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Abstract

How to cover a set of planar polygons with two or three congruent
axis-parallel squares of minimal size? I show that this natural gener-
alization of the bounding-box can be computed in time linear in the
number of vertices.

1 Introduction

Consider the following problem for illustration. You are given a map of
some country, state or city and want to distribute it among the pages of
an atlas such that the scale is maximized. Assuming the map consists of a
polygonal region and the p pages of the atlas have rectangular shape and
are of the same size and given orientation, the problem can be rephrased
more precisely as follows.

Figure 1: Example Covering for p = 3.
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Given a set P of pairwise non-intersecting polygonal regions and a num-
ber p € N, find p axis-parallel congruent squares of minimal size covering P.
Covering means here that any point from any polygon in P is contained in
at least one of the p squares. Note that replacing rectangles of given aspect
ratio by squares is just a matter of an appropriate scaling of one coordinate
axis. The resulting set of p squares will be called (a) minimal (rectilinear)
p-covering of P and can be seen as a natural generalization of the bounding
box of P.

If the input consists of points instead of polygons, the problem is known
as rectilinear p-center problem [4, 13]. So, another way to look at polygon
covering is as a generalization of the rectilinear p-center problem to infinite
point sets. Since the latter problem cannot be approximated within a factor
of less than two unless P = NP [10, 9], one cannot expect to do better for
the more general problem of covering polygons.

Despite the apparent intractability, efficient algorithms have been devel-
oped for small values of p. The rectilinear 2— and 3-center problem can be
solved in linear time [4, 8, 13], while for p = 4 already there is a lower bound
of Q(n -logn) and algorithms of matching complexity for p < 5 [3, 11, 12].
The hope is that also the polygon covering problem can be solved efficiently
for a small number of covering squares.

2 Results

While in principle techniques similar to the ones used for covering points can
also be applied to cover polygons, there is one important difference between
both problems that has to be addressed: In the point problem, the size of
an optimal covering is always determined by the L.-distance of two points.
Hence, by using sorted matrix search [5, 6, 7] the complexity of the decision
problem, whether a covering smaller than a certain value exists, is within a
log factor of the optimization problem for any number of covering squares.
But this argument does not hold for the case of polygons!

Nevertheless, for p = 2, polygon, or more generally, line segment cover-
ing can be reduced to point covering. It is easy to show that in this case,
covering a line segment is equivalent to cover both its endpoints and a an-
other reference point that is determined by the segment and the bounding
box of the whole input set only. From the known results on point covering
[4], we can conclude the following.

Theorem 1 A minimal rectilinear 2-covering of a given set of line segments
in the plane can be computed in linear time.

For p < 3 it is no restriction to focus on line segments only: it is sufficient
to cover the boundary edges of the polygons, as the union of three axis-
parallel rectangles in 2D has always genus zero.



Corollary 2 A minimal rectilinear 2-covering of a given set of polygonal
regions in the plane can be computed in time linear in the number of vertices.

For p > 3 however, there does not seem to be an easy way to reduce
line segment covering to point covering. Hence, I took a different approach
which lead to the development of another matrix search technique. This
technique can be applied to compute 3-coverings of points, line segments
and/or polygons based on a purely combinatorial description.

Theorem 3 A minimal rectilinear 3-covering of a given set of line segments
in the plane can be computed in linear time.

Corollary 4 A minimal rectilinear 3-covering of a given set of polygonal
planar regions with n vertices in total can be computed in O (n) time.

This result might be a bit surprising, considering the fact that the planar
arrangement of a set of line segments has quadratic complexity in general
and even a single cell of it can have super-linear complexity [1].

While the techniques in principle generalize to higher dimensions, the
combinatorics of the covering boxes changes, even if the input consists of
points only. Already for p = 3 in dimension three, it is e.g. no longer true
that one of the covering boxes has to be placed at a corner of the overall
bounding box; a minimal covering can also consist of boxes placed at the
interior of three opposite edges of the bounding box, as shown in Figure 2.

Figure 2: Three-Covering with no box at a corner.

Indeed, these configurations turn out to be the difficult ones, giving raise
to the following lower bound, matching an algorithm of Assa and Katz [2].

Theorem 5 Computing a minimal rectilinear three-covering of n points in
R? requires Q(n -logn) operations in the algebraic computation tree model.

References

[1] AGARWAL, P. K., AND SHARIR, M. Davenport-Schinzel Sequences and
Their Geometric Applications. Cambridge University Press, New York,
1995.



2]

[10]

[11]

[12]

[13]

AssA, E., AND KATz, M. J. 3-piercing of d-dimensional boxes and
homothetic triangles. Internat. J. Comput. Geom. Appl. 8 (1999), 249
260.

CHAN, T. M. Geometric applications of a randomized optimization
technique. Discrete Comput. Geom. 22, 4 (1999), 547-567.

DREZNER, Z. On the rectangular p-center problem. Naval Res. Logist.
Q. 34 (1987), 229-234.

FREDERICKSON, G. N., AND JOHNSON, D. B. The complexity of
selection and ranking in X + Y and matrices with sorted rows and
columns. J. Comput. Syst. Sci. 24 (1982), 197-208.

FREDERICKSON, G. N., AND JOHNSON, D. B. Finding kth paths
and p-centers by generating and searching good data structures. J.
Algorithms 4 (1983), 61-80.

FREDERICKSON, G. N., AND JOHNSON, D. B. Generalized selection
and ranking: sorted matrices. SIAM J. Comput. 13 (1984), 14-30.

HOFFMANN, M. A simple linear algorithm for computing rectangu-
lar three-centers. In Proc. 11th Canad. Conf. Comput. Geom. (1999),
pp. 72-75.

Ko, M. T., LEg, R. C. T., AND CHANG, J. S. An optimal approxi-

mation algorithm for the rectilinear m-center problem. Algorithmica 5
(1990), 341-352.

MEGIDDO, N., AND SUPOWIT, K. J. On the complexity of some com-
mon geometric location problems. SIAM J. Comput. 13, 1 (1984),
182-196.

NussBAUM, D. Rectilinear p-piercing problems. In Proceedings of the
Annual International Symposium on Symbolic and Algebraic Computa-
tion (1997), pp. 316-323.

SEGAL, M. On piercing of axis-parallel rectangles and rings. In Proc.
5th Annu. European Sympos. Algorithms (1997), vol. 1284 of Lecture
Notes Comput. Sci., Springer-Verlag, pp. 430-442.

SHARIR, M., AND WELZL, E. Rectilinear and polygonal p-piercing and
p-center problems. In Proc. 12th Annu. ACM Sympos. Comput. Geom.
(1996), pp. 122-132.



