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Abstract

Given a graph G = (V,E), a set R ⊆ V is column pla-
nar in G if we can assign x-coordinates to the vertices
in R such that every assignment of y-coordinates to R
gives a partial embedding of G that can be completed
to a plane straight-line embedding of the whole graph.
This notion is strongly related to unlabeled level pla-
narity. We prove that every outerplanar graph on
n vertices contains a column planar set of size at
least n/2.

We use this result to show that every pair of outer-
planar graphs G1 and G2 on the same set V of n ver-
tices admit an (n/4)-partial simultaneous geometric
embedding (PSGE): a plane straight-line embedding
of G1 and a plane straight-line embedding of G2 such
that n/4 vertices are mapped to the same point in the
two drawings. This is a relaxation of the well-studied
notion of simultaneous geometric embedding, which is
equivalent to n-PSGE.

1 Introduction

The notion of column planarity was originally intro-
duced by Evans et al. [6]. Informally, given a graph
G = (V,E), a set R ⊆ V is column planar in G
if we can assign x-coordinates to the vertices in R
such that any assignment of y-coordinates to R gives
a partial embedding of G that can be completed to
a plane straight-line embedding of the whole graph.
More formally, R is column planar in G if there exists
an injection ρ : R → R such that for all ρ-compatible
injections γ : R → R, there exists a plane straight-
line embedding of G where each v ∈ R is embedded
at (ρ(v), γ(v)). Injection γ is ρ-compatible if the com-
bination of ρ and γ does not embed three vertices on
a line. See Figure 1.

Column planarity is both a generalization and a
strengthening of unlabeled level planarity (ULP). A
graph G = (V,E) is ULP if for all injections γ : V →
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Figure 1: A graph with column planar set R =
{a, b, d, e} and ρ = {a 7→ 2, b 7→ 4, d 7→ 1, e 7→ 3}.
(b-c) depict completed embeddings for two different
assignments γ : R → R.

R, there exists an injection ρ : V → R, so that em-
bedding each v ∈ V at (ρ(v), γ(v)) results in a plane
straight-line embedding of G. If V is column pla-
nar in G, then G is ULP. Estrella-Balderrama, Fowler
and Kobourov [5] introduced ULP graphs and char-
acterized ULP trees in terms of forbidden subgraphs.
Fowler and Kobourov [7] extended this characteriza-
tion to general ULP graphs. ULP graphs are exactly
the graphs that admit a simultaneous geometric em-
bedding with a monotone path: this was the original
motivation for studying them.

Following the characterization of ULP graphs, Di
Giacomo et al. [4] introduce a family of graphs called
fat caterpillars and prove that they are exactly the
graphs G = (V,E) where V is column planar in G
(they call such graphs EAP graphs). Evans et al. [6]
prove near-tight bounds for column planar subsets of
trees: any tree on n vertices contains a column pla-
nar set of size at least 14n/17 and for any ε > 0
and any sufficiently large n, there exists an n-vertex
tree in which every column planar subset has size at
most (5/6 + ε)n. Furthermore, they show that outer-
paths (outerplanar graphs whose weak dual is a path)
always contain a column planar subset of size at least
n/2. In this paper, we prove that this bound holds
for general outerplanar graphs.

Evans et al. [6] apply their results on column pla-
narity to give bounds for k-partial simultaneous ge-
ometric embedding (k-PSGE). This problem is a re-
laxation of simultaneous geometric embedding (SGE),
which was introduced by Brass et al. [3]. Given graphs
G1 = (V,E1) and G2 = (V,E2) on the same set of
n vertices, an SGE of G1 and G2 is a pair of plane
straight-line embeddings ϕ1 : V → R2 of G1 and
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Figure 2: (a-b) Graphs G1 and G2 on the same vertex
set. (c) An SGE of G1 and G2. (d) A 3-PSGE of G1

and G2.

ϕ2 : V → R2 of G2 such that ϕ1 = ϕ2. See Fig-
ure 2c. Conversely, in a k-PSGE of G1 and G2, we
require ϕ1(v) = ϕ2(v) only for some k vertices in V .
More formally, a k-PSGE of G1 and G2 is a pair of
injections ϕ1 : V → R2 and ϕ2 : V → R2 such that
(i) the straight-line drawings ϕ1(G1) and ϕ2(G2) are
both plane; (ii) if ϕ1(v1) = ϕ2(v2) then v1 = v2; and
(iii) ϕ1(v) = ϕ2(v) for at least k vertices v ∈ V [6].
See Figure 2d. An n-PSGE is simply an SGE.

Brass et al. [3] show that two paths, cycles, or cater-
pillars always admit an SGE. On the negative side,
they prove that two outerplanar graphs or three paths
sometimes do not admit an SGE. Bläsius et al. [2] give
an excellent survey of the subsequent papers on simul-
taneous embeddings. We highlight the negative result
by Geyer et al. [8] that there exist two trees that do
not admit an SGE and the result by Angelini et al. [1]
that there exist a tree and a path that do not admit an
SGE. These negative results motivated the study of
PSGE. Evans et al. [6] show that if a set R is column
planar in both G1 and G2, then G1 and G2 admit a
|R|-PSGE. Di Giacomo et al. [4] independently prove
this for R = V . Combining their lower bounds on
the size of column planar sets with a pigeonhole ar-
gument, Evans et al. show that every two trees admit
a (11/17)-PSGE.

A result from Goaoc et al. [9] on the untangling of
outerplanar graphs, implies that any two outerplanar
graphs G1 and G2 on n vertices admit a

√
n/2-PSGE.

In this paper, we prove that every outerplanar
graph contains a column planar set of size at least n/2.
We then use this result to show that every two outer-
planar graphs on n vertices admit an (n/4)-PSGE.

1.1 Outline

We first give an outline of our approach. Consider
an outerplanar graph G on n vertices. We first define
the chord graph of G, which contains only the “long”
chords of the graph. We show that the chord graph
has an independent set I of size at least n+2

2 . We
show that I is almost column planar in G: it suffices
to remove at most one vertex. This gives a column
planar set of size at least n/2 in G.

For our second result, consider two outerplanar
graphs G1 and G2 on the same set of n vertices. It

suffices to compute a set R with |R| ≥ n/4 that is col-
umn planar in both G1 and G2. The result of Evans et
al. [6] implies then that G1 and G2 admit a |R|-PSGE.
We first compute a column planar set R1 in G1. Next,
we compute a column planar set R in G2[R1] with
|R| ≥ n/4. Since R ⊆ R1, the set R is column planar
in both G1 and G2, and hence the statement follows.

2 Column Planarity in Outerplanar Graphs

In this section we show that every outerplanar graph
has a column planar subset containing at least half of
its vertices. Let G = (V,E) be an outerplanar graph
with n vertices. Assume without loss of generality
that G is maximal outerplanar.

Let v0, v1, . . . , vn−1 be the sequence of vertices of
V along the unique Hamiltonian cycle of G. Con-
sider the following removal procedure: Choose an ar-
bitrary vertex of G of degree two different from v0

and vn−1, remove it from the graph and repeat re-
cursively. Since every maximal outerplanar graph has
two nonadjacent vertices of degree 2, and since remov-
ing such a vertex maintains maximal outerplanarity,
such a vertex always exists. The removal order of the
the vertices V \ {v0, vn−1} is the order in which they
are removed by this procedure. For 0 ≤ i < n, let

V (vi) = {vj ∈ V : vj was removed before vi}.

Let N+(vi) be the closed neighborhood of vi. For
0 < i < n − 1, the left index `i of vi is the smallest
index such that v`i ∈ N+(vi). Similarly, the right
index ri of vi is the largest index with vri ∈ N+(vi).
Naturally, v`i ≤ vi ≤ vri .

Lemma 1 Let vi be a vertex with 0 < i < n − 1
and suppose that there is a vertex vj with i 6= j and
`i < j < ri. Then all neighbors of vj are in V (vi).

Proof. Let ` = `i and r = ri and assume without
loss of generality that i < j. Since i < r− 1, the edge
vivr is a chord of G. See Figure 3. Hence, the removal
of vi and vr splits G into two connected components
H1 and H2 such that vj ∈ H1 and v0 ∈ H2. Note that
vj neighbors no vertex in H2. We claim that all the
vertices in V \ V (vi) lie in H2. If this claim is true,
then vj neighbors no point in V \V (vi), which proves
the statement.

Assume for a contradiction that there is a vertex
v ∈ V \ V (vi) that belongs to H1. Therefore, v lies
after vi in the removal order. Since (i) there is no edge
between a vertex of H1 and a vertex of H2, (ii) H1

contains a vertex after removing vi (namely v), and
(iii) H2 contains a vertex after removing vi (namely
v0), the graph G[V \V (vi)] induced by V \V (vi) is dis-
connected. However, the removal procedure described
above only removes ears of the graph and cannot dis-
connect it—a contradiction that comes from assuming
that v belongs to H1. �
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Figure 3: Division into connected components in the
proof of Lemma 1.

Let EC ⊂ E be the set of all chords of G having end-
points whose removal splits G into components with
at least 2 vertices. That is, the chords adjacent to ears
of G are not part of EC ; see Figure 4. Let C = (V,EC)
be the chord graph of G.

Figure 4: An outerplanar graph G = (V,E). The edge
set EC is drawn solid; the other edges are dotted.

Lemma 2 Let I ⊂ V be an independent set of C
such that there is an edge of the Hamiltonian cycle
of G whose endpoints are both not in I. Then I is
column planar in G.

Proof. Let v0, v1, . . . , vn−1 be the sequence of ver-
tices of V along the unique Hamiltonian cycle of G
such that v0 and vn−1 are not in I. To set the x-
coordinate of the vertices in I, we define the injection
ρ : I → R such that ρ(vi) = i.

For any ρ-compatible injection γ : I → R, we
need to show that there exists a plane straight-line
embedding of G where each vi ∈ I is embedded at
ϕ(vi) = (ρ(vi), γ(vi)).

We first show that ϕ is a plane straight-line em-
bedding of the graph G[I]. Since I is an independent
set of C, we know that if two vertices vi, vj ∈ I are
adjacent in G such that i < j, then either j = i + 1
or j = i + 2. Otherwise, the removal of vi and vj

splits G into two graphs, each with at least two ver-
tices, which implies that the edge vivj belongs to C: a
contradiction. Furthermore, if {vi, vi+2} ∈ E then the
neighbours of vi+1 are exactly vi and vi+2. Therefore,
ϕ is a plane straight-line embedding of G[I].

We now describe an algorithm that places the re-
maining vertices of V to obtain a plane straight-line
embedding of G. The algorithm is incremental and
adds one vertex at the time in the order given by the
removal order.

Let Xi be the set of vertices that have already been
placed, starting with, X0 = I. We never embed two
vertices at the same x-coordinate. We say that the
visibility invariant holds if each vertex of Xi that

neighbors a vertex of V \Xi in G is visible from below,
i.e., the ray shooting downwards from this vertex in-
tersects no edge of the embedding of G[Xi]. We can
see that the visibility invariant holds for X0 as fol-
lows. Suppose that there is a vertex vk that is not
visible from below. Then the ray from vk downward
intersects some edge {vi, vj}. Since vi and vj are in-
dependent in C and since i < k < j, we must have
k = i + 1 and j = i + 2. But then the only neighbors
of vk are vi and vj , and hence vk does not neighbor a
vertex of V \X0, as required.

For any i ≥ 0, let vj be the first vertex in V \ Xi

according to the removal order and let Xi+1 = Xi ∪
{vj}. Let ` = `j and r = rj be the left and right
indices of vj , respectively.

We place vj at coordinates (j, yj), where yj is a
sufficiently small number such that all neighbors of
vj in Xi are visible from vj . This number always ex-
ist by the visibility invariant and since we never em-
bed two vertices with the same x-coordinate. Because
` ≤ j ≤ r by Lemma 1, only vertices strictly between
v` and vr in the x-order can become not visible from
below. However, since V (vi) ⊂ Xi+1, Lemma 1 im-
plies that for every ` < k < r, all neighbors of vk are in
Xi+1. Therefore, the visibility invariant is preserved
for Xi+1.

After this process completes, the only remaining
vertices to embed are v0 and vn−1. Embed v0 at x = 0
and vn−1 at x = n − 1. Move both down sufficiently
far so that the edge {v0, vn−1} does not intersect the
drawing so far and so that v0 and vn−1 can both see
their neighbors from below. This completes the plane
straight-line embedding of G. �

Lemma 3 The graph C has an independent set of
size at least n+2

2 .

Proof. Let G be the weak dual graph of the complete
outerplanar graph G. Let xi be the number of vertices
of degree i in G. Notice that G is a binary tree whose
leaves correspond to ears of G. Since the the degree
two vertex of an ear in G becomes an isolated vertex
in C, we know that C has at least x1 isolated vertices.
Since G is a binary tree, we know that x1 = x3 + 2.

We describe a greedy procedure to construct an in-
dependent set I of C. The algorithm chooses the ver-
tex of smallest degree in the current graph (initially
C), adds it to I, and removes its neighbors from the
graph. Clearly this procedure generates an indepen-
dent set. We claim that that |I| ≥ n+2

2 .
Because C is outerplanar, it is 2-degenerate. There-

fore, whenever we add a vertex to I, it has degree 0,
1, or 2. Let ni be the number of vertices in I that
had degree i at the moment they were chosen. Thus,
|I| = n0 + n1 + n2. Moreover, we know that n0 ≥ x1

as isolated vertices of C will be added to I before any
other vertex of C. Thus, n0 ≥ x1 = x3 + 2.
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Let m be the number of bounded faces of C. Since
m ≤ x3, we conclude that m + 2 ≤ n0.

Since removing vertices of degree zero or one does
not change the number of bounded faces, we remove
a bounded face of the current graph exactly when we
add a vertex of degree 2 to I. Thus, m = n2. There-
fore, n2 ≤ n0 − 2.

Since every time our algorithm chooses a vertex of
degree i we remove its i neighbors from the graph,
and since only vertices of degree 0, 1 or 2 are chosen,
we conclude that n = n0 + 2n1 + 3n2. Because |I| =
n0 + n1 + n2, we infer that

n = n0 + 2n1 + 3n2 ≤ 2(n0 + n1 + n2)− 2 = 2|I| − 2.

Consequently |I| ≥ n+2
2 . �

If the independent set I guaranteed by Lemma 3
does not satisfy the condition of Lemma 2, for in-
stance when n is even and I is the set of vertices with
an even index, then take any vi ∈ V \ I and remove
vi+1 from I. Since the modified I satisfies Lemma 2,
we have

Theorem 4 Every outerplanar graph on n vertices
contains a column planar set of size at least n/2.

3 Application to Partial Simultaneous Geometric
Embedding

Let G1 = (V,E1) and G2 = (V,E2), both on the same
set V of n vertices. Let R1 ⊆ V be column planar in
G1 and let R2 ⊆ V be column planar in G2. Evans et
al. [6] proved that then G1 and G2 admit an |R|-PSGE
where R = R1 ∩R2.

For outerplanar graphs G1 and G2, let C1 and C2 be
their chord graphs, respectively. First use Lemma 3
compute an independent set I1 of size at least n/2+1
in C1. Remove at most one vertex from I1 to obtain
a set R1 of size at least n/2 that is column planar
in G1 by Lemma 2. Next, use Lemma 3 to com-
pute an independent set I2 of size at least n/4 + 1
in the chord graph of G2[R1] (after adding edges to
make G2[R1] maximal outerplanar). Note that I2 is
also independent in C2, and hence we can remove at
most one vertex from I2 to obtain a set R ⊆ R1 ⊆ V
of size at least n/4 that is column planar in G2 us-
ing Lemma 2. Note that R is also column planar in
G1 since R ⊆ R1. Combining this with the afore-
mentioned result of Evans et al. [6] gives our second
result.

Theorem 5 Every two outerplanar graphs on a set
of n vertices admit an (n/4)-PSGE.
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