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Abstract
We study 3-plane drawings, that is, drawings of graphs in which every edge has at most three cross-
ings. We show how the recently developed Density Formula for topological drawings of graphs [9]
can be used to count the crossings in terms of the number n of vertices. As a main result, we show
that every 3-plane drawing has at most 5.5(n ≠ 2) crossings, which is tight. In particular, it follows
that every 3-planar graph on n vertices has crossing number at most 5.5n, which improves upon a
recent bound [3] of 6.6n. To apply the Density Formula, we carefully analyze the interplay between
certain configurations of cells in a 3-plane drawing. As a by-product, we also obtain an alternative
proof for the known statement that every 3-planar graph has at most 5.5(n ≠ 2) edges.

1 Introduction

One of the most basic combinatorial questions one can ask for a class of graphs is: How
many edges can a graph from this class have as a function of the number n of vertices?
Prominent examples include upper bounds of

!n
2
"

for the class of all graphs and n2

4 for
bipartite graphs. These bounds are immediate consequences of the definition of these graph
classes, and they are tight, that is, there exist graphs in the class with exactly this many
edges. But for several other graph classes good upper bounds on the number of edges are
much more challenging to obtain. Notably this holds for classes that relate to the existence of
certain geometric representations. One the most fundamental questions one can ask about a
class of geometrically represented graphs is: What is the minimum number of edge crossings
required in such a representation, as a function of the number n of vertices? We study both
of these fundamental questions in combination, for the class of 3-planar graphs. A graph
is k-planar if it can be drawn in the plane such that every edge has at most k crossings.
The study of k-planar graphs goes back to Ringel [16] and has been a major focus in graph
drawing over the past two decades [8], as a natural generalization of planar graphs (k = 0).

The maximum number of edges in a simple k-planar graph on n vertices is known to be
at most ck(n ≠ 2), where c0 = 3, c1 = 4 [5], c2 = 5 [14, 15], c3 = 5.5 [10, 11], c4 = 6 [1],
and ck Æ 3.81

Ô
k, for general k Ø 5 [1]. The bounds for k Æ 2 are tight and those for k Æ 4

are tight up to an additive constant [1, 4]. The bounds for k Æ 4 also generalize to non-
homotopic drawings of multigraphs [12, 13], that is, where every continuous transformation

� This research was initiated at the Workshop on Graph and Network Visualization (GNV 2024) in
Heiligkreuztal, Germany, June 23–28, 2024.

† funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 520723789
‡ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 541433306

41st European Workshop on Computational Geometry, Liblice, Czech republic, April 9–11, 2025.
This is an extended abstract of a presentation given at EuroCG’25. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



56:2 Crossing Number of 3-Plane Drawings

that transforms one copy of an edge to another passes over a vertex. Interestingly, the upper
bound for 3-planar graphs is tight in this more general setting only [4, 6].

The crossing number of a drawing � is the number of edge crossings in �. The crossing
number cr(G) of a graph G is the minimum crossing number over all drawings of G. By
definition every k-planar graph G admits a k-plane drawing and thus

cr(G) Æ km

2 , (S)

where m denotes the number of edges in G. For a k-planar graph, this simple inequality
connects upper bounds on the number of edges with lower bounds on the crossing number.
Both of these come together in the well-known Crossing Lemma [2, Chapter 45], as the best
constants in the Crossing Lemma are obtained by analyzing k-plane drawings [1, 6, 10, 11].
Conversely, combining the lower bound on cr(G) from the Crossing Lemma with an upper
bound on cr(G) we obtain an upper bound on the number of edges in G. While (S) would
work here, it is probably not an ideal choice because the graphs for which (S) is tight might
be very di�erent from those graphs that have a maximum number of edges, for any fixed n.
For instance, for a 1-planar graph G we have cr(G) Æ n ≠ 2 [17, Proposition 4.4], which
beats the bound we get by plugging m Æ 4n ≠ 8 into (S) by a factor of two. Can we obtain
similar improvements by bounding cr(G) in terms of n, rather than m, for k Ø 2?

Indeed, very recently it has been shown that cr(G) Æ 3.3n if G is 2-planar and cr(G) Æ
6.6n if G is 3-planar [3]. There is some indication that the bound for 2-planar graphs
could be tight up to an additive constant, as it is achieved by the standard drawings of
optimal 2-planar graphs (Figure 1). But the crossing number of these graphs is not known.

Figure 1 Construction by Pach and Tóth [15, Figure 3]. Left: A planar drawing with pentagonal
faces. Right: To each pentagonal face all diagonals are added.

In contrast, there exists a family of simple 3-planar graphs with 5.5n ≠ 15 edges whose
standard drawings have 5.5n ≠ 21 crossings (Figure 2). Thus, there is a gap of 1.1n between
the lower and the upper bound for the crossing number of 3-plane drawings.

Figure 2 Construction from [11, Figure 8]. Left: A cylinder with two layers, each consisting of
three hexagonal faces. Right: To each face of a layer all but one diagonal is added. To the top and
bottom face six diagonals are added. Missing diagonals are represented by dashed lines.
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Results. We close the gap and present an upper bound on the crossing number of 3-plane
drawings that is tight up to an additive constant. Using the same approach we also obtain
an alternative proof to show that a 3-planar n-vertex graph has at most 5.5(n ≠ 2) edges.

I Theorem 1. Every non-homotopic 3-plane drawing of a graph on n vertices, n Ø 3,
contains at most 5.5(n ≠ 2) edges and at most 5.5(n ≠ 2) crossings.

Our proof relies on the recently developed Density Formula (cf. Theorem 2 below) for
topological drawings of graphs [9]. It relates the number of vertices, edges, and cells of
various sizes in a drawing, in a way similar to the Euler Formula in the case of plane graphs.
Previously, the Density Formula has been used to derive upper bounds on the number of
edges in k-plane drawings, for k Æ 2 [9]. In order to apply it to 3-plane drawings, to bound
the number of crossings, and to obtain tight bounds, we study cells not only in isolation but
also as part of what we call configurations, which consist of several connected cells. We then
develop a number of new constraints that relate the number of cells and/or configurations
of a certain type in any 3-plane drawing. The combination of all these constraints with the
Density Formula yields a linear program that we can solve in two di�erent ways—maximizing
either the number of edges or the number of crossings—to prove Theorem 1.

Using Theorem 1 we can derive better upper bounds on the number of edges in k-planar
graphs without short cycles. Plugging our bound of at most 5.5n crossings into the proofs
from [3] we obtain that

C3-free 3-planar graphs on n vertices have at most 3


891/8n < 4.812n edges (down
from ¥ 5.113n [3, Theorem 18]),
C4-free 3-planar graphs on n vertices have at most 3


1Õ254Õ825/12Õ544n < 4.643n edges

(down from ¥ 4.933n [3, Theorem 20]), and
3-planar graphs of girth 5 on n vertices have at most 3


122, 793/1600n < 4.25n edges

(down from ¥ 4.516n [3, Theorem 21]).

2 Preliminaries

We consider drawings of graphs on the sphere with vertices as points, edges as Jordan arcs,
and the usual assumption that any two edges share only finitely many points, each being
a common endpoint or a proper crossing, and that no three edges cross in the same point.
We also assume that no edge crosses itself and that no two adjacent edges cross. As is
customary, we do not distinguish between the points and curves in � and the vertices and
edges of G they represent, respectively. The graphs we consider may contain parallel edges,
but no loops. In order to avoid an arbitrary number of parallel edges within a small corridor,
a drawing � is called non-homotopic if every region that is bounded by exactly two parts of
edges, called a lens, contains a crossing or a vertex in its interior; see Figure 3.

Figure 3 Left: A lens (blue) with two crossings in its interior. Right: An empty lens (blue).

Let � be a drawing of a graph G = (V, E). If every edge is crossed at most three times,
we say that � is 3-plane. We denote the set of crossings by X. For i œ {0, 1, 2, 3}, let Ei ™ E
be the set of all edges with exactly i crossings, and let E◊ = E1 fi E2 fi E3.

EuroCG’25



56:4 Crossing Number of 3-Plane Drawings

44 555

C3

3

4 5 5

C4 C5

Figure 4 Taken from [9, Figure 2]. All types of cells c of size ÎcÎ Æ 5 in a non-homotopic
connected drawing on at least three vertices. The bottom row shows the degenerate cells.

Edge-Segments and Cells. An edge with i crossings is split into i + 1 parts, called edge-
segments. An edge-segment is inner if both its endpoints are crossings, and outer otherwise.
The planarization of � is the graph obtained by replacing every crossing x with a vertex
of degree 4 that is incident to the four edge-segments of x. We say that the drawing �
is connected, if its planarization is a connected graph, and shall henceforth only consider
connected drawings. Removing all edges and vertices of � splits the sphere into several
components, called cells. We denote the set of all cells by C. Since � is connected, the
boundary ˆc of a cell c corresponds to a cyclic sequence alternating between edge-segments
and elements in V fiX (i.e., vertices and crossings). If a crossing or a vertex appears multiple
times on the boundary of the same cell c, then c is degenerate. The size of a cell c, denoted
by ÎcÎ, is the number of vertex incidences plus the number of edge-segment incidences of c.
Note that incidences with crossings are not taken into account, see Figure 4 for examples.
For a œ N, we denote by Ca = {c œ C : ÎcÎ = a} the set of all cells of size a.

I Theorem 2 (Density Formula [9]). If � is a connected drawing with at least one edge, and
t is a real number, then

|E| = t(|V | ≠ 2) ≠
ÿ

cœC

3
t ≠ 1

4 ÎcÎ ≠ t

4
≠ |X|

To apply the Density Formula, we count the cells of di�erent sizes. We distinguish several
types of cells based on their size and boundary and denote these by small pictograms, such
as 4 or 5 . We call a cell large if it has size at least 6 and write for this type of cells.
By abuse of notation, we denote the number of cells of a certain type by their pictogram.

Configurations are connected labeled embedded subgraphs of the planarization of a draw-
ing �. We denote configuration types by pictograms such as and (see Figure 5).

Figure 5 Left: A -configuration (light blue) and a -configuration (dark blue). Right:
A 5 - -trail (dark blue) and its bounding edges (thick).

A configuration is an A-B-trail if its dual is a path P whose endpoints are cells of
type A ”= 4 and B ”= 4 , respectively, whose edges correspond to inner segments, and
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whose interior vertices are 4 -cells whose two edge-segments on P are opposite along their
boundary, see Figure 5. We denote by (A ¡ B) the number of A-B-trails in �.

I Observation 3. Every inner edge-segment of a drawing is interior to exactly one trail.

A drawing is filled if any two vertices u ”= v on the boundary of a cell c are joined by an
uncrossed edge along ˆc. A 3-plane, non-homotopic, connected, filled drawing of a graph on
at least three vertices is 3-saturated.

3 Crossing-Number and Edge-Density via Density Formula

To obtain our upper bounds we prove a number of (in)equalities, each relating the number of
certain cells, configurations, edges and crossings. The Density Formula is one such equality.
In total, we obtain a system of linear inequalities where each quantity (such as |E|, (|V |≠2),
|X|, |C2|, |E1|, 3 , , etc.) can be considered as a variable. Setting the “variable” (|V | ≠ 2)
to 1, we can maximize the value of |X| by solving the obtained linear program (LP). The
resulting maximum represents the number of crossings per vertex; more precisely, per (|V |≠
2). We want to prove that the number of crossings in any 3-plane drawing on n vertices is at
most 5.5(n≠2). It thus su�ces to show that the maximum value of |X| in the LP is 5.5 if we
set the variable representing the number of vertices to 1. Our LP comprises 21 constraints,
which are summarized in Figure 6. The validity of two constraints (namely (3.C) and
(5.A)) is proven in Section 4. Constraints that are only proven in the full version are
marked with (ı). Summing up all constraints with the coe�cients in Figure 6, we obtain
|X| Æ 5.5(|V | ≠ 2).

If we maximize |E| instead, we obtain |E| Æ 5.5(|V |≠2) from the same constraints (with
di�erent coe�cients; also in Figure 6). Hence, by verifying that all 21 constraints hold for
every connected, non-homotopic 3-plane drawing on n Ø 3 vertices, we obtain our result.

I Theorem 1. Every non-homotopic 3-plane drawing of a graph on n vertices, n Ø 3,
contains at most 5.5(n ≠ 2) edges and at most 5.5(n ≠ 2) crossings.

4 Relating Crossing, Edge, Cell, Trail, and Configuration Counts

In this section, we present a number of (in)equalities, each relating the number of certain
cells, configurations, edges, or crossings. Due to space constraints we discuss only two
of these inequalities, the rest can be found in the full version. Our proof relies on the
Density Formula for t = 5. For this value of t, -cells contribute negatively in the formula.
Intuitively, large cells account for many crossings: If many trails end in large cells, we obtain
a lower bound on the sum

q
aØ6 a|Ca| of sizes of large cells. This yields a lower bound on

the sum
q

cœCØ6
(ÎcÎ ≠ 5) in the Density Formula, where CØ6 denotes the set of large cells.

If there are few such trails, we obtain configurations that contain many crossed edges.

I Lemma 4. If � is a 3-saturated drawing, then
ÿ

aØ6
a|Ca| Ø ( 4 ¡ ) +

!
5 ¡

"
+

!
3 ¡

"
+

!
5 ¡

"
+ 5 6 . (5.A)

Proof. As we want to obtain a lower bound on the sum
q

aØ6 a|Ca|, it su�ces to count
the number of vertex and edge-segment incidences of large cells. Each trail that ends in a
large cell enters this cell via an inner edge-segment. As no two trails share such an inner
edge-segment, we obtain one edge-segment incidence for each such trail.
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(In)equality |E| |X|

(ı)
!

4 ¡ 5
"

+
!

4 ¡ 5

"
+

!
4 ¡

"
≠ 4 = 0 ≠5

16
≠7
16

(ı)
!

4 ¡ 5
"

+ 2
!

5 ¡ 5
"

+
!

5 ¡ 3
"

+
!

5 ¡ 5

"
+

!
5 ¡

"
≠ 2 5 = 0 5

16
5
16

(ı)
!

3 ¡ 5
"

+
!

3 ¡ 5

"
+

!
3 ¡

"
≠ 3 3 = 0 ≠11

24
≠11
24

(ı)
!

3 ¡ 5

"
+

!
5 ¡ 4

"
+

!
5 ¡ 5

"
+ 2

!
5 ¡ 5

"
+

!
5 ¡

"
≠ 5 5 = 0 1

8
≠3
8

(ı)
!

3 ¡ 5

"
≠ Æ 0 7

48
1
48

(ı)
!

5 ¡ 5
"

≠ Æ 0 0 1
16

(3.C)
!

3 ¡ 5
"

≠ Æ 0 3
16

7
48

(ı) 4 ≠ ≠ Æ 0 3
16

5
16

(ı) 2
!

4 ¡ 5
"

≠ |E1| ≠ 2 Æ 0 0 1
16

(ı) 2
!

5 ¡ 5

"
+

!
4 ¡ 5

"
+

!
3 ¡ 5

"
≠ 4 5 ≠ Æ 0 3

16
13
16

(ı) ≠ Æ 0 3
16

5
16

(5.A)
!

4 ¡
"

+
!

5 ¡
"

+
!

3 ¡
"

+
!

5 ¡
"

+ 5 6 ≠
ÿ

aØ6

a|Ca| Æ 0 11
60

11
60

(ı)
ÿ

aØ6

a|Ca| + 6|E| + 6|X| ≠ 12 3 ≠ 6 4 ≠ 6 4 Æ 30(|V | ≠ 2) 11
60

11
60

(ı) 2 4 + 2 5 + 2 5 + 2 6 ≠ 4|E◊| Æ 0 13
80

3
80

(ı)
!

4 ¡
"

+
!

5 ¡
"

+
!

3 ¡
"

+
!

5 ¡
"

+ 3 3 + 4 + 4 4 + 2 5 + 5 5 ≠ 2|E2| ≠ 4|E3| Æ 0 11
40

11
40

(ı) |E1| + |E2| + |E3| ≠ |E◊| = 0 ≠11
20

19
20

(ı) |E1| + 2|E2| + 3|E3| ≠ 2|X| = 0 11
20

1
20

(ı) + 2 ≠ 2|E2| Æ 0 0 1
4

(ı) |E◊| + |E0| ≠ |E| = 0 1
10

11
10

(ı) 5 + 6 ≠ 2|E0| Æ 0 1
20

11
20

(ı) + + + + 2 ≠ 2 5 Æ 0 3
16

5
16

Figure 6 Certificates for the upper bound on the number of edges and crossings in 3-saturated
drawings in terms of the number of vertices. Each row corresponds to one inequality. In order to
obtain the upper bound on the number of edges, we multiply each inequality with the third entry in
the corresponding row and sum up all the inequalities. To obtain the upper bound on the number
of crossings we proceed likewise using the fourth entry of each row as a coe�cient.
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u

c

u

c
vv

Figure 7 A 3 - 5 -trail (light blue). It forms a -configuration (dark) with an adjacent cell.

A 6 -cell is in particular large. As it is incident to only one inner-segment, it is the
endpoint of only one trail. We have not counted the remaining three edge-segment incidences
and the two vertex incidences when considering trails. Therefore, each 6 -cell yields at least
five more edge-segment and vertex incidences. J

I Lemma 5. If � is a 3-saturated drawing, then
!

3 ¡ 5

"
Æ . (3.C)

Proof. Consider a 3 - 5 -trail. As every edge is crossed at most three times, the trail
contains no 4 -cell and we are in the situation represented in Figure 7. The vertices u and v
lie on the boundary of a cell c. As the drawing is 3-saturated, the edge uv is contained in G
and the cell c is a 5 -cell. The trail together with c forms a -configuration. As every
3 - 5 -trail is only part of one such configuration, the statement follows. J

5 Discussion

The k-planar crossing number crk(G) is similar to the crossing number, except that the
minimum is taken over all k-plane drawings of G. Clearly, cr(G) Æ crk(G) for all k and G.
But there are k-planar n-vertex graphs G with cr(G) œ O(k) and crk(G) œ �(kn) [7,
Theorem 2]. By Theorem 1, every 3-plane drawing of an n-vertex graph G has |X| Æ
5.5(n ≠ 2) crossings, and hence cr(G) Æ cr3(G) Æ 5.5(n ≠ 2). Although Theorem 1 is tight,
we could have cr(G), cr3(G) < 5.5(n ≠ 2), and a similar question arises for 2-planar graphs.

I Question 6.
Are there 3-planar n-vertex graphs G with cr3(G) = 5.5(n ≠ 2) or cr(G) = 5.5(n ≠ 2)?
Are there 2-planar n-vertex graphs G with cr2(G) = 3.3(n ≠ 2) or cr(G) = 3.3(n ≠ 2)?
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