoint, (ii) have at
most one parent, and (iii) have no hedge adjacent to the bottom of their longest bar. Our
proofs of these properties rely on two observations about our drawing of T (see Figure 6).

I Observation 3. No point of T is between two points of another branch at the same height.

I Observation 4. No leaves are positioned vertically above a horizontal segment.

I Lemma 5. Hedges in ParkView satisfy property (i).

Proof sketch. Consider a horizontal line h that intersects a number of hedges. As hedges
have a complicated shape, instead of studying the intersection of each hedge with h, we use
Observation 3 to partition h into a number of interior disjoint intervals, one for each hedge.
We then show that these intervals are supersets of the intersection of the corresponding
hedge with h, from which it follows that the hedges are interior disjoint. J

I Lemma 6. Hedges in ParkView satisfy property (ii).

Proof sketch. For any hedge Hfi, we can show that (a) it needs to have a point of T on the
top, which is adjacent to some tree bar in a parent hedge, and (b) any other bars adjacent to
the top of Hfi need to be part of the same parent hedge. J

I Lemma 7. Hedges in ParkView satisfy property (iii).

Proof sketch. Let b be a longest bar in a hedge Hfi. We can show that b is a tree bar: if it
were a filler, this would violate Observation 4. We prove a key property: a tree bar that is a
longest bar of its hedge has a leaf of T on its bottom. Hence, b has such a leaf. Now assume
that there is another hedge Hfl adjacent to the bottom of b. Then on the top of Hfl, there
is a point via which Hfl connects to the rest of T . As each hedge has at most one parent
(Lemma 6) this connection is via a bar bÕ of Hfi. However, then bÕ is a longest tree bar. This
contradicts our key property that bÕ, being a longest tree bar, has a leaf on its bottom. J

EuroCG’25

29:6 ParkView: Visualizing Monotone Interleavings

G

P

L R

C008 > > > > > < > > > > > :

b

Figure 7 A set of histograms where P is the parent of G.

I Theorem 8. Any set C of histograms that satisfies properties (i)–(iii) is 3-colorable.

Proof. We use induction on n = |C|. The base case (n = 1) is trivial. Assume that C
contains n + 1 histograms, and let G be a histogram whose top is lowest; it follows that no
histogram in C is adjacent to the bottom side of any bar of G, and at most one histogram
in C is adjacent to the left (or right) of G. Lastly, G can have at most one parent by (i), so
G has at most three adjacent histograms.

The set C Õ := C \ {G} still satisfies (i)–(iii) and has size n. By the induction hypothesis,
C Õ is 3-colorable; fix a 3-coloring c1 for C Õ. We edit c1 into a 3-coloring for C. If the
histograms adjacent to G use fewer than three colors, we use the third color for G to obtain
a 3-coloring for C. Otherwise, let L and R be the histograms adjacent to the left and right
of G, and let P be the parent of G. Since P , L, and R have distinct colors, we can assume
without loss of generality that c1 assigns colors 1, 2, and 3 to P , L, and R, respectively.
By (iii) there is no histogram adjacent to the bottom of a longest bar of P , so P extends
below the top of G. Without loss of generality, assume P extends left of G and call the
rightmost such extending bar b (Figure 7). Consider the descendants C ÕÕ of P that lie to the
left of G and to the right of b. As L is contained in C ÕÕ, the set C ÕÕ is nonempty. This means
that C \ C ÕÕ again satisfies (i)–(iii) and has size at most n, and is hence 3-colorable by the
induction hypothesis. Let c2 be a 3-coloring of C \ C ÕÕ such that without loss of generality P
has color 1 and G has color 3. We now define a coloring c3 for C where the histograms of
C \ C ÕÕ take its color from c2, and the histograms in C ÕÕ take their color from c1.

Note that G and P are the only two histograms of C \ C ÕÕ that are adjacent to histograms
in C ÕÕ. So, one of four cases applies to any two adjacent histograms of C: (a) both lie in
C \ C ÕÕ, (b) both lie in C ÕÕ, (c) one is P and the other lies in C ÕÕ or (d) one is G and the
other lies in C ÕÕ (i.e., the other is L). For c3 to be a 3-coloring, it su�ces to show that in
each case, c3 assigns them distinct colors. In case (a), c3 assigns the same colors as c1. In
case (b), c3 assigns the same colors as c2. In case (c), P has color 1 in both c1 and c2, so c3
again assigns the same colors as c1. In case (d), L has color 2 and G has color 3. J

Since hedges are histograms and satisfy (i)–(iii), the set of hedges in ParkView is 3-colorable.

Acknowledgments. Research on the topic of this paper was initiated at the 7th Workshop
on Applied Geometric Algorithms (AGA 2023) in Otterlo, The Netherlands. Thijs Beurskens,
Willem Sonke, Arjen Simons, and Tim Ophelders are supported by the Dutch Research
Council (NWO) under project numbers OCENW.M20.089 (TB, WS), VI.Vidi.223.137 (AS),
and VI.Veni.212.260 (TO).

References
1 P.K. Agarwal, K. Fox, A. Nath, A. Sidiropoulos, and Y. Wang. Computing the Gromov-

Hausdor� distance for metric trees. ACM Transactions on Algorithms, 14(2):1–20, April
2018. doi:10.1145/3185466.

T. Beurskens et al. 29:7

2 T. Beurskens, T. Ophelders, B. Speckmann, and K. Verbeek. Relating interleaving and
Fréchet distances via ordered merge trees. In Proc. ACM-SIAM Symposium on Discrete
Algorithms (SODA25), pages 5027–5050. Society for Industrial and Applied Mathematics,
2025. doi:10.1137/1.9781611978322.170.

3 J. Curry, H. Hang, W. Mio, T. Needham, and O.B. Okutan. Decorated merge trees for
persistent topology. Journal of Applied and Computational Topology, 6(3):371–428, February
2022. doi:10.1007/s41468-022-00089-3.

4 E. Gasparovic, E. Munch, S. Oudot, K. Turner, B. Wang, and Y. Wang. Intrin-
sic interleaving distance for merge trees. La Matematica, pages 1–26, 2024. doi:
10.1007/s44007-024-00143-9.

5 D. Morozov, K. Beketayev, and G. Weber. Interleaving distance between merge trees.
Manuscript (accessed on 06-03-2025), 2013. URL: https://mrzv.org/publications/
interleaving-distance-merge-trees/manuscript/.

6 M. Pegoraro. A graph-matching formulation of the interleaving distance between merge
trees. arXiv:2111.15531.

7 E.F. Touli and Y. Wang. FPT-algorithms for computing the Gromov-Hausdor� and
interleaving distances between trees. Journal of Computational Geometry, 13(1):89–124,
April 2022. doi:10.20382/jocg.v13i1a4.

EuroCG’25

