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Abstract. In practice, rigid objects often move on a plane. The object
then rotates around a fixed axis and translates in a plane orthogonal
to this axis. For a concrete example, think of a car moving on a street.
Given multiple static affine cameras which observe such a rigidly mov-
ing object and track feature points located on this object, what can be
said about the resulting feature point trajectories in the camera views?
Are there any useful algebraic constraints hidden in the data? Is a 3D
reconstruction of the scene possible even if there are no feature point
correspondences between the different cameras? And if so, how many
points are sufficient? Does a closed-form solution to this shape from mo-
tion reconstruction problem exist?
This paper addresses these questions and thereby introduces the concept
of 5 dimensional planar motion subspaces: the trajectory of a feature
point seen by any camera is restricted to lie in a 5D subspace. The con-
straints provided by these motion subspaces enable a closed-form solu-
tion for the reconstruction. The solution is based on multilinear analysis,
matrix and tensor factorizations. As a key insight, the paper shows that
already two points are sufficient to derive a closed-form solution. Hence,
even two cameras where each of them is just tracking one single point
can be handled. Promising results of a real data sequence act as a proof
of concept of the presented insights.

Key words: 3D reconstruction, shape from motion, matrix and ten-
sor factorizations, feature point trajectories, affine cameras, planar rigid
motion

1 Introduction and Related Work

Setting and Objective: Assume a rigid object is moving on a plane. The
object is therefore rotating around a fixed axis orthogonal to this plane and
translations are restricted to shifts inside that plane. Multiple stationary affine
cameras observe the moving object and track feature points located on this ob-
ject. Computing correspondences across a wide baseline is a difficult problem in
itself and sometimes even impossible to solve (think of two cameras which point
at two completely different sides of the rigid object). In our setting, each camera
therefore tracks its own set of feature points. There are no feature point cor-
respondences between the different cameras. The only available correspondence
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2 5D Motion Subspaces for Planar Motions

between the cameras is the motion correspondence: all the cameras observe the
same planar motion. This paper presents a thorough analysis of the geometric
and algebraic structure contained in 2D feature point trajectories in the camera
image planes. A closed-form solution for the reconstruction problem based on
the motion correspondence is derived.

Motivation: The reasons why an analysis of planar motions is important
are at least three-fold. Firstly, rigid planar motions are an important special
case of rigid motions. Vehicles moving on the street, traffic surveillance and
analysis represent prominent examples. Even data from a camera rig mounted
on a moving car behaves according to the above described setting: the camera rig
can be considered as stationary and the whole surrounding world as a moving
rigid object. Because the car is moving on the ground plane, the motion is
restricted to a planar motion. Secondly, in a fully practical system, we have to
deal with missing data, i.e. lost feature tracks. It is unreasonable to assume in
a practical scenario having feature tracks over a long temporal sequence. Thus
in practice, we are limited to trajectories over a short period of time. However,
continuous motions over a short period can often be well approximated by a
rotation and translation in a plane. The third reason is theoretical curiosity.
What can be gained by using an affine rather than a projective camera model?
What multiple-view insights are hidden in 2D feature trajectories obtained under
the given setting? The elegance of a theoretical exact derivation of a closed-form
solution under the given assumptions should not be despised either.

Main Contributions: A thorough theoretical analysis of the important
special case of planar rigid motions observed by multiple stationary affine cam-
eras is presented. Specifically, any feature point trajectory seen by any camera is
restricted to a 5 dimensional subspace which is common amongst all the cameras.
A general framework for planar motions is proposed. This framework together
with the theoretical insights enables a reconstruction algorithm which provides
a closed-form solution as long as the total number of tracked points is larger
or equal than two. Hence, the two minimal cases of one single camera tracking
two points or two cameras where each of them is tracking only one point can be
handled by the algorithm. No correspondences between different camera views
are required. Moreover, the algorithm fuses the data of all the cameras in order
to compute a robust reconstruction.

Related Work: There is a long history in computer vision about factor-
izations for the structure from motion problem under affine cameras. Due to
lack of space, the interested reader is also referred to references contained in
the mentioned related work. The initial work by Tomasi and Kanade [1] about
monocular rigid factorizations initiated many variations and extensions, such as
deformable [2] and articulated objects [3,4]. The concept of motion subspaces
has also widely been used for feature trajectory motion segmentation [5]. Fac-
torization based approaches with a projective camera model have been proposed
in [6]. Some methods have been suggested to handle missing data in the feature
trajectories due to occlusions or outliers [7,8]. The monocular structure from pla-
nar motion problem has previously attracted some interest [9,10]. However, these
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approaches either resort to iterative solutions or require additional information,
like e.g. the relative position of the plane of rotation w.r.t. the camera.

Extensions of the factorization approach to the case of multiple cameras ob-
serving the same scene have also been proposed, even though less numerous.
Most of them [11,12] require feature point correspondences between the cam-
eras to be known. Methods which deal with non-overlapping camera views are
generally not based on factorization approaches (e.g. hand-eye-calibration [13]).
However, a separate reconstruction for each camera is usually computed and thus
strong assumption about the captured data are implicitly assumed. The classi-
cal factorization approach [1] has recently been extended to the multi-camera
case [14]. This extensions considers the same setting, except the rigid object is
assumed to move fully general in 3D space whereas we assume the object to
move on a plane. This minor distinction has far reaching consequences. For ex-
ample, we will see in Sec. 2 that this requires the object to rotate around at
least 6 different axes of rotation, otherwise the 13 dimensional motion space is
only spanned partially. The 13 dimensional factorization will thus fail miserably
if applied to planar motions.

2 Rigid Planar Motions as Vectors in 5D Subspaces

This section presents how rigid planar motions can be embedded in linear sub-
spaces. The general case of non-planar rigid motions has already been inves-
tigated [14]. In contrast to that work, where 13-dimensional subspaces were
required, planar motions only ask for 5D subspaces.

Some notational conventions have to be defined first. The orthogonal pro-
jection matrix onto the column space of a matrix A is denoted as PA. The
projection matrix onto the orthogonal complement of the columns space of A
is P⊥A = I − PA. A matrix whose columns span the orthogonal complement of
the columns of matrix A is denoted as A⊥. Concatenation of multiple matri-
ces indexed with a sub- or supscript i is represented with arrows. For example,
[⇓i Ai] concatenates all the matrices Ai below each other, implicitly assuming
that each of them consists of the same number of columns. The Matlab R© stan-
dard indexing notation is used for the slicing operation (cutting out certain rows
and columns of a matrix). Multiplication of a tensor T along its i-th mode with
the matrix A is denoted as T ×i A. The matrix which results by flattening a
tensor along mode i is written as T(i). We refer to [15] for an introductory text
on multilinear algebra, tensor operations and decomposition.

The rotation around an axis a by an angle α can be expressed as a rotation
matrix Ra,α = cosαI3+(1−cosα)aaT +sinα [a]× , where [a]× denotes the skew-
symmetric cross-product matrix. Rotation matrices Ra,α around a fixed axis a
are thus restricted to a three dimensional subspace in nine dimensional Euclidean

ambient space vec (R) =
[
vec (I3) vec

(
aaT

)
vec
(
[a]×

)] (
cosα 1− cosα sinα

)T
where vec () vectorizes a matrix by stacking its columns below each other in a
column vector. Let the columns of V ∈ R3×2 denote an orthonormal basis for the
orthogonal complement of the rotation axis a, i.e. these columns span the plane
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orthogonal to the rotation axis. A rigid motion in this plane (i.e. the rotation is
around the plane normal and the translations are restricted to shifts inside the
plane) is then given by[

Ra,α Vt
01×3 1

]
⇔

(
vec (Ra,α)
vec (Vt)

1

)
=

vec (I3) vec
(
aaT

)
vec
(
[a]×

)
09×2

03×1 03×1 03×1 V
1 1 0 01×2


 cosα
1− cosα
sinα
t

, (1)

which shows that any rigid motion in this plane is restricted to a five dimen-
sional subspace of 13-dimensional (or 16 if zero-entries are not disregarded)
Euclidean space. Interestingly, by noting that the space of symmetric rank-1
matrices vec

(
aaT

)
considered as a linear space is 6 dimensional, we see that

rotations around at least six different axes of rotation are required to span the
full 13-dimensional space (the vector space of skew-symmetric matrices [a]× is 3
dimensional and thus rotations around 3 different axes already span this space).

3 Tensor Notation

Feature trajectories of points undergoing a planar rigid motion seen by different
cameras can be arranged as a 3rd-order tensor. Such a representation clearly
reveals the interplay between the three involved subspaces, namely the subspace
of the cameras, the points, and the planar rigid motion. The structure (homo-
geneous coordinates of the N feature points) is given by S ∈ R4×N , the K
affine cameras (each of them consisting of two camera axes) are described by
P ∈ R2K×4 and the motion over F frames will be described by the motion ma-
trix M ∈ RF×5. The projection matrix of camera k is denoted as Pk ∈ R2×4,
the points tracked by this camera as Sk ∈ R4×Nk . The combined camera matrix
is thus P = [⇓k Pk], and the combined point matrix S = [⇒k Sk]. The axis of
rotation is denoted with the unit vector a and the two columns of V ∈ R3×2 are
an orthonormal basis for the space orthogonal to the rotation axis. The image
coordinate W[k,f,n] of feature point n, at frame f , seen by camera axis k is thus

W[k,f,n] = P[k,:]

[
Ra,αf Vtf
01×3 1

]
S[:,n] = vec

([
Ra,αf Vtf
01×3 1

])T [
ST[:,n] ⊗P[k,:]

]T
, (2)

where the Kronecker product property vec (AXB) =
[
BT ⊗A

]
vec (X) has been

used in the second step. The values W[k,f,n] are interpreted as a third order
tensor. In contrast to [14], planar rigid motions are restricted to a five rather
than a 13-dimensional space (as we have seen in Sec. 2). Thus, the core tensor C ∈
R5×4×4, which captures the interactions between the three subspaces, becomes
in its flattened representation along the temporal mode

C(f) =


vec (I3)T 01×3 1

vec
(
aaT

)T
01×3 1

vec
(
[a]×

)T
01×3 0

02×9 VT 02×1


[
I3 ⊗

[
I3 03×1

]
09×4

04×12 I4

]
∈ R5×16 (3)
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and the data tensor is described as a Tucker tensor [15] decomposition1 W =
C ×k P×f M×n ST ∈ RF×2K×N . These equations can be derived by arranging
the values of Eq. (2) in matrix form W =

[
⇓f⇒k,n W[f,k,n]

]
, plugging in Eq. (1)

for the planar rigid motions, using Eq. (3) to properly combine the rigid motion
matrix with the Kronecker product of the points and camera matrices, and
defining the motion matrix as

M = [⇓f (cosαf , (1− cosαf ), sinαf , t
T
f )]. (4)

The resulting matrix is exactly the same as the data tensor flattened along the
temporal mode W =W(f) = MC(f)

[
S⊗PT

]
. The interested reader is referred

to related work [14,15] for more details on tensorial representations.

4 Ambiguities

Let QP =

[
RP tP
01×3 1

]
and QS =

[
RS tS
01×3 1

]
denote two affine transformations of

the global camera reference frame and the global point reference frame, respec-
tively. The factorization is obviously ambiguous

W[k,f,n] = P[k,:]Q
−1
P QP

[
Ra,αf

Vtf
01×3 1

]
QSQ−1S S[:,n]. (5)

In tensor notation, this equation looks like

W =
(
C ×k QP ×f QM ×n QT

S

)
×k PQ−1P ×f MQ−1M ×n

(
STQ−TS

)
, (6)

where transformations QP and QS which are restricted to similarity transforma-
tions inside the plane of motion can be compensated by a corresponding trans-
formation QM of the reference frame of the motion. In mathematical terms,
the overconstrained system C ×k QP ×f QM ×n QT

S = C can be solved exactly
for QM , i.e. QM = C(f)

[
Q−1S ⊗Q−TP

]
C∗(f) where A∗ denotes the Moore-Penrose

pseudo-inverse. Since the first three columns of MQ−1M should still lead to proper
rotations, the scaling factor of the similarity transformations of the cameras and
points must cancel each other. A reconstruction inside the plane of rotation is
thus unique up to two similarity transformations with reciprocal scaling (one
for the cameras and one for the points). Similarity transformations with re-
ciprocal scalings seem to be the only transformations which allow a solution to
C×kQP×fQM×nQT

S = C. This fact will be important later on in our algorithm:
Given a reconstruction inside the plane of rotation with proper algebraic struc-
ture, we are guaranteed that such a reconstruction is unique up to a similarity
transformation.

Transformations of the points or cameras outside the plane of rotation can not
be compensated by a transformation of the motion. A out-of-plane transforma-
tion of the cameras has to be compensated directly by a suitable transformation

1 ×k, ×f , and ×n indicate the mode-i product along the mode corresponding to the
camera matrix, the motion matrix, and the point matrix, respectively.
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of the points. Let Za,λ =
[
V a

]
diag (I2, λ)

[
V a

]T
be a scaling along the rota-

tion axis, R an arbitrary rotation matrix, and t‖ = aβ a translation along the
rotation axis. With the camera and point transformations

QP =

[
RZa,λ −RZa,λt‖
01×3 1

]
and QS =

[
Z−1a,λR

T t‖
01×3 1

]
(7)

it can be shown that Ca,V ×k QP ×n QT = CRa,RV where Ca,V denotes the core
tensor with rotation axis a and orthogonal complement V. Note that neither
the scaling nor the translation along the rotation axis influences the core tensor
or the motion matrix. Hence, there is a scaling and translation ambiguity along
the axis of rotation.

In the problem we are targeting, there are no point correspondences between
different cameras. In this situation there is a per camera scale and translation
ambiguity along the rotation axis. There is still only one global out-of-plane
rotation ambiguity: the transformation of the rotation plane is still linked to
the other cameras through the commonly observed planar motion, even in the
presence of missing correspondences. Fortunately, as we will see later, the scale
ambiguity along the rotation axis can be resolved by using orthogonality and
equality of norm constraints on the camera axes. The translation ambiguities
along the rotation axis however can not be resolved without correspondences
between different camera views. Nevertheless, by registering the centroids of the
points observed by each camera to the same height along the rotation axis, a
solution close to the ground truth can usually be recovered.

5 Closed-Form Solution

In contrast to a rank-13 motion subspace, one camera is sufficient in order to
span the complete 5 dimensional motion subspace of a planar motion. This leads
to the following idea: Intuitively, a separate reconstruction can be made for each
camera. These separate reconstructions are unique up to the ambiguities men-
tioned previously. This especially means that the reconstruction of each camera
restricted to (or projected onto) the plane of rotation is a valid similarity recon-
struction, i.e. the individual reconstructions are expressed in varying coordinate
reference frames which, however, only differ from each other by similarity trans-
formations. Using knowledge from the 5D-motion subspace, these reconstruc-
tions can then be aligned in a consistent world reference frame. If the additional
assumption is made that the two camera axes of each camera are orthogonal
and have equal norm (the norm can vary between different cameras) then the
coordinate frame of the reconstruction can be upgraded to a similarity frame in
all three dimensions. We thus end up with a consistent 3D-reconstruction.

There is a major drawback of the above algorithmic sketch. The fact that
all the cameras observe the very same rigid motion is only used in the final step
to align all the individual reconstructions. It is a desirable property that the
information from all the cameras should be fused right at the first stage of the
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W(f) M̂ Â

=

=

[
⊗

]
M C(f)

[
S ⊗ PT

]
Fig. 1. Visual representation of the rank-5 factorization. Missing data entries due
to missing correspondences between different cameras are depicted transparently.

algorithm in order to get a more robust reconstruction. Furthermore, in order to
compute the initial reconstruction of a camera, this camera needs to track at least
two points. If the camera tracks only one feature point, a reconstruction based
solely on this camera is not possible: at least two points are necessary to span the
5D-motion subspace. The algorithm which is presented in the upcoming sections
on the other hand does not suffer from these shortcomings. The algorithm fuses
the information from all the cameras right at the first stage and works even
when each camera tracks only one single point. Last but not least, the algorithm
provides a closed-form solution.

5.1 Rank-5 Factorization

In a similar spirit to [14], we can fuse the data from all the cameras in order
to compute a consistent estimate of the motion matrix. The data tensor Wk ∈
RF×2×Nk of each camera is flattened along the temporal mode and the resulting

matrices Wk = Wk
(f) = MC(f)Sk ⊗ PkT are concatenated column-wise in a

combined data matrix W = [⇒k Wk]. A rank-5 factorization (e.g. with singular
value decomposition) of this combined data matrix reveals the correct column

span span (M) = span
(
M̂
)

of the motion matrix

W = M̂Â =
[
⇓f cosαf 1− cosαf sinαf tf,1 tf,2

]︸ ︷︷ ︸
=M̂Q

C(f)
[
⇒k Sk ⊗PkT

]
︸ ︷︷ ︸

=Q−1Â

, (8)

where we have introduced the corrective transformation Q ∈ R5×5 in order to
establish the correct algebraic structure. This factorization separates the tem-
porally varying component (the motion) from temporally static component (the
points and the cameras). The factorization is possible since all the cameras share
the same temporally varying component as all of them observe the same rigid
motion. If all the cameras only track two points in total, the combined data ma-
trix W will then only consist of four columns and thus a rank-5 factorization is
obviously impossible. Luckily, we know that the first two columns of the motion
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matrix in Eq. (4) should sum to the constant one vector. Hence, only a rank 4
factorization of the data matrix W is performed, the resulting motion matrix
is augmented with the constant one vector M̂← [M̂,1F×1] and the second fac-

tor is adapted correspondingly Â ← [ÂT ,02N×1]T . The rest of the algorithm
remains the same.

The corrective transformation is computed in a piecewise (or stratified) way.
Specifically, the corrective transformation is split into three separate transfor-
mations Q = QtrigQ−1orientQ

−1
transl where the transformation Qtrig establishes the

correct trigonometric structure on the first three columns of the motion matrix,
Qorient aligns the orientations of the cameras in a consistent similarity refer-
ence frame, and Qtransl is related to correctly translate the reconstruction. The
individual steps are described in detail in the next sections.

5.2 Trigonometric Structure

The first three columns of Q = [q1,q2,q3,q4,q5] can be solved for in the fol-

lowing way: since M̂[f,:]qiq
T
i M̂T

[f,:] = M[f,i]
2 we have

M̂[f,:]((q1 + q2)(q1 + q2)T )M̂T
[f,:] = (cosαf + (1− cosαf ))

2
= 1 (9)

M̂[f,:](q1q
T
1 + q3q

T
3 )M̂T

[f,:] = cos2 αf + sin2 αf = 1. (10)

These observations lead to F constraints on symmetric rank-2 matrix q1q
T
1 +

q3q
T
3 , symmetric rank-1 matrix (q1+q2)(q1+q2)T , or symmetric rank-3 matrix

b(q1q
T
1 + q3q

T
3 ) + (1− b)(q1 + q2)(q1 + q2)T with b ∈ R:

1 = M̂[f,:]((q1 + q2)(q1 + q2)T )M̂T
[f,:] = M̂[f,:](q1q

T
1 + q3q

T
3 )M̂T

[f,:] (11)

= M̂[f,:](b(q1q
T
1 + q3q

T
3 ) + (1− b)(q1q

T
1 + q2q

T
2 ))M̂T

[f,:] (12)

These F equations are linear in the unknown symmetric matrices and result
in a one dimensional solution space (since there is a valid solution for any
b ∈ R). [16] shows how to extract the solution vectors q1, q2, and q3 from
this one dimensional solution space. Once this is done, the corrective transfor-
mation Qtrig =

[
q1 q2 q3

[
q1 q2 q3

]
⊥
]

is applied to the first factor M̂Qtrig

which establishes the correct trigonometric structure in the first three columns.
The inverse of this transformation is applied to the second factor Ã = Q−1trigÂ.
Note that the structure of the first three columns of the motion matrix should
not get modified anymore and hence any further corrective transformation must
have upper block-diagonal structure with an identity matrix of dimension 3 in
the upper left corner. The inverse of such an upper block-diagonal matrix has
exactly the same non-zero pattern, i.e.

QtranslQorient =

[
I3 Q3×2

02×3 I2

] [
I3 03×2

02×3 Q2×2

]
=

[
I3 Q3×2

02×3 Q2×2

]
. (13)
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5.3 Euclidean Camera Reference Frame

No more information can be extracted from the motion matrix and thus, we turn
our attention to the second factor Ã which after applying a proper transforma-
tion should have the following algebraic form

A =

[
I3 Q3×2

02×3 Q2×2

]
Ã = C(f)

[
⇒k Sk ⊗PkT

]
. (14)

This is a particularly tricky instance of a bilinear system of equations in Q3×2,
Q2×2, Sk, and Pk. Based on our experiences, even algebraic computer software
does not succeed in finding a closed-form solution. Nevertheless, we succeeded
in deriving manually a solution using geometric intuition and reasoning.

Projection onto Plane of Rotation Eq. (14) together with the known ma-

trix C(f) in Eq. (3) tells that Ã[4:5,:] =

[
⇒k 11×Nk

⊗
(
Pk

[:,1:3]VQ−T2×2

)T]
, which

means that the columns of Ã[4:5,:] contain the coordinates (w.r.t. the basis V)
of the projection of the rows of the camera matrices onto the plane of rotation.
These coordinates however have been distorted with a common, but unknown
transformation Q2×2. This observation motivates the fact to restrict the recon-
struction first to the plane of rotation. Such a step requires a projection of the
available data onto the plane of rotation. [16] shows that this can be done by
subtracting the second from the first row and keeping the third row of Eq. (14)[

1 −1 0
0 0 1

]
Ã[1:3,:] +

[
1 −1 0
0 0 1

]
Q3×2︸ ︷︷ ︸

=T2×2

Ã[4:5,:] (15)

=

[
vec (PV)T

vec
(
[a]×

)T] [⇒k

(
PVSk[1:3,:]

)
⊗
(
PVPk

[:,1:3]

T
)]

(16)

=

[
vec (PV)T

vec
(
[a]×

)T] [⇒k

(
PVSk[1:3,:]

)
⊗ (VQ2×2)

(
Q−1

2×2V
TPk

[:,1:3]

T
)]

. (17)

In the last step we have used PV = VQ2×2Q
−1
2×2V

T and the parenthesis in the

last term should stress out that for for all the cameras the term Q−12×2V
TPk

[:,1:3]

T

can be read off from Ã[4:5,:]. The unknowns of this bilinear equation are the points
and the 2-by-2 transformations T2×2 and Q2×2.

Per-Camera Reconstruction in the Plane of Rotation Eq. (17) describes
a reconstruction problem in a plane which is still bilinear. As with any rigid
reconstruction, there are several gauge freedoms. Specifically, the origin and the
orientation of the reference frame can be chosen arbitrarily2. In the planar case,

2 The first three columns of the motion matrix have already been fixed and the trans-
lation of the cameras has been lost by the projection step. Thus, there is only one
planar similarity transformation left from the two mentioned in Sec. 4.
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this means a 2D offset and the orientation of one 2D vector can be chosen freely.
In the following we will make use of the gauge freedoms in order to render
this bilinear problem in multiple sequential linear problems. The reconstruction
procedure described in the upcoming paragraphs could be applied to one single
camera. This would provide T2×2 and Q2×2 which could then be used to solve
for the points in the remaining cameras. However, increased robustness can be
achieved by solving the sequential linear problems for each camera separately
and aligning the results in a final step in a consistent coordinate frame. For each
camera, the gauge freedoms will be fixed in a different way which enables the
computation of a reconstruction for each camera. The reference frames of the
reconstructions then differ only by similarity transformations. This fact will be
used in the next section in order to register all the reconstructions in a globally
consistent reference frame.

In single camera rigid factorizations, the translational gauge freedoms are
usually chosen such that the centroid of the points matches the origin of the coor-
dinate system, i.e. 1

N S1N×1 = 0. We will make the same choice 1
Nk

Sk1Nk×1 = 0

on a per-camera basis. Let Ãk denote the columns of Ã corresponding to cam-
era k. By closer inspection of Eq. (17) and with the Kronecker product property
[AB]⊗ [CD] = [A⊗C] [B⊗D] we get[[

1 −1 0
0 0 1

]
Ãk

[1:3,:] + T2×2Ã
k
[4:5,:]

] [
1

Nk
1Nk×1 ⊗ I2

]
=

[
vec (PV)

T

vec
(
[a]×

)T
](

PVSk[1:3,:]
1

Nk
1Nk×1

)
⊗
(
PVPk

[:,1:3]

T
)

= 02×2. (18)

The last equation followed since the centroid has been chosen as the origin. The
above linear system consists of four linearly independent equations which can
readily be solved for the four unknowns in T2×2.

The remaining two gauge freedoms are due to the arbitrary choice of the
orientation of the coordinate frame inside the plane of rotation. These gauge
freedoms can be chosen s.t. the first row

(
1 0
)
Pk

[:,1:3]V of the kth camera matrix

equals the known row
(
1 0
)
Pk

[:,1:3]VQ−T2×2. Such a choice poses two constraints
on Q2×2(

1 0
)
Pk

[:,1:3]V =
(
1 0
) (

Pk
[:,1:3]VQ−T2×2

)
=
(
1 0
) (

Pk
[:,1:3]VQ−T2×2

)
QT

2×2. (19)

Knowing T2×2 as well as the first row of Pk
[:,1:3]V implies that the remaining

unknowns in every second column of Ãk (i.e. the columns which depend on
the first row) are only the points. This results in 2Nk linear equations in the
2Nk unknowns of the projected point coordinates PVSk[1:3,:]. After solving this
system, only the entries of Q2×2 are not yet known. The two linear constraints
of Eq. (19) enable a reparameterization with only two parameters Q2×2 = Q0 +
λ1Q1 +λ2Q2. Inserting this parameterization into Eq. (17) and considering only
every other second column (i.e. the columns corresponding to the second row of
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the camera) leads to a linear system in λ1 and λ2 with 2Nk linear equations.
The linear least squares solution provides the values for λ1 and λ2.

The above procedure works fine as long as every camera tracks at least two
points. Otherwise the computation of λ1 and λ2 in the final step will fail because
of our choice to set the mean to the origin. The coordinates of the single point
are then equal to the zero vector and hence, this single point does not provide
any constraints on the two unknowns. In order to avoid this problem we use the
following trick: instead of choosing the origin as the mean of the points which are
tracked by the camera currently under investigation, the origin is rather fixed
at the mean of the points of another camera. Such a choice is perfectly fine as
the origin can be chosen arbitrarily. The computation of T2×2 for camera k is
therefore based on the data of another camera k′ 6= k. This clever trick allows
to compute a reconstruction even for cameras which only track one single point.

Registration in a Common Frame Inside the Plane of Motion After the
previous per-camera reconstruction a camera matrix is known for each camera.
Let P̃k denotes its first three columns whose projection onto the plane of rotation
is correct up to a registration with a 2-by-2 scaled rotation matrix λkRk. On the
other hand, we also know the projections Pk

[:,1:3]VQ−T2×2 of the camera matrices
onto the plane of rotation up to an unknown distortion transformation Q2×2
which is the same for all the cameras. This implies P̃kVRkλk = Pk

[:,1:3]V and
thus

P̃kVVT P̃k,Tλ2k =
(
Pk

[:,1:3]VQ−T2×2

)
QT

2×2Q2×2

(
Q−12×2V

TPk
[:,1:3]

T
)

. (20)

This is a linear system in the three unknowns of symmetric QT
2×2Q2×2 and K

scale factors λ2k which is again solved in the least squares sense. Doing so provides
a least squares estimate of the three unknowns of QT

2×2Q2×2. An eigenvalue

decomposition EΛET = QT
2×2Q2×2 provides a mean to recover Q2×2 = ETΛ

1
2

which allows to express the projections of the camera matrices Pk
[:,1:3]PV =(

Pk
[:,1:3]VQ−T2×2

)
QT

2×2V
T onto the plane in one single similarity frame.

Orthogonality and Equality of Norm Constraints As has been previously
mentioned, the correct scaling along the rotation axis can only be recovered by
using additional constraints, like the orthogonality and equal norm constraints
on the two camera axes of a camera. These constraints will be used in the
following to compute the remaining projection of the camera matrix onto the
axis of rotation. Due to Pk

[:,1:3] = Pk
[:,1:3](PV +Pa) and PVPa = 0 we get λ2kI2 =

Pk
[:,1:3]P

kT
[:,1:3] = Pk

[:,1:3]PVPk
[:,1:3]

T
+ Pk

[:,1:3]PaPk
[:,1:3]

T
.

Thanks to the previous registration step, the projections Pk
[:,1:3]PV are known

for all cameras. As Pk
[:,1:3]PaPk

[:,1:3]

T
= Pk

[:,1:3]aaTPk
[:,1:3]

T
and replacing Pk

[:,1:3]a

by wk, the unknowns of the above equation become λk and the two components
of the vector wk. This results in K independent 2nd-order polynomial system
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of equations with 3 independent equations in the three unknowns wk and λk.
Straight-forward algebraic manipulation will reveal the closed-form solution to
this system (see [16] for details). Once wk is recovered, the camera matrix is given

by solving the linear system Pk
[:,1:3] [PV,a] =

[
Pk

[:,1:3]PV,w
k
]
. The solution of

the polynomial equation is unique up to the sign. This means that there is a
per-camera sign ambiguity along the axis of rotation. Note that this is not a
shortcoming of our algorithm, but this ambiguity is rather inherent due to the
planar motion setting. However, the qualitative orientations of the cameras w.r.t.
the rotation axis are often known. For example, the cameras might be known to
observe a motion on the ground plane. Then the axis of rotation should point
upwards in the camera images, otherwise the camera is mounted upside-down.
Using this additional assumption, the sign ambiguity can be resolved.

Using the orthogonality and equality of norm constraints, it is tempting to
omit the registration step in the plane of rotation and to directly set up the
system of equations

λ2
kI2 = Pk

[:,1:3]P
k
[:,1:3]

T
= Pk

[:,1:3]PVPk
[:,1:3]

T
+ Pk

[:,1:3]PaP
kT

[:,1:3] (21)

=
(
Pk

[:,1:3]VQ−T
2×2

)
QT

2×2Q2×2

(
Q−1

2×2V
TPk

[:,1:3]

T
)

+ wkwkT (22)

in the three unknowns of QT
2×2Q2×2, the 2K unknowns of wk, and the K

unknowns λ2k. Interestingly, these constraints on the camera axes are insufficient
to compute a valid matrix Q2×2 and valid vectors wk, even using non-linear local
optimization methods (there are solutions with residuum 0 which however turn
out to be invalid solutions). Moreover, experiments showed that this nonlinear
formulation suffers from many local minima. This observation justifies the need
for the registration step in the plane of motion.

Final Step Once the first three columns of the camera matrices are known in an
Euclidean reference frame, the first three rows in Eq. (14) become linear in the
unknowns Q3×2, S, and the camera translations. A least squares approach again
provides the solutions to the unknowns of this overdetermined linear system. The
linear system has a 4 +K-dimensional nullspace in the noisefree case: 4 degrees
of freedom due to the planar translational ambiguities (planar translation of the
points or the cameras can be compensated by the planar motion) and K degrees
of freedom for the per-camera translation ambiguities along the axis of rotation.

6 Results

If synthetic data is generated with affine cameras and without noise, the algo-
rithm expectedly finds the exact solution in closed-form, even for the case of only
two cameras each of them tracking one single point. Based on our experience
with synthetic data according to a more realistic setting (i.e. projective cam-
era models with realistic internal parameters, some noise and plausible planar
motions) we concluded that the robustness of the algorithm strongly depends
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Fig. 2. Reconstruction of a planarly moving box: The right image shows a close-
up view of the reconstructed structure (tags tracked by one specific camera share
the same color).

on the observed motion. This is actually an expected behavior. If the motion
clearly spans the 5D motion subspace, the algorithm works robustly. However, if
a dimension of this subspace is not explored sufficiently, noise will overrule this
dimension and the reconstruction will deteriorate.

As a proof of concept the algorithm has been applied to a real data sequence.
Fig. 2 shows the results of a real sequence with four cameras observing the pla-
nar motion of a rigid box. The translation ambiguity along the rotation axis has
been resolved s.t. the centroids of the front-facing tags share the same coordi-
nate along the axis of rotation. A template based tracker [17] has been used to
generate the feature trajectories. Each camera tracked between 10 to 20 points.
Even though some cameras actually tracked the very same points, the algorithm
was purposely not aware of these correspondences. Such hidden correspondences
allow to evaluate the accuracy of the reconstruction. Based on the overlapping
area of the 3D model of the tracked feature tags, we conclude that the algorithm
succeeds in computing an accurate reconstruction given the fact that the recon-
struction is based on the approximate affine camera model and the solution is
given in a non-iterative closed-form. The reprojection error of the closed-form
solution is 1√

F
∑

k Nk

‖W−MC(f)
[
⇒k Sk ⊗PT

k

]
‖F = 8.95 pixels (the resolution

of the cameras is 1920×1080). A successive nonlinear refinement step still based
on the affine camera model did not improve the reprojection error. This provides
evidence that most of the error is due to the discrepancy between the employed
affine camera approximation and the real projective cameras and not due to the
sub-optimal sequential steps of the closed-form solution.

7 Conclusions and Future Work

This paper presented an analysis of a planarly moving rigid object observed by
multiple static affine cameras. The theoretical insights gained thereby enabled
the development of an algorithm, which provides a closed-form solution to the
shape from motion reconstruction problem where no feature point correspon-
dences between the different camera views exist. The motion correspondence,
namely that all the cameras observe the same planar motion, was captured by a
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5D motion subspace. As future work, we plan to adapt the planar motion sub-
space constraint to a formulation with projective camera models. This probably
asks for iterative solutions for which the closed-form algorithm might provide a
good initialization. We also consider trying whether the rank-5 constraint could
be used as a means to temporally synchronize multiple camera streams.
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