
Pointed and Colored Binary Encompassing Trees

Michael Hoffmann

Institute for Theoretical Computer Science

ETH Zürich

CH-8092, Switzerland

hoffmann@inf.ethz.ch

Csaba D. Tóth

Department of Mathematics

Massachusetts Institute of Technology

Cambridge, MA 02139, U.S.A.

toth@math.mit.edu

ABSTRACT

For n disjoint line segments in the plane we construct in
optimal O(n log n) time an encompassing tree of maximum
degree three such that at every vertex all incident edges lie in
a halfplane defined by the incident input segment. In partic-
ular, this implies that each vertex is pointed. Furthermore,
we show that any set of colored disjoint line segments (for
each segment one endpoint is colored red and the other end-
point is colored blue) has a color conforming encompassing
tree of maximum degree three.

Categories and Subject Descriptors: F.2.2 [Analy-
sis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems—computations on discrete struc-
tures, geometrical problems and computations; G.2.2 [Dis-
crete Mathematics]: Graph Theory—Trees

General Terms: Algorithms, Theory

Keywords: line segments, spanning tree, bounded degree,
pseudo-triangulation

1 Introduction

Spanning trees defined on disjoint objects in the plane are
fundamental structures in computational geometry. Com-
plex planar objects are often modeled by their boundary
polygons which, in turn, can be represented as a planar
straight line graph (Pslg). An encompassing graph for a
Pslg G is a connected Pslg on the same vertex set that
contains all edges of G. Constrained Delaunay triangula-
tions [18] are well-known examples of encompassing graphs.
Particularly well-studied are encompassing graphs for dis-
joint line segments in the plane. In this context, a set of
disjoint segments is regarded as a Pslg that is a perfect
matching.

Since a triangulation of the free space around n disjoint
line segments is an encompassing graph, it is easy to con-
struct an encompassing tree in O(n log n) time. Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’05, June 6–8, 2005, Pisa, Italy.
Copyright 2005 ACM 1-58113-991-8/05/0006 ...$5.00.

focused on optimizing various parameters (length, degree,
etc.) of encompassing trees for n segments. Bose et al. [7,
6] showed that any finite set of disjoint line segments in
the plane admits an encompassing tree of maximum degree
three. They also gave an O(n log n) time algorithm to con-
struct such an encompassing tree for n input segments. Both
the degree bound and the runtime are best possible (the lat-
ter in the algebraic computation tree model).

In this paper, we extend the result of Bose et al. in two es-
sentially different directions. We show that an encompassing
tree with maximum degree three can be endowed with some
additional properties for any input set of disjoint segments.
Our first result asserts that one can efficiently compute a
pointed encompassing tree. A Pslg is pointed if and only
if for every vertex v all edges incident to v lie in a closed
halfplane whose boundary contains v.

Theorem 1. Let S be a set of n disjoint line segments in
the plane. There exists an encompassing tree of maximum
degree three such that for every vertex v all incident edges
lie in a halfplane bounded by the line through the segment
of S whose endpoint is v. Moreover, such a tree can be
constructed in O(n log n) time and linear space.

Our second result provides a colorful extension to the result
of Bose et al. [7, 6]. A graph is vertex-colored if every vertex
has a color and no edge is monochromatic. The set of input
segments can be considered a vertex-colored matching.

Theorem 2. For any set of n disjoint line segments in
the plane, each of which has a red and a blue endpoint, we
can construct a vertex-colored encompassing tree of maxi-
mum degree three in polynomial time.

In fact, we prove a theorem for a slightly broader class of
vertex-colored Pslgs.

Theorem 3. For any vertex-colored planar straight line
forest G on n vertices with no singleton component, we can
construct in polynomial time a vertex-colored encompassing
tree G′ such that degG(v) ≤ degG′ (v) ≤ degG(v) + 2 for
every vertex v of G′.

Our proof for Theorem 3 is constructive, but our algorithm is
based on multiple visibility sweeps, and so we cannot expect
its runtime to be optimal. Also, we do not know if the
combination of Theorem 1 and 2 holds: Does every set of
disjoint vertex-colored segments admit an encompassing tree
of maximum degree three that is pointed and vertex-colored
simultaneously?

Motivation and related work. Pointed Pslgs are closely
related to minimum pseudo-triangulations, which have nu-
merous applications in motion planning [21], kinetic data
structures [17], collision detection [1], and guarding [20].
Streinu [21] showed that a minimum pseudo-triangulation
of V is a pointed Pslg on the vertex set V with a maxi-
mal number of edges. As opposed to triangulations, there is
always a bounded (vertex-)degree pseudo-triangulation of a
set of points in the plane [16]. A bounded degree pointed
encompassing tree for disjoint segments leads to a bounded
degree pointed encompassing pseudo-triangulation, due to a
result of Aichholzer et al. [4].

Recently, Hoffmann, Speckmann, and Tóth [8] have shown
that for every n disjoint segments in the plane a pointed bi-

nary encompassing tree can be constructed in eO(n4/3) time.
Our Theorem 1 extends this result in two aspects: We con-
struct an encompassing tree in optimal O(n log n) time and
guarantee a stronger sense of pointedness where all edges in-
cident to a vertex v lie in a halfplane aligned with the input
segment whose endpoint is v.

A simple construction (Figure 1a) shows that not every
set of n disjoint segments in the plane admits an encom-
passing path. But there is always a path that encompasses
Θ(log n) segments and does not cross any other input seg-
ment [9]. Also, there is always an encompassing graph which
is Hamiltonian [10].

Vertex-colored Pslgs and geometric graphs have also re-
ceived considerable attention recently. (A geometric graph is
a straight line graph whose edges may cross.) In these prob-
lems, the input typically consists of a set R of red points and
a set B of blue points in the plane; we ask for certain types of
vertex-colored Pslgs. Every vertex-colored graph is a sub-
graph of the complete bipartite geometric graph K(R, B). A
pioneer result in this area claims that any n red and n blue
points in the plane can be covered by a vertex-colored pla-
nar straight line matching (e.g., a minimum length bipartite
matching is planar).

Akiyama and Urrutia [2] found n red and n blue points
in the plane for which no vertex-colored planar straight
line Hamiltonian tour exists. Kaneko, Kano, and Yoshi-
moto [15] proved that such a Hamiltonian tour may have
up to n − 1 self-crossings. Kaneko and Kano [14] showed
that if |R| = Θ(|B|2) then all red points can be covered by
a vertex-colored planar straight line path.

Kaneko [12] proved that any n red and n blue points in the
plane can be covered by a vertex-colored planar straight line
tree with maximum degree three. Our Theorem 3 states that
such a tree can encompass a given vertex-colored matching
of the 2n input points. Very recently, Hurtado et al. [11]
showed that every set of disjoint vertex-colored edges ad-
mits a vertex-colored encompassing tree. Theorem 3 extends
their result and shows that such a tree exists with maximum
degree three. For other recent results on geometric red-blue
graphs, we refer the reader to an excellent survey by Kaneko
and Kano [13].

A minimum1 encompassing tree for a set of n disjoint
line segments may require a vertex of degree seven, and,
conversely, a minimum weight encompassing tree of maxi-
mum degree seven can always be obtained greedily [7]. On
the other hand, a color-conforming minimum encompassing

1Edge weight is the distance between the two endpoints.

tree for a set of colored disjoint line segments may require a
vertex of linear degree [5].

Organization. We set forward the proof of our two main
results as follows. First we briefly define a few commonly
used geometric terms in Section 2. We prove Theorem 1 in
Section 3 via a tunnel graph that we define for a convex par-
tition of our input set of n line segments. A crucial lemma
on constructing connected tunnel graphs in O(n log n) time
is presented in Section 4. Then we proceed with the proof
of Theorem 3 in Sections 5 and 6. Section 7 states a con-
jecture regarding an extension of Theorem 3 to arbitrary
vertex-colored Pslgs. We conclude in Section 8 with a few
more related open problems.

(a) (b)

(c) (d)

Figure 1. Six segments which do not admit an encompassing path
(a), a connected Pslg with 4 faces including the outer face (b),
disjoint segments (c), and one of their convex partitions (d).

2 Definitions

Polygons. A polygon P is a finite sequence (p1, p2, . . . , pk)
of points in the plane. The set of vertices of polygon P is
V (P) = {p1, p2, . . . , pk}, and is the set of edges is E(P) =
{p1p2, p2p3, . . . , pk−1pk, pkp1}.

A weakly simple polygon is a polygon without self-crossings.
Any weakly simple polygon P partitions

� 2 \P into an inte-
rior and an exterior. The interior of P is denoted by int(P),
while the closure of the interior is the closed polygonal do-
main P = int(P) ∪ P .

A planar set D ⊂
� 2 is polygonal if it is the union of a

finite number of line segments and triangles. The boundary
of every simply connected polygonal set D can be covered
by a weakly simple polygon ∂D. In particular, every pla-
nar straight line tree A can be covered by a weakly simple
polygon ∂A. Note, however, that a vertex of the tree A can
occur several times among the vertices of ∂A. One way to
distinguish distinct occurrences of the same point along ∂A

is by the angles (three consecutive vertices) along ∂A.

(a) Partition. (b) Tunnel Graph. (c) Encompassing Tree.

a

b

c

s

(d) Disconnected.

Figure 2. An example for a partition with an assignment (a), the corresponding tunnel graph (b), the resulting tree (c). A partition for which
no assignment gives a connected tunnel graph (d).

Faces of a PSLG. The complement of a connected Pslg

A can have several connected components, which we call the
faces of A. The boundary of each face F can be covered
by a weakly simple polygon ∂F . We say that a vertex vi of
∂F is convex (reflex) if the angle ∠vi−1vivi+1 whose angular
domain contains F is less than (more than) 180◦. This angle
is the exterior angle of ∂F for the outer face, and the interior
angle of ∂F for all bounded faces.

Convex partition and cells. The free space around n
disjoint line segments in the plane can be partitioned into
n + 1 convex cells by the following well known partitioning
algorithm. (For simplicity, we assume that no three segment
endpoints are collinear.) For every segment endpoint p of
every input segment sp, extend sp beyond p until it hits
another input segment, a previously drawn extension, or to
infinity. There may be many different partitions depending
of the order in which we consider the segment endpoints,
but the number of convex cells is always n + 1.

3 Tunnel Graphs

Consider a set of disjoint segments S in the plane and a
convex partition P (S) obtained by the above algorithm. Let
us assign every segment endpoint p to an incident cell τ (p) of
the partition. We define the tunnel graph T (S,P (S), τ) for
S, a partition P (S), and an assignment τ as follows: The
nodes of T correspond to the convex cells of P (S). Two
nodes a and b are connected by an edge if and only if there
is a segment pq ∈ S such that τ (p) = a and τ (q) = b. The
tunnel graph is clearly planar; and T has n + 1 nodes and n
edges, therefore it is connected if and only if it is a tree.

Theorem 4. For any set S of n disjoint line segments,
we can construct in O(n log n) time and linear space a con-
vex partition P (S) and an assignment τ such that the tunnel
graph T (S,P (S), τ) is a tree.

Note that the choice of the convex partition is important
in Theorem 4: Figure 2(d) shows four disjoint line segments
and a convex partition such that there is no assignment for
which the tunnel graph is connected. (Consider the end-
points of the segment s: The left endpoint is the only seg-
ment incident to Cell a and must hence be assigned to a.
Similarly, the right endpoint of s has to be assigned to Cell b.
But then regardless of the assignment for the other points,
{a, b} is always a component of size two in the tunnel graph.)
We obtain Theorem 1 as a corollary of Theorem 4.

Proof of Theorem 1. Consider a partition P (S) and
an assignment τ provided by Theorem 4. We construct a
binary encompassing tree as follows: In each cell connect
all segment endpoints assigned to it by a simple path; for
example, connect them in the order in which they appear
along the boundary of the cell.

The resulting graph is clearly a Pslg that contains all
the input segments. The maximum degree is three because
we add at most two new edges at every segment endpoint.
It remains to prove connectivity. Let p and r be two seg-
ment endpoints. We know that the tunnel graph is con-
nected, so there is an alternating sequence of cells and seg-
ments (a1 = τ (p), p1q1, a2, . . . , pk−1qk−1, ak = τ (r)) such
that τ (pi) = ai and τ (qi) = ai+1, for every i. As all seg-
ment endpoints assigned to the same cell are connected, this
path corresponds to a path in the constructed graph. 2

4 Convex Partitioning

This section is devoted to the proof of Theorem 4. Consider
a set S of n disjoint line segments in the plane and let R be
an axis-parallel box which encloses all segments from S. We
use a two-phase line sweep algorithm to

• partition the free space around the segments into n+1
convex cells and to

• assign an incident cell to every segment endpoint.

The first phase is a left-to-right sweep: We extend every in-
put segment beyond its right endpoint until the extension
hits another segment, another extension, or the boundary
of R. If two extensions meet, an arbitrary one continues
and the other one ends (Figure 3(b)). The segments and
their right extensions jointly form a right extension tree in
the plane whose root correspons to the the boundary of
R (right extensions may hit the boundary of R at several
points, these points are glued into a sinlge root vertex of
this tree). The free space of the input segments and their
right extensions is a simply connected set C0 ⊂ R. Order
the segments s1, . . . , sn according to the order of their left
endpoints along the boundary ∂C0 (in clockwise direction
starting from upper left corner of R).

In the second phase, the left extensions of the segments
s1, . . . , sn are inserted one by one. Denote by Ai, 0 ≤ i ≤ n,
the arrangement of the input segments, all their right exten-
sions, and the left extensions of s1, . . . , si. At the beginning

of the second phase, no left extension has been drawn yet.
We face the arrangement A0 in which there is only one sin-
gle cell C0. After the second phase, the arrangement to be
considered is An, which consists of n + 1 convex cells.

Lemma 5. There exists an assignment τ for the segment
endpoints such that the corresponding tunnel graph is con-
nected.

Proof. We define the assignment τ on the endpoints of
si, i = 1, 2, . . . , n, as soon as the left extension γi of si

is inserted. At this point we have an arrangement Ai−1

that consists of i cells and a partial assignment τ on the
endpoints of the first i − 1 segments. Ai−1 and τ define a
tunnel graph Ti−1 on i nodes. We choose the assignment
at the endpoints of si inductively such that the resulting
tunnel graph Ti remains connected. Clearly T0 is connected
because it is a graph on one node only.

For the induction step consider the ray γi that splits a cell
Ci of Ai−1 into two cells C′

i and C′′
i of Ai. Correspondingly,

a node of Ti−1 is split into two nodes that are in different
components of the resulting graph T ′

i−1. The left endpoint
pi of si is incident to both C ′

i and C′′
i because pi is the source

of the ray γi that separates both cells. The right endpoint qi,
however, may be incident to neither C ′

i nor C′′
i . We always

assign qi to the cell lying above qi. Then pi is assigned to
C′

i or C′′
i , whichever lies in the other component of T ′

i−1 as
τ (qi). As T ′

i−1 has exactly two components, this assignment
ensures that the resulting tunnel graph Ti is connected. 2

We have shown that there exists an assignment τ for which
the tunnel graph T is connected. It remains to prove that
such an assignment can be computed in O(n log n) time. We
assign every right segment endpoint to the cell lying above
it. In order to determine the assignment τ on each right
segment endpoint in O(log n), we devise a data structure on
the arrangement A〉.

Data structure. For each cell C of Ai−1, we maintain a
doubly linked list of all segment endpoints and vertices along
∂C. The assignments τ carries one bit information for each
segment endpoint r: It assigns r to the cell lying below or
above r. We can insert a right extension γi by splitting the
doubly connected list of of Ci into C′

i and C′′
i in constant

time. For each vertex v of the right extension tree, we store
the interval g(v) ⊂ [1, n] such that the descendants of v
contain the left segment endpoints pj , for j ∈ g(v). We
maintain a coloring on the segments and their right and left
extensions: Every input segment and every right extension
is blue. The color of left extensions is defined recursively:
γi is blue if its left endpoint hits a blue segment, otherwise
it is red. We also maintain an index ind(e) for every blue
input segment or blue extension. The index of si or its
right extension is i. If γi hits a segment of index j then
ind(γi) = j.

Assignment rule. For every left segment endpoint pi, we
define the assignment τ (pi) according to the following rule:

If γi is blue and vi 6∈ si where vi is the deep-
est vertex in the right extension tree such that
[ind(γi), i] ⊆ g(vi), then we assign pi to the cell
above it, otherwise to the cell below it.

It takes O(log n) time to find vi in the right extension tree,
and so τ (pi) can be computed for all i = 1, 2, . . . , n in
O(n log n) time.

Proposition 6. For every i = 1, 2, . . . , n, if Ti−1 is con-
nected and we choose the assignment τ (pi) by the above rule,
then the tunnel graph Ti is also connected.

Proof. We define an orientation on the input segments
and their extensions. Every segment and every right exten-
sion is directed to the right, every left extension is directed
to the left. Note that there are no cycles in this orientation.
For every i = 1, 2, . . . n, we define a curve βi through pi:
two branches of βi start out from pi to the left along γi and
to the right along si, they follow the above orientation until
the two branches meet or until both hit the bounding box
R. Curve βi partitions R into two regions Ai and Bi such
that pi lies on their common boundary. Observe that the
curve does not pass through any left segment endpoint, and
recall that every right segment endpoint qj , is assigned to
the region above qj .

We verify by a case analysis that si is the only segment
whose left and right endpoints are assigned to regions Ai

and Bi, respectively, and the assignment rule assigns pi and
qi to distinct regions. That is, if we choose τ (pi) contrary to
the assignment rule, then Ti would be disconnected. This
implies that if τ (pi) obeys the assignment rule,then Ti must
be connected.

Case (1). If γi is red then βi is x-monotone and its two
branches pass through right segment endpoints only, so pi is
the only vertex that might be assigned to the region below
βi. Case (2). Suppose that γi is blue: The left branch of βi

is x-monotone decreasing until it hits a segment or a right ex-
tension, from that point it continues in x-monotone increas-
ing direction until it hits the right branch or the boundary
R. Let Ai be the region nonadjacent to the left side of R.
Subcase (2a). If γi hits a segment sj , j > i, or its right
extension, then Ai must be below si. Therefore, Bi is above
qi and Ai is below pi. Subcase (2b). If γi hits a segment sj ,
j < i, or its blue extension, then Ai is above si, so we know
that Ai is above pi. The rightmost point of Ai is vi. The
only case where Ai does not lie above qi is that vi ∈ si. 2

Proof of Theorem 4. The existence of a convex par-
tition and an assignment that leads to a connected tun-
nel graph was shown in Lemma 5. It remains to show the
claimed runtime bound.

The arrangement An can be constructed using a standard
line sweep algorithm in O(n log n) time and linear space.
First the right extensions are handled in a left-to-right sweep.
Then the left extension are inserted in a right-to-left sweep.
Whenever two extensions meet, only one of them contin-
ues. Therefore the combinatorial complexity of An is O(n).
Any type of incidence and adjacency information —such as
which two cells a segment endpoint is adjacent to— can be
extracted from this arrangement. The intervals g(v) can be
computed in a simple traversal of the right extension tree in
O(n) time, the coloring of the right extensions is computed
recursively in O(n) time, too.

Our assignment rule allows us to choose an assignment
for every left segment endpoint in O(log n) time. By Propo-
sition 6, it maintains a connected tunnel graph for every
i = 1, 2, . . . n. Altogether, the runtime is O(n log n) and the
space consumption is linear. 2

(a) (b)

2 1

4

3

(c)

5

7

6

2 1

8

4

3

(d) (e)

Figure 3. Constructing the partition: First all right extensions (b), then the left extensions are inserted one by one (c) and (d), and from the
final partition together with the assignment we can construct the encompassing tree.

5 Vertex-Colored Forests

We present a constructive proof for Theorem 3. Our proof
relies on a recursive scheme of Hurtado et al. [11] (that con-
structs a vertex-colored encompassing tree without any de-
gree bound), which we briefly recall here. Assume that we
are given a vertex colored planar straight line forest with k

components.

(H) Choose a vertex a0 on the convex hull of G.
Repeat until G is connected:
Let A be the component of G containing a0 and
let B = G − A. Find a vertex-edge pair (u, vw)
such that u ∈ A and u sees an entire edge vw in
a component of B (Hurtado et al. [11] show that
such a pair exists). Since v and w have different
colors, we can augment G with the edge uv or
uw, thus reducing the number of components.

We use the same recursive scheme, but we choose the pairs
(u, vw) more carefully. If u ∈ A sees an edge vw ⊂ B and
we augment G with uv or uw, then we say that u docks to
vw and u is a docking vertex. We control the increase in the
degree of vertices by maintaining the following property:

(?) Every vertex is a docking vertex in at most
one iteration.

This guarantees that the degree of any vertex c increases by
at most one in iterations where c belongs to component A,
and by at most one at the iteration when we connect the
component of c to A. The degree of any vertex x increases
by at most two in total.

Notice that the recursive scheme (H) uses the fact that the
edges of B are not monochromatic, but no such assumption
is necessary about A. We may add dummy edges to A, even
monochromatic edges, and the scheme (H) still works.

Component A ⊂ G, when augmented with dummy edges,
may have several faces. We may search for pairs (u, vw) in
each face of A that contains a component of B, indepen-
dently, by a visibility sweep algorithm (cf., Section 6). The
dummy edges will be essential in simplifying the visibility
sweeps.

Stem vertices. Consider a Pslg G, let A be a connected
component of G touching the convex hull of G and let B =
G − A. The Pslg A partitions the plane into disjoint faces
(there is one face if and only if A is a tree). We choose a
stem vertex a(F) for every face F of A: The stem vertex of
the outer face is a vertex on the convex hull of G. The stem
vertex of a bounded face is a convex vertex of ∂A.

We define two operations to augment A. Both are op-
erations relative to a face F of A. Our first operation is
the augmenting step from the recursive scheme (H) with a
twist: For a pair (u, vw), we add both edges uv and uw to
the graph independently of the vertex colors. This operation
partitions a face F into a triangle uvw and F \ uvw.

AddF (A, B, u, vw). Precondition: F is a face of
A. u ∈ A is a vertex of ∂F . vw is an edge of B
and u sees the entire edge vw. Let B(vw) be the
component of B containing vw.
Operation: Let A′ := A ∪ {uv, uw} ∪ B(vw).

The second operation adds a dummy edge d1d2 between
two vertices of A and splits a face F . Since we want d1 to
be the stem vertex of one of the new faces, say F1, and a
stem vertex of a bounded face F1 is convex vertex of ∂F1,
we need to impose conditions on the angles at d1.

SplitF (A,B, d1, d2). Precondition: F is a face
of A. d1 and d2 are non-consecutive vertices of
∂F . d1d2 does not cross A∪B. d1d2 splits F into

two faces F1 and F2 such that a(F) is incident
to F1 and d1 is a convex vertex of ∂F2.
Operation: Let A′ = A ∪ {d1d2}. Let a(F1) :=
a(F) and a(F2) := d1

We augment A by these two operations until G ⊂ A. In
the next section, we present algorithms that examine every
face that contains a component of B and apply one of the
two operations. Property (?) requires that Add(A, B, u, vw)
is applied at most once for every vertex u. A vertex u ∈ A
may be a vertex of several faces of A (in fact, u may be
a vertex of the same face several times since the boundary
of a face is a weakly simple polygon). We call these the
occurrences of u, each occurrence corresponds to an angular
domain between consecutive edges incident to u. We impose
two more preconditions for the two operations to ensure that
convex nonstem occurrences of u are not used in operations
AddF (A,B, u, vw).

(1) In AddF (A, B, u, vw), u is either the stem vertex or a
reflex vertex of ∂F ;

(2) in SplitF (A, F, d1, d2), d1 is either the stem vertex or
a reflex vertex of ∂F .

These conditions guarantee that if u is a convex nonstem
vertex of ∂F , then u never docks to any edge lying in the
interior of F . We replace the property (?) by two properties
that impose conditions relative to a face F of A only.

(♥) After applying AddF (A, B, u, vw), vertex u

never docks to any edge in the interior of F .

(♦) After applying SplitF (A,F, d1, d2), vertex
d1 never docks to any edge in the interior of F1.

Property (♥) guarantees that if u ∈ A docks to an edge
vw in F , then it never docks again in any face of A. Property
(♦) ensures that every vertex u ∈ A has at most one occur-
rence u ∈ ∂F that may dock to an edge vw ⊂ B (lying in the
corresponding face F) after any number of recursive Splits.
We have reduced the problem of maintaining (?) to problems
in individual faces of A. To prove Theorem 3, it is enough to
show that in every face F containing a component of B, one
can apply either AddF (A,B, u, vw) or SplitF (A, F, d1, d2)
satisfying all preconditions and maintaining properties (♥)
and (♦).

The easiest way to guarantee that a reflex or stem vertex
of a face F never docks to an edge of B in int(B) is showing
that u ∈ A does not see an entire edge of B in F . For
vertices on the outer face of A and stem vertices of bounded
faces, we will use this argument in the next section. For
reflex vertices of bounded faces, we apply a more complex
argument.

6 Visibility Sweeps

We recursively run a visibility-sweep algorithm in each face
F of A that contains a component of B. The algorithm
either docks a vertex of ∂F to an edge of B or splits F into
two faces. We apply one algorithm for the outer face and
another one for bounded faces.

6.1 Algorithm for the Outer Face

Consider the outer face F0 of the connected Pslg A. Let the
stem vertex a(F0) be the vertex a0 ∈ A such that ao lies on
conv(A∪B). For the sake of our arguments, we split a0 into
two distinct occurrences a0 and a−1 and we connect them
by an infinitesimal edge such that a−1a0 defines a tangent of
conv(A ∪ B), and a−1 is the clockwise neighbor of a0 along
∂A. Both a−1 and a0 are reflex vertices of ∂F0.

Let V0 be a visibility vector along the ray −−−→a−1a0, such that
a0 is the tail of V0 and its head is at infinity. We apply the
following visibility sweep algorithm.

Algorithm 7. Input: A, B, F, a0, and V0. Initialize i :=
0, j := 0, x := 0, and V := V0.

1. Repeat:

(a) Rotate the visibility vector V counter-clockwise
around ai until it hits a vertex c ∈ A ∪ B.

(b) If c ∈ A, adjacent to ai along ∂F , and a reflex
vertex of ∂F , then let ai+1 := c, i := i + 1.

(c) If c ∈ A, adjacent to ai along ∂F , and a convex
vertex of ∂F then stop.

(d) If c ∈ A but not adjacent to ai along ∂F then
SplitF (A, B, ai, c) and stop.

(e) If c ∈ B such that all incident edges are on the
left side of V , then let bj+1 := c and j := j + 1.

(f) If c ∈ B such that B has an incident edge on the
right side of V then AddF (A,B, ai, bjc) and stop.

Analysis. During Algorithm 7, the vertices a0, a1, . . . , ai

at the tail of the visibility vector V form a reflex chain of
∂F . The head of V sweeps either infinity or edges of B:
Indeed, if V hits a vertex c ∈ A (step 1d), then the algorithm
splits the outer face into two faces along the diagonal aic
and terminates. Since the head of V never sweeps along
an edge of A, Algorithm 7 does not terminate with step 1c.
(This step will be functional when applied to bounded faces
in Subsection 6.2.) If V ever hits a vertex of B, then its
head keeps sweeping along edges of B until the algorithm
terminates.

We still need to show that Algorithm 7 terminates. As-
sume, by contradiction, that it does not terminate. Since V
always rotates counter-clockwise in the outer face F0 and its
tail travels through consecutive vertices of of ∂F0, V must
return to its original position V0. ∂F0 must be the convex
hull of A because the vertices a0, a1, a2, . . . lie on a reflex
chain of ∂F0. Since B has a component in int(F0), V hits
a vertex of B at some step. After this step, the head of V
keeps sweeping along edges of B (but never reaches a left
endpoint of an edge of B, otherwise it would terminate with
step 1f). Therefore, V cannot return to its initial position,
where V would point to infinity.

We conclude that Algorithm 7 terminates with step 1d
or 1f for some i = `. If it terminates with step 1d, then
the preconditions of SplitF (A, B, a`, c) are satisfied since
ai sees c. If the algorithm terminates with step 1f, we show
that the preconditions of AddF (A, B, a`, bjc) are satisfied,
that is, ai sees bjc ⊂ B. In this last step, V hits the left
endpoint c of an edge of B. V must have hit the right
endpoint of this edge for some i = `′. Since V did not hit

any right endpoint before c, so bjc is in indeed an edge of
B.

The viability vector V sweeps through the polygon

W = (a`′ , a`′+1, . . . , ai, c, bj) .

Hence, the interior of W is disjoint from the Pslg A ∪ B.
Since the sequence (a0, a1, . . . , a`) is a reflex chain of ∂W ,
we conclude that a` sees the entire edge bjc within W ⊂ F0.

Let A′ augmented graph and let B′ = G − A′ denote
its complement after Algorithms 7. Let F ′

0 denote the outer
face of A′. We establish (♦) and (♥) by the following propo-
sition.

Proposition 8. No reflex occurrence of a vertex ai, i =
0, 1, . . . , `, sees an entire edge of B′ in the interior of F ′

0.

Proof. Every ai, , i = 0, 1, , . . . , `, is a reflex vertex of
F0. Let a−

i and a+
i be the vertices along ∂F0 preceding and

following ai (e.g., we have a−
i = ai−1).

If Algorithm 7 terminates with step 1f then a` occurs (at
least) twice along the weakly simple polygon ∂F ′

0: The two
occurrences correspond to the angles ∠a−

` a`bj and ∠ca`a
+
` .

Observe that ∠ca`a
+
` is always convex: This clearly holds

if ` = 0; and if ` > 0 then the sweep vector V passed the
line a−

` a` in the step 1b where i was increased to `. In this
case the only possible reflex occurrence of a` corresponds to
∠a−

` a`bj .

Consider the polygon Π swept by the visibility vector
V between its initial and last positions, V0 and a`c. We
show that ai cannot see points outside the (closure of) this
polygon, and so it cannot see any entire edge of B′. The
boundary of polygon Π include the first and last positions
of V : V0 and a`c; the tail of V sweeps through a reflex
chain (a0, a1, . . . , a`); the head of V sweeps through a stair-
case chain (b0, d0, b1, d1, . . . dj−1, bj , c). Here, every bkdk,
k = 0, 1, . . . , j − 1, lies along an edge of B, where bk is the
left endpoint and dk is a (relative) interior point of the edge.
Every dkbk+1, k = 0, 1, . . . , j−1, lies along a visibility vector
ah(k)dk for some h, 0 ≤ h ≤ `. By contradiction, suppose
that ai sees a point p ∈ A ∪ B outside Π: Necessarily, seg-
ment aip crosses a segment dmbm+1, but any curve within
Π from ai to dmbm+1 have to cross ah(m)bm+1. Hence, aip
cannot be a straight line segment because it crosses dmbm+1

and ah(m)bm+1, which are collinear. 2

Proposition 8 implies that reflex occurrences of ai, 0 ≤ i ≤
`, will not dock to any edge of B′. If Algorithm 7 applies
the operation AddF (A,B, a`, bjc), then a` never docks to any
edge in the interior of F0, which proves (♥). If it applies
SplitF (A, B, a`, c) then the reflex occurrence of no ai along
∂F ′

0 docks to any edge in the interior of F ′
0, which proves

property (♦).

6.2 Algorithm for Bounded Faces

Consider a bounded face F of A that contains a component
of B, and let a = a(F) denote its stem vertex. We assumed
that a is a convex vertex of ∂F . Let q be a vertex adjacent
to a along ∂F in counter-clockwise direction. The initial
position V0 of the sweep vector is along the ray −→aq. Let r be
the point on the boundary of F where the ray −→aq exits the
face F . Segment ar divides F into a left subface F + and
right subface F−. The right subface F− may be empty if

r = q but F+ is always nonempty. The head of the visibility
vector V0 is either at the relative interior of an edge of B, or
it is r. If the head of V0 is a point b∗ ∈ B, then we add an
artificial vertex b∗ to B. We apply an algorithm that either
splits F into two faces, or finds a reflex or stem vertex along
∂F that sees an entire edge of B lying in the interior of F .
We compile this algorithm by applying Algorithm 7 in the
subfaces F+ and F− as follows.

Algorithm 9. Input: A, B, F, a(F), and V0.

1. Run Algorithm 7 on the left subface F + with initial
vector V0. If it applies the Add or Split operations but
not AddF+ (A,B, ai, b

∗c+) involving the artificial vertex
b∗, then we apply the same operation for F and stop.

2. Run Algorithm 7 on the mirror image2 of the right
subface F− with initial vector V0. If it applies the Add

or Split operations but not AddF−(A, B, gk, b∗c−) in-
volving the artificial vertex B∗, then we apply the same
operation for F and stop.

3. If the two calls to Algorithm 7 in the previous steps ap-
ply AddF+(A, B, ai, b

∗c+) and AddF− (A,B, gk, b∗c−),
respectively, then:
If ai sees the entire edge c−c+, AddF (A, B, ai, c

−c+),
otherwise AddF (A,B, gk, c−c+).

Analysis. Step 1 Algorithm 7, and the tail of the visibility
vector V sweeps along a reflex chain (a0 = a(F), a1, . . . , ai)
of ∂F+. If step 2 is executed, then in a second call to Al-
gorithm 7 the tail of V sweeps along a reflex chain (g0 =
a(F), g1, . . . , gk) of ∂F−. Note that V rotates in counter-
clockwise and clockwise directions in the two calls, and so
the head of V never hits ar, the boundary between the sub-
cells F+ and F−.

If either call to Algorithm 7 applies a Split or an Add

operation within F + or F−, resp., then it is a valid opera-
tion in F , too. A Split operation is invoked if a visibility
vector V connects two nonadjacent vertices along ∂F . An
Add operation docks a stem or reflex vertex along ∂F to an
edge of B swept by the head of the visibility vector. A call
to Algorithm 7 for a bounded face F + or F− can differ from
a call for the outer face F0 in two aspects:

1., The head of V may sweep along edges of A (i.e., edges
of ∂F). If V hits a vertex of B, then the head of V keeps
seeping edges of V until the call to Algorithm 7 terminates.
So V can only sweep along edges of A if V0 = −→ar and V does
not hit any vertex of B. In this case, the call to Algorithm 7
terminates with its step 1c, and this implies int(F +) ∩ B =
∅. Since we assume that F contains a component of B,
F− must be nonempty (that is, int(F−) ∩ B 6= ∅), and so
the second call to Algorithm 7 applies a Split or an Add

operation in F−.

2, If a call to Algorithm 7 applies the Add operation, then
it docks a vertex of ∂F + (resp., ∂F−) to an edge bc ⊂ B
swept by the head of the visibility vector V . Edge bc lies
in F+ (resp., F−) because V rotates counter-clockwise. We
only have to worry about the case that ar hits an edge of B
and an Add operation dock a vertex of ∂F to an edge incident
to the artificial vertex b∗. Let c−c+ ⊂ B be the edge contain-
ing b∗ such that c− ∈ int(F−) and c+ ∈ int(F+). Suppose

2The orientations clockwise and counter-clockwise, and the sides
left and right are exchanged in the mirror image.

that the first call to Algorithm 7 applies AddF+ (A,B, ai, b
∗c+)

for some i. In this case, step 2 of Algorithm 9 is executed.
Suppose that it applies an operation AddF−(A, B, gk, b∗c−)
for some k, involving vertex b∗ (see Figure 4(l)).

Notice that the tail of V in the two calls to Algorithm 7
sweep along two reflex chains: (a0, a1, . . . , ai) in F+ and
g0, g1, . . . , gk in F−. The visibility vector V sweeps the
pseudo-triangle

(a0, a1, . . . , ai, c
+

, c
−

, gk, gk−1, . . . , g1),

where a0 = g0 = a(F) is the stem vertex of F . In this
pseudo-triangle, either ai or gk sees the entire edge c+c−,
which is docked in step 3 of Algorithm 9.

In order to establish properties (♦) and (♥), we can use
Proposition 8 in subfaces F + and F−. It immediately im-
plies the following weaker proposition for the reflex vertices
of ∂F .

Proposition 10. A reflex occurrence of a vertex a`, ` =
1, . . . , i, along ∂F does not see an entire edge of B ′ within
F+. (Similarly, a reflex occurrence of a vertex g`, ` =
1, 2, . . . , k, along ∂F does not see an entire edge of B ′ within
F−.) 2

Proposition 10 does not speak about the convex stem ver-
tex a; furthermore is leaves open the possibility that a vertex
a`, ` = 1, . . . , i, along the reflex chain of ∂F + sees an en-
tire edge of B lying partly in F− (and similarly, a vertex g`

along the reflex chain of ∂F− may see an entire edge of B
in F+).

Consider the (convex) stem vertex a of F . Step 1 of Algo-
rithm 9 may apply SplitF (A,F, a, d2) for some d2 ∈ ∂F and
split F into two faces F1 and F2, where a is the stem vertex
of both F1 and F2. Vector V has swept through points visi-
ble by a in the face F1 containing V0, and so the occurrence
of a corresponding to F1 is never a docking vertex (other-
wise AddF (A, F, a, vw) would have been applied instead of
SplitF (A, F, a, d2)). This proves (♦) for a. In step 1 of
Algorithm 9, a may dock to an edge bjc

+ ⊂ int(F+). The
stem vertex a of ∂F is split into two convex occurrences in
the resulting face F ′. Vector V has swept through the points
visible by one occurrence, this should be the stem vertex of
F ′. The other occurrence may still see an entire edge of B
in F ′, but it is a convex nonstem vertex of ∂F ′. So property
(♥) is maintained for a.

Now assume that the reflex vertex ai, i > 0, (resp., gk,
k > 0) along the reflex chains of ∂F + (resp., ∂F−) docks to
an edge of B, and its reflex occurrence still sees an entire
edge v′w′ ⊂ B′ lying in the interior of F . By Proposition 10,
v′w′ 6⊂ int(F+), and so aiv

′ or aiw
′ crosses the initial visi-

bility vector V0 on the boundary between F + and F−. Since
Algorithm 9 docks ai, i > 0 (or dk, k > 0), we know that
the stem vertex a0 = g0 = a(F) does not see any entire edge
of B nor a nonadjacent vertex of ∂A. Therefore, in every
face F ′ that intersects V0 in all subsequent iterations, the
stem vertex is a(F ′) = a(F), and the initial visibility vector
is the same V0. This implies that our algorithm never docks
ai (resp., dk) to v′w′ on the other side of V0. This completes
the proof of (♥) for reflex vertices of ∂F .

7 Arbitrary Vertex-Colored PSLGs

By Theorem 3, for a vertex-colored planar straight line for-
est without singleton components, there is a vertex-colored

encompassing tree G′ such that the degree of every vertex
increases by at most two. Our proof extend to an arbitrary
vertex-colored Pslg G without singleton components, if we
can find a stem vertex for every face of the G such that every
vertex is the stem or reflex vertex of at most two faces.

Conjecture 11. We are given a connected Pslg G and
a vertices v0 incident to its outer face. There is a vertex-face
assignment with the following properties: (i) Every vertex
is assigned to at most two faces; (ii) v0 is assigned to at
most one face; (iii) Every face is assigned to all its reflex
vertices; (iv) Every bounded face is assigned to one of its
convex vertices.

For an input of a vertex colored Pslg, our algorithm com-
pute iteratively an encompassing graph. We choose an ini-
tial component A ⊂ G, and choose a convex stem vertex
for each bounded face of A by the assignment in Conjec-
ture 11. We run our Algorithm 7 or 9 in each face of A,
independently. Consider a component C ⊂ G along a face
F of A. When a vertex u ∈ A docks to an edge vw of a
component C ⊂ int(F) and we augment G with, say, edge
uv, then the degree of v = v0(C) increases by one. We set
a := A∪ {uv, uw} ∪C, and we choose a convex stem vertex
for each bounded face of C according to the assignment of
Conjecture 11 for C and v0(C).. Once we have C ⊂ A, our
algorithm guarantees that we augment the degree of every
reflex or stem occurrence of vertex of C by at most one, and
we do not increase the degree of nonstem convex vertices.

Note that Conjecture 11 does not take the vertex colors
into account, and it is enough to find an assignment inde-
pendently for each connected component of G.

8 Conclusion

We presented an optimal O(n log n) time algorithm for com-
puting a pointed binary encompassing tree for disjoint line
segments in the plane. The edges incident to each segment
endpoint lie on one side of the segment. We defined a tun-
nel graph on the convex partition of the complement of the
segments, and showed that there is a partition for which a
connected tunnel graph exists. We have shown that every
vertex-colored planar straight line matching has a vertex-
colored encompassing graph of maximum degree three. A
couple of related questions remain open:

• Does every vertex-colored planar straight line match-
ing have a pointed and vertex-colored encompassing tree of
maximum degree three?

• Is there such an encompassing tree with the stronger
version of pointedness, where we require that at every vertex
all incident edges lie in a half-plane defined by the incident
input edge?

• Does every vertex-colored Pslg G have an encompassing
tree G′ such that for every vertex v, we have degG(v) ≤
degG′ (v) ≤ degG(v) + 2?

Acknowledgment

We thank David Rappaport for insights into visibility sweep
algorithms, and for many useful comments on this paper.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4. The steps of our algorithm for a vertex-colored planar straight line forest. Edges of G are fat, dummy edges of A are thin, stem
vertices of faces containing parts of B are marked with small arrows, regions swept by the visibility vector V are grey.

References

[1] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger,
and L. Zhang, Deformable free space tilings for ki-
netic collision detection, in Algorithmic and Computa-
tional Robotics: New Directions, WAFR’00, AK Peters,
Boston, 2001, pp. 83–96.

[2] J. Akiyama & J. Urrutia, Simple alternating path prob-
lem, Discrete Math. 84 (1990), 101–103.

[3] M. Bern, Triangulations and mesh generation, in Hand-
book of Discrete and Computational Geometry, CRC
Press, 2004, pp. 563–582.

[4] O. Aichholzer, M. Hoffmann, B. Speckmann, and
Cs. D. Tóth, Degree bounds for constrained pseudo-
triangulations, in: Proc. 15th Canadian Conf. Comput.
Geom., 2003, pp. 155–158.

[5] M. Grantson, H. Meijer, and D. Rappaport. Bi-
chromatic minimum spanning trees, in Abstracts of 21st
Euro. Workshop Comput. Geom., 2005, pp. 199–202.

[6] P. Bose, M. E. Houle, and G.T. Toussaint, Every set
of disjoint line segments admits a binary tree, Discrete
Comput Geom. 26 (2001), 387–410.

[7] P. Bose and G. T. Toussaint, Growing a tree from its
branches, J. Algorithms 19 (1995), 86–103.

[8] M. Hoffmann, B. Speckmann, and Cs. D. Tóth,
Pointed binary encompassing trees, in Proc. 9th SWAT,
vol. 3111 of LNCS, Springer-Verlag, 2004, pp. 442–454.

[9] M. Hoffmann and Cs. D. Tóth, Alternating paths
through disjoint line segments, Inf. Proc. Letts. 87
(2003), 287–294.

[10] M. Hoffmann and Cs. D. Tóth, Segment endpoint visi-
bility graphs are Hamiltonian, Comput. Geom. Theory
Appl. 26 (2003), 47–68.

[11] F. Hurtado, M. Kano, D. Rappaport, and Cs. D. Tóth,
Encompassing colored crossing-free geometric graphs,
in Proc. 16th Canadian Conf. Comput. Geom., 2004,
pp. 48–52.

[12] A. Kaneko, On the maximum degree of bipartite em-
beddings of trees in the plane, in Discrete and Com-
putational Geometry, JCDCG’98, vol. 1763 of LNCS,
Springer, 2000, pp. 166–171.

[13] A. Kaneko and M. Kano, Discrete geometry on red
and blue points in the plane—a survey, in Discrete
and Computational Geometry, The Goodman-Pollack
Festschrift, Springer-Verlag, 2003, pp. 551–570.

[14] A. Kaneko and M. Kano, On paths in a complete bi-
partite geometric graph, in Discrete and Computational
Geometry, JCDCG’00, vol. 2098 of LNCS, Springer-
Verlag, 2001, pp 187–191.

[15] A. Kaneko, M. Kano, and K. Yoshimoto, Alternating
Hamiltonian cycles with minimum number of crossings
in the plane, Internat. J. Comput. Geom. Appl. 10
(2000), 73–78.

[16] L. Kettner, D. Kirkpatrick, A. Mantler, J. Snoeyink,
B. Speckmann, and F. Takeuchi, Tight degree bounds
for pseudo-triangulations of points, Comput. Geom. 25
(2003), 1–12.

[17] D. Kirkpatrick and B. Speckmann, Kinetic mainte-
nance of context-sensitive hierarchical representations
for disjoint simple polygons, in Proc. 18th ACM Sym-
pos. Comput. Geom., ACM Press, 2002, pp. 179–188.

[18] D. T. Lee and A. K. Lin, Generalized Delaunay trian-
gulations for planar graphs, Discrete Comput. Geom. 1
(1986), 201–217.

[19] J. Pach and E. Rivera-Campo, On circumscribing poly-
gons for line segments, Comput. Geom. Theory Appl. 10
(1998), 121–124.

[20] B. Speckmann and Cs. D. Tóth, Allocating vertex π-
guards in simple polygons, Discrete Comput. Geom. 33
(2) (2005), 345-364.

[21] I. Streinu, A combinatorial approach to planar non-
colliding robot arm motion planning, 41st IEEE Sym-
pos. Foundations Comp. Sci., 2000, pp. 443–453.

