Session C6.2

12th Canadian Conference on Computational Geometry 205

Motion Planning Amidst Movable Square Blocks:
Push-* is NP-hard

Michael Hoffmann
Institute for Theoretical Computer Science
ETH Zurich
CH-8092 Zurich, Switzerland
hoffmann@inf.ethz.ch

June 26, 2000

Abstract

We show that a particular pushing-block puzzle is NP-
hard, settling an open problem posed by O’Rourke et al
[2, 4]. The puzzle consists of unit square blocks on an
integer lattice. The robot may move horizontally and
vertically in order to reach its goal position. Thereby
it can push an arbitrary number of blocks in sequence
as long as there is at least one free square ahead. The
proof is by reduction from 3-SAT.

1 Problem Definition

For m, n € N consider a rectangular n x m-grid where
each position (z,y) € {1,..., m} x {1, ..., n} is ei-
ther free (F) or blocked (B) and a robot moving on
this grid. The robot can move horizontally and ver-
tically and thereby push an arbitrary number of blocks
in front of it; see Figure 1 where the blocked positions
are shaded and the robot is shown as circle.

Figure 1: Pushing Blocks.

More formally, the robot may move from (z, y) to
(«', y") under the conditions indicated in Table 1.

If (', y') = B, the robot pushes the parts blocking
its way, i.e. the grid is changed such that (z', y') + F
and (&, v) < B, where (£, v) is the free position ahead
existing by the condition in Table 1.

The problem is to decide whether there exists a se-
quence of moves starting at (1, 1) ending in (m, n).
(Assume, (1, 1) = F.) We will show below that this

(', y") condition

(x—1,y) | 3z :1<z<xz—1A (2,y)=F
(x+1l,y) | dz:rz+1<z<m A (z,y)=F
(z,y—1) | 3z :1<z<y—1A (z,2)=F
(z,y+1) | 3z y+1<z<m A (z,2)=F

Table 1: Robot Movement.

problem — we call it Push-* — is NP-hard by giving a
reduction from 3-SAT.

2 The Reduction

In the 3-SAT problem, we are given a boolean formula
in conjunctive normal form where each clause consists
of exactly three distinct literals. Let X := {x1, ..., 2}
be the set of variables and C4, ..., C; the clauses. For
i€{l,..., k} define

ni == [{r € {1, ..., £} | w; occurs in C, }|

to be the number of occurrences of z; in the formula.
Analogously, let 77; be the number of occurrences of Z;.
Without loss of generality, we assume n; > 7; for all
ie{l, ..., k}.

We will construct an instance of the described
pushing-block puzzle such that the puzzle is solvable
if and only if there is a satisfying assignment for the
given formula. Refer to Figure 7 at the end of the pa-
per for a complete example.

The construction consists of four major blocks, as
depicted in Figure 2. All positions outside these blocks
are blocked initially.

206 CCCG 2000, Fredericton, New Brunswick

Session C6.2

Right-Bridge
Up-Bridge
Large
Gap Clause Block
Variable Connection
Block Block

Figure 2: Construction: A Schematic View.

Variable Block The start position is here and the
assignment is implicitly chosen when passing this
block. Described in section 3.

Clause Block The goal position is here. It can be
reached if and only if the assignment satisfies all
clauses. Described in section 5.

Connection Block connects (logically) variable and
clause block. Described below.

Bridge Blocks connect (in terms of movement) vari-
able and clause block. Described in section 4.

For simplicity of exposition, we use the rightmost
position in the clause block instead of the top right
corner of the whole grid as goal position. It will be clear
how to extend the scheme to satisfy this condition by
adding a sufficiently large empty block above-right our
construction.

There will be a row associated to each literal from
X U X, where X := {77, ..., Tz}, and three columns
associated to each clause. In the connection block —
that will not actually be passed by the robot — there
is one free position in any clause column, all other po-
sitions are blocked. These free positions correspond to
the literals the clause consists of and are, hence, in the
rows associated to these literals. See Figure 3 for an ex-
ample. Since most positions on our grid will be blocked,
we rather mark free positions block-wise as polygons,
so e.g. in Figure 3 there are three free positions.

Observation 1 In the connection block there are n;

free positions in the row associated to x; and T; free
positions in the row associated to T; for 1 <i < k.

3 Variable Gadgets

Figure 4 shows the construction of a variable gadget.
For each variable z; there is one such gadget in the vari-

Figure 3: Connections for C; = T7 V 22 V 73.

able block, representing both two corresponding liter-
als. The bottom two rows are associated to z; and 7,
respectively, as described in the previous section. The
gadgets are placed diagonally on top of each other, from
the bottom left corner up to the top right corner of the
variable block, such that the goal position of the pre-
vious is directly below the start position of the next
gadget. The gadgets are to be passed one after another
and accordingly, the start and goal positions (denoted
by a small circle and cross, respectively) of each gadget
also are in the mentioned corners. The gadget’s size
depends on n;: the height is 4 and the width is 2n; + 2.

ZT; -—
T; T

Figure 4: Variable Gadget.

Lemma 1

1. The variable gadget for x; can be passed, if and
only if at least one of the following two statements
18 true.

e the robot pushes n; times right in row x; or

o the robot pushes n; times right in row T;.

2. The positions outside the gadget cannot be
changed, except for the n; + m; free positions in
the conmection block corresponding to x; and ;.

3. The only way to leave the gadget (its bounding box)
1s through its start or goal position.

Proof. The if-part of 1 is obvious. For the only-if-
part note that initially, the only pushing positions are in
the z; and (possibly) Z; row where the robot can push
right. This does not change, until the column of * is
reached. Moreover, there are no free positions vertically
outside the gadget, except for (possibly) below the start
and above the goal position. Hence, 1 is true for the
first gadget. For the following gadgets, we can argue

Session C6.2

12th Canadian Conference on Computational Geometry 207

analogously, as soon as we have proved 2. There are no
free positions horizontally outside the gadget, except
for the n; + m; free positions in the connection block
to the right. This number is exactly the difference in
coordinates between the rightmost free position in the
free starting component and the right border of the
gadget. Thus, the robot cannot pass the gadget’s left
or right border. The only way left to change positions
outside the gadget is to push out some blocks from
the start or goal position which is easily seen to be
impossible. Hence, 2 and 3 follow. (]

4 Bridge Gadgets

There is only one such gadget, but it consists of three
components placed within large horizontal distance.
Therefore it has been divided into two blocks in the
schematic view of Figure 2. Figure 5 shows the gadget
as a whole where the left part corresponds to the Up-
Bridge and the two parts on the right form the Right-
Bridge.

Let h := 3¢ — 1 denote the height of the clause block
and z := 10/ — 1 be the number of free positions in the
clause block including the h + 1 free positions in the
lower Right-Bridge component. (To check the numbers,
refer to section 5. Recall that ¢ denotes the number of
clauses.)

Clause
Block

Figure 5: Bridge Gadget.

Lemma 2 After passing the bridge gadget, there is no
free position in the rows and columns of the clause block
outside the clause block, except for

e those left free in the connection block and

e the goal position of the bridge block.

Proof. There is a straightforward way for the robot to
pass the bridge gadget: on the free positions up to o,
then pushing down to %, right to 7 and finally down to
the goal position. We will show in the following that
this is basically the only way to pass the gadget.

There are two sets of rows where the robot can go
(and push) right in order to cross the gap: the row of
* — 7 and the rows of the clause block. But in between
these two sets, there is no vertical connection. Since all
the positions in the gap area are blocked initially, there
is no way to move to any of them without pushing or
having been there before.

By the choice of x, there is no way to reach the goal
column without using the free positions in the upper
right component. Moreover, by the above reasoning, a
combination of using some of the free positions from
the row of x and some of those in the clause block to
push right will not help. Thus, the row x — v/ is the
only way to cross the gap.

But even in that row, we have to get one more free
position between x and 7 in order to reach the right
components. However, the region R, above-right the
blocked part of that row between the bridge compo-
nents is completely blocked. Hence, there is no way to
push any of the blocks out there, except for the first
one, at position x. The robot must not push this block
right, since then it would be impossible to remove the
block from the row for the reason stated above. Hence,
there is no way for the robot to enter the region Ry to
the right of the left component and above the clause
block, before the block at x has been removed from its
TOw.

There is no way to push away any of the shaded
blocks below * and pushing them upwards does not
help, since x would still be blocked. The only way to
clear * is to push the shaded blocks down, completely
blocking this column in the rows to the right of the
clause block. Obviously, the robot has to go down h+1
times from 37, blocking the positions to the right of
the clause block in this column as well, except for the
goal position. Also the part above the clause block is
blocked from going right to 7. The only possibility that
is left to have free positions in some rows to the left of
the clause block is, if some blocks have been pushed
into the clause block from the column of *. But then
at least one position in the column below 57 would be
blocked and it would be impossible to reach the goal
position. |

208 CCCG 2000, Fredericton, New Brunswick

Session C6.2

5 Clause Gadgets

There is one such gadget, depicted in Figure 6, for every
clause. They are aligned diagonally, from the top left
down to the bottom right corner of the clause block,
such that the goal position of the previous is directly
above the start position of the next gadget. In the last
gadget, we save one free position by moving the goal
position one row up. Thus, the total number of free
positions in the clause block is 7¢— 1 and its height (in
terms of rows) is 3¢ — 1.

Figure 6: Clause Gadget.

Lemma 3 The robot can pass a clause gadget, if and
only if it pushes down in one of the first three columns.

Proof. The if part is obvious. For the only if, consider
the first (leftmost) clause gadget. Due to Lemma 2,
there are no free positions above and to the left, except
for the position immediately to the left of the start po-
sition. Clearly, there are no free positions to the right
either. Hence, the claim is true for the first gadget. For
the following gadgets we can argue analogously, noting
that the above observation is true here as well: even
if all of the first three columns have a free position in
the connection block (there is at most one free posi-
tion per column by construction, see section 2) and the
robot uses all of them to push down, the bottommost
position it gets to is the one diagonally left below the
goal position and hence, immediately to the left of the
starting position of the next gadget (if there is any).O

6 Putting Things Together

In the connection block, for any i € {1, ..., k} either
the free positions in the row associated to x; or those
in the row associated to T; get blocked when passing
the variable block, as stated in Lemma 1. On the other
hand, by Lemma 3 the gadget of a clause can be passed
only if for one of the three literals the clause consists of
there is a free position in the connection block. Thus,
if the robot found its way through the puzzle, we can
construct a satisfying assignment for the 3-SAT formula
by setting those literals to false that had no free posi-
tions in the connection block after the robot passed the
variable block. It might happen that for some i this is
true for both x; and Z;, but then it does not matter
how we set z; and we can choose arbitrarily.

On the other hand, if we have a satisfying assign-
ment, by Lemma 1 the robot can pass the variable block
by pushing only those rows associated to literals that
are assigned false. Then the robot will find its way
to the goal position as described in Lemma 2 and 3.
Together, we have proved the following theorem.

Theorem 4 The constructed puzzle is solvable, if and
only if the 3-SAT formula has a satisfying assignment.

From here, NP-hardness of the puzzle follows imme-
diately, noting that its size is polynomial, in fact at
most quadratic, in the number of variables and clauses
of the 3-SAT formula.

7 Conclusions

We have shown NP-hardness of a particular pushing-
block puzzle, a question that has been stated several
times [2, 4]. It remains open, whether the problem is
in NP, since it is not clear, whether there always exists a
solution path of polynomial length. The problem might
even be PSPACE complete, like the variant where some
of the blocks can be tied to the board [1].

If the constructed puzzle is solvable, it is possible to
find a solution path that is z-monotone except for one
backward step and consists of two y-monotone parts
(up-down). Obviously, the problem is in NP and thus
NP-complete, if the robot is restricted to such paths
only. On the other hand, the problem is known to be
in P, if the robot is restricted to monotonic paths only
[4]. So the border is somewhere in between these two.

Also note that if the constructed puzzle is solvable, it
is possible to find a push-push solution path, i.e. when-
ever the robot pushes, the pushed blocks slide the max-
imal extent as without friction until there is no free
position ahead anymore. Thus, our reduction extends
the results of [3, 5] to more than one pushing blocks, a
problem that one might call Push-Push-*.

References

[1] BREMNER, D., O’'ROURKE, J., AND SHERMER, T.
Motion planning amidst movable square blocks is
PSPACE complete. Draft, 1994.

[2] DEMAINE, E. D., AND O’ROURKE, J. Open prob-
lems from CCCG’99. Technical Report 066, Dept.
Comput. Sci., Smith College, Northampton, MA,
Mar. 2000.

[3] DEMAINE, E. D., AND O’ROURKE, J. PushPush is
NP-hard in 2D. Technical Report 065, Dept. Com-
put. Sci., Smith College, Northampton, MA, Jan.
2000.

Session C6.2 12th Canadian Conference on Computational Geometry 209

[4] DHAGAT, A., AND O’ROURKE, J. Motion planning
amidst movable square blocks. In Proc. 4th Canad.
Conf. Comput. Geom. (1992), pp. 188-191.

[5] O’'ROURKE, J., AND GrOUP, T. S. P. S. Push-
Push is NP-hard in 3D. Technical Report 064, Dept.
Comput. Sci., Smith College, Northampton, MA,
Nov. 1999.

210

CCCG 2000, Fredericton, New Brunswick

Session C6.2

il
,, i e
: [] :
(L] _—
i H n
f O]
g
|| | ‘

T:cr1vn 7 A (MNAaralatsa TwoarmnlAa

(Xx1vx2vx3) A (X2vXx3vXxl) A (x3vxlvx2)

