
The Generalized Trace-Norm and its Application to Structure-from-Motion

Problems

Roland Angst Christopher Zach Marc Pollefeys
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Abstract

In geometric computer vision, the structure from motion

(SfM) problem can be formulated as a optimization prob-

lem with a rank constraint. It is well known that the trace

norm of a matrix can act as a convex proxy for a low rank

constraint. Hence, in recent work [7], the trace-norm re-

laxation has been applied to the SfM problem. However,

SfM problems often exhibit a certain structure, for example

a smooth camera path. Unfortunately, the trace norm re-

laxation can not make use of this additional structure. This

observation motivates the main contribution of this paper.

We present the so-called generalized trace norm which al-

lows to encode prior knowledge about a specific problem

into a convex regularization term which enforces a low rank

solution while at the same time taking the problem structure

into account.

While deriving the generalized trace norm and stating

its different formulations, we draw interesting connections

to other fields, most importantly to the field of compressive

sensing. Even though the generalized trace norm is a very

general concept with a wide area of potential applications

we are ultimately interested in applying it to SfM problems.

Therefore, we also present an efficient algorithm to optimize

the resulting generalized trace norm regularized optimiza-

tion problems. Results show that the generalized trace norm

indeed achieves its goals in providing a problem-dependent

regularization.

1. Introduction

Consider an optimization problem over a matrix-valued

variable X ∈ Rm×n which is convex except for a constraint

of the form rank (X) ≤ r. Facing this non-convex con-

straint there are two possibilities: Either using direct non-

linear non-convex optimization methods or convexifying

the non-linear rank constraint with a convex function. The

result of direct non-linear optimization highly depends on

the initial values and without any good initial guess there is

little hope to converge to a good solution. With a convex

relaxation of the rank the original problem becomes con-

vex and hence convex optimization is guaranteed to find

the optimal solution. This solution however is the solution

to a modified convex relaxed problem and might not equal

the optimal solution to the non-relaxed problem. There are

pros- and cons to either approach and we do not claim one

to be superior to the other for general problems. However,

for specific problems such as matrix completion problems

the convex relaxation has been shown to work surprisingly

well [15, 5], in theory as well as in practice. Recent re-

sults [9, 13] provide strong guarantees under which condi-

tions the solutions of the convex relaxation and the origi-

nal non-convex problem are equivalent. These observations

together with the previously mentioned convex relaxation

of the SfM problem based on the trace-norm [7] motivated

the present paper and we will thus focus in the upcoming

sections solely on convex relaxations of a non-convex rank-

constraint problem. Related work will be presented inter-

spersed throughout the paper since once the necessary back-

ground information is acquired and the notation is in place

it is simpler to draw parallels and to highlight differences to

related work.

2. Trace-Norm

The trace-norm of a matrix X ∈ Rm×n is defined as the

sum of the singular values of the matrix X

∥X∥∗ =
min(m,n)∑

i=1

σi(X),
where σi(X) denotes the ith singular value of X. What the

L1-norm is for vectors, the trace norm is for matrices. The

trace norm is also known as the min(m,n)-Ky-Fan norm

or the nuclear norm [10]. We will stick with the name trace

norm for reasons which will become clear shortly. The trace

norm is proportional to the the tightest convex lower bound

of the rank function over the set of matrices with spectral

norm smaller than β, i.e. the convex envelope of the rank

function rank (X) over the set {X ∈ R
m×n∣ ∥X∥

2
≤ β}
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is 1

β
∥X∥∗. The trace norm of a matrix X ∈ Rm×n can be

computed with a Semi-Definite Programming (SDP) formu-

lation (e.g. see [15])

∥X∥∗ = 1

2
min

X1,X2

(trace (X1) + trace (X2)) (1)

s.t. [X1 X

XT X2

] ⪰ 0m+n×m+n, (2)

where ⪰ denotes a generalized inequality constraint on the

cone of positive-semidefinite matrices S
m+n
+ . SDP prob-

lems are convex. As for example stated in [3] there are three

other formulations of the trace norm based on a factoriza-

tion of X into two matrices U and V

∥X∥∗ = min
X=UVT

∥U∥F ∥V∥F = min
X=UVT

∑
i

∥U∶,i∥2 ∥V∶,i∥2
= 1

2
min

X=UVT
(∥U∥2F + ∥V∥2F ) . (3)

3. Generalized Trace-Norm

The starting point for the generalized trace norm is the

following: the objective of the SDP-formulation of the trace

norm in Eq. (1) actually corresponds to an inner product be-

tween an identity matrix an the matrix appearing in Eq. (2)

∥X∥∗ = 1

2
min

X1,X2

⟨Im+n, [X1 X

XT X2

]⟩ (4)

s.t. [X1 X

XT X2

] ⪰ 0m+n×m+n. (5)

Here ⟨A,B⟩ = trace (ATB) denotes the Frobenius inner

product. We define for any matrix X ∈ Rm×n the general-

ized trace norm as

∥X∥∗D = 1

2
min

X1,X2

⟨D, [X1 X

XT X2

]⟩ (6)

= 1

2
min

X1,X2

trace(DT [X1 X

XT X2

]) (7)

s.t. [X1 X

XT X2

] ⪰ 0m+n×m+n, (8)

where D ∈ Sm+n+ is a positive definite matrix. Hence, com-

pared to the standard trace norm, the generalized trace norm

replaces the identity with a positive semi-definite matrix and

thereby introduces a non-uniform weighting, similar to a

weighted L1-vector norm.

It remains to be shown, that this definition fulfills the ax-

ioms of a norm over the vector space of Rm×n. If the matrix

D is not block-diagonal, then the formulation in Eq. (6) is

not a norm1. However, if the matrix D ∈ Sm+n++ is positive-

definite and is chosen block-diagonal with blocks Dr and

1This can be seen by a numerical experiment: choosing a random ma-

trix A, then for a norm it should hold ∥A∥ = ∥ −A∥, however this is not

true for random positive definite D.

Dc of sizes m ×m and n × n, respectively, then [2] shows

that this definition indeed is a valid norm. In the following

we thus restrict ourselves to such block-diagonal choices.

Note that since D ∈ Sm+n+ the diagonal blocks must also

belong to the positive semi-definite cones Dr ∈ S
m
+ and

Dc ∈ Sn+ . [2] also derives an equivalent formulation based

on the standard trace norm

∥X∥∗D = ∥CrXCT
c ∥∗ , (9)

where Cr = Λ
1

2

r V
T
r and Cc = Λ

1

2

c V
T
c are based on

the eigen-decompositions Dr = VrΛrV
T
r and Dc =

VcΛcV
T
c . This representation allows a first intuitive in-

terpretation of the generalized trace norm. The row and

column spaces of the matrix X are projected onto the

eigenspaces of Dr and Dc and scaled according to the

square roots of the eigenvalues of Dr and Dc. By designing

the norm on purpose in this way, the generalized trace-norm

is not a unitarily invariant norm and hence does not reduce

to a symmetric gauge function [10] applied to the singu-

lar values of X. The generalized trace norm can rather be

thought of as the analog for matrices of what the weighted

L1-vector norm is for vectors.

3.1. Factorized Formulation

The generalized trace-norm also allows a factorized in-

terpretation instead of the SDP interpretation given first. In-

deed, the SDP formulation in Eq. (6) is equivalent to the

factorized interpretation

∥X∥∗D = min
X=UVT

1

2
trace([UT VT ]D [U

V
]) . (10)

If D = Im+n, then Eq. (10) reduces to Eq. (3), i.e. a sum

over the squared Frobenius norms of the two factors U and

V. The generalized trace norm thus replaces the standard

inner product in the space of m+n×m+n matrices by the

weighted inner product ⟨., .⟩D. If the matrix D is chosen

block-diagonal with blocks Dr ∈ Sm+ and Dc ∈ Sn+ , then the

generalized trace norm reduces to

∥X∥∗D =min
U,V

1

2
(⟨U,U⟩Dr

+ ⟨V,V⟩Dc
) (11)

This representation shows that the generalized trace-norm

with block-diagonal matrix D has an interpretation as

working in two inner-product spaces with inner products⟨a,b⟩Dr
= aTDrb and ⟨c,d⟩Dc

= cTDcd in the range

and domain of the linear mapping induced by X, respec-

tively. From an algorithmic point of view, such a represen-

tation is useful for stochastic gradient based optimization

techniques which represent the unknown matrix explicitly

in a low-rank factorized form.



3.2. Relationship to Previous Work

According to our knowledge, concepts related to the gen-

eralized trace norm have appeared only sparsely in previous

work. For example, the consistency of the trace norm reg-

ularization with an L2-loss has been investigated by Bach

in [4]. This paper however addressed a different question

than we do. Specifically, it addresses the question of how

to balance a trace-norm regularization term and a L2-loss

term between measurements and an unknown matrix when

the number of measurements goes to infinity (the size of

the matrix stays constant). Hence, in contrast to the situ-

ation we are interested in, there are many more measure-

ments available than linear degrees of freedom. Bach also

showed in this paper that a least squares fit solely based on

the L2-loss term in order to derive weighting factors can be

used to derive stronger consistency results. To the best of

our knowledge, this is the only paper where a trace-norm

regularization term of the form of Eq. (9) has appeared.

However, in strong contrast to our contribution, this weight-

ing scheme has not been used as a general means to in-

clude prior knowledge about the specific problem at hand

but rather as a means to prove stronger consistency results

in the setting when the number of measurements approaches

infinity. The decomposition norms introduced in [3] are also

related to the generalized trace norm. The authors define

a regularization term w.r.t. any norm of the column vec-

tors U∶,i and Vj,∶ of the factorization X = UVT . How-

ever the case of arbitrary norms induced by an inner prod-

uct ⟨x,y⟩D = xTDy has not been investigated, the authors

have rather focused their attention to the case of choosing

the L2 norm in one vector space and the L1-norm in the

other. A recent paper about matrix completion [17] gener-

alized the trace norm by introducing for each of the terms∥Ui,∶∥2F and ∥Vj,∶∥2F in the factorized trace-norm formula-

tion of Eq. (3) an individual scaling. The insight, that this

actually corresponds to a diagonal choice for D has been

missing. Another distinction of our work is that the way in

which the generalized trace norm is derived and presented,

allows to draw interesting connections to related work such

as matrix completion and compressive sensing.

4. Trace-Norm Regularized M-Estimators

Let us assume we are given the measurements z ∈ Rm×1

and we are looking for a model W ∈ Rp×q with m << pq

which explains the measurements as accurately as possi-

ble. The accuracy is measured with a data cost functionL(W,z). The situation m << pq means that there are far

fewer measurements than actual degrees of freedom in our

model. Regularized M-estimators add a regularization term∥W∥ (usually a norm) in order to handle this situation

W∗ ∈ argmin
W

L(W,z) + µ ∥W∥ . (12)

For concreteness, the data cost function is assumed to be a

function ofA(W)−z whereA ∈ Rm×pq is a linear operator

relating the matrix valued unknown W to the measurements

z. Recent work has analyzed the situation when the regu-

larization is chosen to be the trace norm ∥W∥∗ [13, 15]. In

this paper we are interested in the case where the regularizer

corresponds to the generalized trace norm

W∗ ∈ argmin
W

L(A(W) − z) + µ ∥W∥∗D . (13)

The immediate question is: what is the influence of the

block-diagonal matrix D and how should it be chosen? In

order to answer these questions we appeal to a Bayesian in-

terpretation of the generalized trace norm.

4.1. Bayesian Interpretation

The representation in Eq. (11) is related to a generalized

version of the Bayesian probabilistic matrix factorization

[16]. There, a Bayesian hierarchical model is introduced

which represents the unknown matrix W = UVT in a fac-

torized form. Zero-mean spherical Gaussian priors are put

on the unknown factors U and V. It can be shown that the

negative log-posterior distribution exactly corresponds to an

M-estimator with a L2-loss function and a standard trace

norm regularizer. Instead of putting a N(0,1) iid. prior on

each element of the matrix factors U and V, we allow for

correlations between the entries. Thus the matrix D can be

thought of as a precision matrix for a Gaussian prior on the

space of m + n ×m + n matrices. If the matrix D is cho-

sen block-diagonal, then the row and column subspaces are

uncorrelated and hence due to the Gaussianity independent.

This representation is very flexible, as it allows to build

in prior knowledge about the low rank matrix. If we have

prior knowledge about the row- and columns subspaces of

the unknown matrix then this prior knowledge can be used

to define the block-diagonal weight matrices Dr and Dc.

Since D−1r and D−1c can be thought of as covariance matri-

ces the generalized trace norm allows to penalize variations

along certain directions less than along other directions. As

we will see in the experimental section, we can for example

impose smooth subspaces while at the same time favoring

low-rank matrices. In contrast to the standard trace norm

which penalizes all the directions in the vector space of ma-

trices {X ∈ Rm×n} uniformly, the generalized trace norm

enables non-uniform regularization. It can be expected that

with this non-isotropic penalization taking prior knowledge

about the problem at hand into account the convex relax-

ation of the rank function will be stronger.

In summary, the generalized trace norm allows to com-

bine more flexible subspace priors with a low-rank prior.

The formulation still results in a convex problem which can

be solved efficiently and globally optimal by any method of

choice.



4.2. Change of Variable

If the weight matrices Dr and Dc are non-singular then

the generalized trace norm is a true norm (otherwise if at

least one of them is singular the generalized trace norm is

only a semi-norm). In this case, the problem in Eq. (13)

can be rewritten in the following way. Due to Eq. (9) we

know that ∥W∥∗D = ∥CrWCT
c ∥∗. Let us introduce the

new variable W̃ = CrWCT
c and reparameterize Eq. (13)

w.r.t. this variable

W̃∗ ∈ argmin
W̃

L(A(C−1r W̃C−Tc ) − z) + µ ∥W̃∥∗ . (14)

The variable we are actually interested in can be recovered

by computing W = C−1r W̃∗C
−T
c . This problem formula-

tion replaced the generalized trace norm with an ordinary

trace-norm regularization. However, the data term now de-

pends on the matrices Cr and Cc. The formulation in

Eq. (14) is equivalent to Eq. (13). However, the reformu-

lation has algorithmic consequences as we will see shortly.

This insight of the equivalence between the generalized

trace-norm and the standard trace-norm with a reweighted

data term is quite interesting in its own right. The matrix

representation of the linear operator can absorb the weight

matrices Ã = A[C−1c ⊗C−1r ] and hence we are left with

the data cost L(Ã(W̃) − z). Recent results in compressive

sensing [9, 13] are based on conditions which the linear op-

erator appearing in the trace-norm regularized M-estimator

framework has to meet in order to be able to recover the

true low-rank solution with high probability. The previous

derivation thus shows that the generalized trace norm can be

used to modify this linear operator and hence we might ex-

pect the probability of successful low-rank matrix recovery

to increase. As potential future work it might be interesting

to follow this line of reasoning in order to establish quanti-

tative statements for the generalized trace norm.

5. Application to Projective SfM

Even though the generalized trace norm is a very gen-

eral concept with connections to compressive sensing, ma-

trix completion, collaborative filtering, and general low-

rank problems, we exemplify its power on a very specific

computer vision problem, namely the so called Structure-

from-Motion (SfM) problem. This problem deals about re-

covering the 3D structure from several projections of 3D

points into multiple camera planes. Let the camera matrix

at frame f be Pf ∈ R
3×4 and the projective coordinates

of the nth feature point be sn ∈ R
4×1. Then the projec-

tion into the camera image plane is given by the projective

equation λf,nxf,n = Pfsn, where xf,n = (uf,n, vf,n,1)T
denotes the homogeneous coordinates of the given image

observation. The goal of SfM is to recover the projective

depths λf,n from several image observations of the same

3D points at different points in time. Let F denote the

total number of frames and N the total number of points.

All the observations from all the points at all the frames

are concisely described by introducing the stacked2 cam-

era matrix P = [⇓f Pf ] ∈ R
3F×4, the structure matrix

X = [⇒n sn]T ∈ RN×4, the combined observation matrix

x = [⇓f⇒n (uf,n, vf,n,1)T ] ∈ R3F×N and the combined

projective depth matrix λ = [⇓f⇒n λf,n] ∈ RF×N . Then

we get the matrix equation

[λ⊗ 13×1]⊙ x = PXT =W ∈ R3F×N , (15)

where ⊗ denotes the Kronecker product and ⊙ denotes the

Hadamard product3. This problem is an instance of an affine

rank minimization problem

min
W,λ

rank (W) s.t. W = [λ⊗ 13×1]⊙ x. (16)

Surprisingly, the convex relaxation of this problem with the

trace-norm has only recently been introduced [7]. We refer

to [1, 14, 18, 8, 7] and references therein for other, mostly

iterative approaches to solve this low-rank SfM problem.

Here, we are interested in the behavior of the convex re-

laxation using the generalized trace norm. But firstly, we

have to note that the formulation in Eq. (16) is ambiguous.

Specifically there is a F + N -dimensional solution space

since the camera matrices and the points are projective en-

tities and hence only defined up to scale. This can easily

be seen by recalling Lemma 5.1.2 in [10] which establishes

the commutativity of the Hadamard product with diagonal

matrices. Applied to our problem this looks like

[DP ⊗ I3]PXTDX = [[[DP ⊗ I3] [λ⊗ 13×1]DX]⊙ x] ,
with arbitrary diagonal matrices DP ∈ R

F×F and DX ∈
R

N×N . Applying the Kronecker product property on the

right hand side we get

[DP ⊗ I3]PXTDX = [DPλDX ⊗ 13×1]⊙ x, (17)

Therefore λ is only unique up to a left- and right-

multiplication with a diagonal matrix.

5.1. Avoiding Trivial Solutions

Without any further constraints, the optimal solution will

lead to the trivial solution λ = 0F×N . In order to prevent this

trivial solution, additional constraints on λ are required. In

the past, the row- and column sum have been constrained

while at the same time enforcing non-negative entries

λ ≥ 0F×N , λ1N×1 = c ∈ RF×1, λT1F×1 = r ∈ RN×1. (18)

2The arrows with sub-indices denote the way in which several matrices

are stacked w.r.t. to each other.
3The Hadamard product is the element-wise multiplication between

two matrices of the same size



Such a constraint set is known as the transportation poly-

tope in the operations research community. The orientation

of this transportation polytope depends upon the choice of

c and r. Note that the equality constraints are not indepen-

dent, since the sum over the column sums has to equal the

sum over the row sums and hence, the equality constraints

fix F +N − 1 degrees of freedom. Remember that there is

a F + N dimensional variety of possible rank-4 solutions.

The affine equality constraints of the transportation poly-

tope slice through this F +N dimensional variety and cut

out a 1D variety of possible rank-4 factorizations. A proper

choice of c and r is crucial for the success of the trace-norm

relaxation. Usually the choice c = N1F×1 and r = F1N×1

is made. However, based on several experiments with syn-

thetic data we concluded that such a choice can often result

in a bad convex relaxation. Instead, we propose to replace

the transportation polytope constraints Eq. (18) by the sin-

gle scalar equality constraint 1T
F×1λ1N×1 = FN ∈ R, which

can be thought of as fixing the scale of the overall recon-

struction. The intuition is that the algorithm should figure

out the optimal scaling on its own. Our experiments showed

that this single equality constraint does only lead to the triv-

ial or to an almost trivial solution with a large fraction of the

entries in λ set to zero for really challenging data. If such a

situation is encountered additional constraints (e.g. λ ≥ 0.1)

can still be introduced in our formulation.

5.2. SDP Formulation for Inexact Measurements

The generalized trace norm minimization problem can

be formulated as a standard SDP problem. Hence, any off-

the-shelf SDP solver could be used to find the minima of the

convex problem. Standard SDP solvers are usually based on

second-order interior point methods which enjoy quadratic

convergence near the minimum. However the cost per itera-

tion of these methods is prohibitively high for large matrices

and hence standard interior-point solvers can only be ap-

plied to small-sized problems. This is why only small-sized

problems could have been solved in [7]. Due to the famous

Netflix challenge, an increased interest in solvers for ma-

trix completion problems has been observed (see [11, 12]

and references therein). These solvers are based on first-

order methods and do not require solving a costly linear sys-

tem involving the Hessian matrix in each iteration. These

solvers have solved matrix completion problems with ma-

trix sizes up to 10000 × 10000 and 105 observed entries in

about 2.5 hours [12]. The algorithm we are going to present

makes use of the same underlying building blocks (espe-

cially the soft-thresholding operation) and hence also scales

to thousands of image measurements. Unfortunately, the

matrix completion solvers are tailored to the very specific

linear equality constraints of the matrix completion prob-

lem and our problem formulation has more general linear

equality constraints. Moreover, existing solvers for matrix

completion problems or robust PCA are either based on a

pure L1-noise model or on a pure L2-noise model. A more

suitable choice for our purposes is a robust cost function,

like the Huber cost function

F (E) = ∥E∥ǫ =∑
i,j

∣Ei,j ∣ǫ where ∣e∣ǫ =
⎧⎪⎪⎨⎪⎪⎩

∣e∣2

2ǫ
∣e∣ < ǫ

∣e∣ − ǫ
2
∣e∣ ≥ ǫ .

Therefore, we propose to minimize the following cost func-

tion with a first-order primal-dual algorithm (see Alg. 1)

min
W,λ
∥W∥∗Cr,Cc

+ α ∥E∥ǫ (19)

s.t. E =W − [λ⊗ 1d×1] ⊙ x (20)

1T
F×1λ1N×1 = FN . (21)

The matrix-size-normalized trace-complexity measure pre-

sented in [17] suggests choosing α proportional to
√
dFN .

Such a choice is also according to the consistency condi-

tions derived in [4] and hence α is always chosen propor-

tional to
√
dFN in our formulation.

6. Primal-Dual Proximal Optimization

Proximal point optimization methods are based on ap-

plying proximal operators to sub-problems of the origi-

nal problem at each iteration. Applied to the problem in

Eq. (19) this requires the proximal operator of the gener-

alized trace-norm. It is non trivial to derive this operator.

However, we can side-step this issue by appealing to the

equivalent formulation based on Eq. (14) and rather solve

min
W̃,λ

∥W̃∥
∗
+ α ∥E∥ǫ (22)

s.t. E =C−1r W̃C−Tc − [λ⊗ 1d×1] ⊙ x (23)

1T
F×1λ1N×1 = FN . (24)

This formulation only requires the proximal operator for the

standard trace norm which is defined as the solution to the

problem (see [12])

X∗ = argmin
X

τ ∥X∥∗ +
1

2
∥X −A∥2F . (25)

The well-known closed-form solution to this problem is

the soft-thresholding given in Alg. 2. The projection op-

erator of λ into the feasible region defined in Eq. (24)

can be derived with Lagrange multipliers and is given in

Alg. 3 (the Lagrange multipliers are denoted y in this al-

gorithm). The proximity operator for the dual variables

q is simply an element-wise clamping of the entries of

q to a maximal absolute value of α. The complete al-

gorithm is summarized in Alg. 1 and we refer the inter-

ested reader to [6] for more details about proximal split-

ting techniques. The equality constraints in Eq. (23) are



Algorithm 1: First-Order Primal-Dual Algorithm

Data: L, α, ǫ

input : Linear Equality Constraint Matrix: L ∈ Rm×dFN+m;

Weight parameter: α ∈ R; Robust Huber cost function

parameter: ǫ ∈ R; Time step sizes τσ < 1

∥L∥2op

output: Minimizer W and λ for problem 22

1 // Initialization:

2 q0 = 0m×1, λ0 = 1m×1,W0 = 0dF×N ;

3 while not converged do

4 // Primal Variable Update:

5 (vec (W̃)
vec (λ̃) ) = (

vec (Wt)
vec (λt) ) − τLTqt ;

6 // Primal Variable Update:

7 Wt+1 = ProxTrace(W̃, τ) // Alg. 2 ;

8 λt+1 = ProxFeasible(λ̃) // Alg. 3 ;

9 // Reflection step:

10 Ŵ = 2Wt+1 −Wt ;

11 λ̂ = 2λt+1 − λt ;

12 // Dual Variable Update:

13 q̃ = 1

1+σǫ
α

(qt + σL(vec (Ŵ)
vec (λ̂) )) ;

14 qt+1 = ProxBox(q̃,α) ;

15 t = t + 1 ;

16 end

Algorithm 2: Soft-Thresholding for Trace-Norm

Data: A, τ

input : Matrix to approximate: A ∈ RdF×N ; soft-thresholding

parameter: τ

output: Soft-thresholded solution for Eq. (25): W∗

1 UΣVT = svd(A) ;

2 Σ̃ = max(Σ − τ,0) ;

3 X∗ =UΣ̃VT ;

Algorithm 3: Projection Operator into Feasible Region

input : Vector to approximate: a; Linear equality constraint

matrix: M; Right-hand side of equality constraints: b

output: Closest point to a in feasible region:

x∗ = argminx
1

2
∥x − a∥2

2
s.t. Ax = b.

1 (x∗
y∗
) = [ I −MT

M 0
]† (a

b
) ;

linear in W̃ and λ and hence can be written in the form

vec (E) = e = L (w̃T ,vec (λ)T )T , where w̃ = vec (W̃)4.

For our problem, the matrix L ∈ RdFN×dFN+FN looks like

L = [C−1c ⊗C−1r ,−diag (x) [IFN ⊗ 1d×1]] .
Performance Improvements: The pseudo-inverse

of the projection operator into the feasible region stays

constant throughout all the iterations and could be pre-

computed once and for all. However, even though the ma-

trix is highly sparse, the matrix generally becomes dense

4vec (A) denotes the vectorization of a matrix into a vector by stacking

all its columns below each other

after taking its pseudo-inverse which poses a problem

for large problem sets. Hence, instead of pre-computing

the pseudo-inverse we rather pre-compute a sparse LU-

decomposition which is guaranteed to stay sparse. Then

in each iteration, a sparse LU-problem needs to be solved

which can be done very efficiently. If the data is incom-

plete, i.e. if there are missing entries in our input data ma-

trix x (maybe due to occlusions or tracking failure), there

is no need to introduce a full F -by-N matrix for the un-

known projective depths. We only need to keep track of

those projective depths λf,n which corresponds to visible

points. Therefore we put all these entries in one single m-

vector where m denotes the number of observations. For

simplicity, this vector is still called λ in Alg. 1. In this case,

the linear equality constraint matrix L of course only con-

sists of those rows corresponding to observed points. There

is one drawback of the formulation in Eq. (22) compared

to Eq. (19). The equality constraints in Eq. (20) would

lead to a highly sparse matrix L, the equality constraint in

Eq. (23) however lead to a dense first block in L due to the

Kronecker-product C−1c ⊗C−1r . For large datasets this ma-

trix can become huge. Luckily, there is no need to store the

Kronecker-product: instead the Kronecker-product prop-

erty vec (C−1r W̃C−Tc ) = [C−1c ⊗C−1r ] w̃ is used in step 5

and 13 of Alg. 1.

Additional Insights: First order proximal methods are

known to converge quickly at the beginning. When us-

ing L1-error terms however, these methods often oscillate

around the true optimum and only slowly converge towards

this optimum due to the non-differentiability of the L1-

norm at 0. The robust Huber cost function replaces the L1-

error around the origin with a L2-penalty which is differen-

tiable. Hence, the Huber cost function is not only a more

appropriate model for outliers and inliers contaminated by

Gaussian noise it also leads to less oscillations and hence

faster convergence.

7. Experiments

Synthetic Experiments The robustness of factorization

approaches, and actually of any SfM approach, is known

to largely depend on the motion. With a larger variation in

camera poses, the robustness of SfM method increases at

the price of a more difficult feature point matching stage.

In our synthetic experiments, we have generated realistic

projections of feature points based on parameters of a real

camera. The camera internal calibration matrix is generated

with zero skew, square pixels, principal point in the cen-

ter of the image, a focal length of 10mm, and a resolution

of 1920-by-1080. In order to generate smooth camera mo-

tions, the external calibration matrices are based on spline

interpolated camera rotations and translations. The mean of

the camera centers is chosen at (8,0,0) an varies smoothly

along a spline curve with 10 uniformly sampled control



(a) Spatial Setup
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Figure 1. Synthetic experiment: In Fig. 1(a) the spatial configuration of the cameras and points is shown whereas Fig. 1(b) shows the

observed input data (green) and the reprojection of the estimated points (in red (blue) projections corresponding to observed (missing)

entries) for all the frames. The smooth trajectories are clearly visible. Our approach achieves an error with a sub-pixel accuracy of 0.2

pixels. Fig. 1(c) shows the weighting of the DCT basis components. The matrix Cr is chosen such that the columns of W (which

correspond to 3D point trajectories) are transformed into a three-fold Direct Cosine Transform (DCT) basis (one DCT basis for each (x,y,z)

component). Motivated by the fact that natural data follows a power law decay rate in a DCT basis (e.g. also used for jpg-compression)

we have chosen an exponential weighting scheme for the DCT basis vectors. As shown in the image, smooth directions in the DCT are

penalized less heavily than non-smooth ones.

points in [6,10] × [−2,2] × [−2,2] throughout the motion.

The cameras are oriented such that the principal axis always

points to the origin and rotations around the principal axis

are limited to ±25 degrees again smoothed with a spline in-

terpolation. 100 camera poses have been sampled from the

resulting spline interpolation curves. 20 points with a uni-

form distribution in a cube of size [−5,5]×[2,2]×[2,2] are

generated in order to simulate realistic variations in depth.

Fig. 1(a) shows the resulting spatial setup. Fifty percent

of the entries in the resulting data matrix are marked uni-

formly at random as missing. No noise is added in order

to facilitate the search for optimal parameters of the Hu-

ber cost function ǫ (ǫ is fixed to zero) and of the data fi-

delity trade-off α. The standard projective factorization ap-

proach with ordinary trace norm regularization (which has

also been presented in [7]) failed to recover the underlying

structure for whatever choice of parameter value α. The

smallest reprojection error we could achieve was 27.5 pix-

els. Note that the parameter α can always be chosen such

that the resulting SDP formulation will indeed provide a

rank-4 solution. Our experiments however show that such

a low-rank solution is not equal to the true underlying low

rank matrix: in order to get a rank-4 solution the trace norm

regularization term has to be large enough compared to the

data term which on the other hand implies a stronger regu-

larization of the unknown matrix uniformly in all directions.

This uniform penalization property is exactly the drawback

of the standard trace norm. Either we choose a small α

and get a highly regularized rank-4 matrix or we choose a

larger α which leads to a full rank solution to the SDP prob-

lem. In either way, the solution of the convex relaxation

is not the one we are looking for. Adding weight matri-

ces Cr and Cc introduces non-uniform regularization, i.e.

not all directions are penalized in the same way. We have

chosen the matrix Cr such that smooth directions are penal-

ized less heavily than non-smooth ones (see Fig. 1(c)). The

matrix Cc down-weights the direction 11×N by a factor of

roughly 4 since we already know that this direction should

be present in our solution (this direction corresponds to the

properly scaled homogeneous coordinates of the points, i.e.

the last row of XT ). With such a choice the generalized

trace norm formulation successfully recovered the struc-

ture up to a sub-pixel reprojection error of 0.2 pixels (see

Fig. 1(b) for a visual depiction of the measured input points

and the recovered estimates). Note that for a fair compari-

son, all the reprojection errors we state are indeed based on

the best rank-4 factorization in the Frobenius-norm sense

of the SDP solution and not directly on the potentially full-

rank SDP solution. This is important since especially for

the standard trace norm regularized solutions, there might

be quite a difference between the SDP solution and its best

rank-4 approximation. Running the very same experiment

with Gaussian noise with a standard deviation of 0.5 (2)

pixels changed the average reprojection error of our method

with the choice ǫ = 0.5 (ǫ = 2) for the Huber cost threshold

to 0.6 (2.5) pixels. The algorithm is implemented in Matlab

(single-threaded) on a Core i7 740QM and needs 0.023s per

iteration, the algorithm converged after 1100 iterations for

a 600 × 50 matrix with 50% missing entries. This is orders

of magnitude faster than interior point solvers.

Real World Data As in [7], the Dinosaur Oxford data

sequence has been used for verification purposes on a real-

world data sequence. Only those points which were visible

in at least 10 frames have been considered. This resulted

in a sequence with F = 17 frames and N = 47 points with

roughly 30 percent of missing entries. Exactly the same

weight matrices as for the synthetic data experiment have

been chosen. The robust Huber parameter has been set to
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(b) Reprojection Error

Figure 2. For the dinosaur sequence, our approach leads to an av-

erage reprojection error of 0.95 pixels which is a reduction by a

factor of two compared to the standard trace-norm regularized for-

mulation.

a 2 pixel threshold. Our method achieves an average re-

projection error of 0.95 pixels whereas the standard trace

norm regularization achieves a reprojection error of 1.84

pixels. Hence, we get a reduction by a factor of two (see

also Fig. 2). Note that the full dinosaur sequence has a very

strong band diagonal pattern of known entries. Such a pat-

tern proved to be very challenging for the SDP relaxations

we considered in this paper. We leave it as an open question

for future work to address the issue of strong band-diagonal

patterns of known entries.

8. Conclusion and Future Work

This paper presented a generalized trace norm which al-

lows to encode prior knowledge about a specific problem

at hand into a convex regularization term which enforces a

low rank solution while at the same tame taking the spe-

cific problem structure into account. We have exemplified

the generalized trace norm on the projective SfM factoriza-

tion problem where it was shown that the standard trace

norm regularization failed whereas the generalized trace

norm succeeds in finding the correct rank-4 solution. As

expected the generalized trace norm with its built-in prior

knowledge can indeed handle more missing entries. From

an algorithmic point of view, an efficient first-order algo-

rithm for generalized trace-norm regularized problems has

been presented which can handle considerably larger prob-

lems than previous work. In future work, we would like to

perform more extensive quantitative evaluations based on

varying noise levels, fraction of missing entries, and out-

liers. Recently, new results for M-estimators of the form in

Eq. (12) with trace-norm regularization have been derived

[13, 9] which tell that if the operator A fulfills certain con-

ditions then the trace-norm regularized convex problem will

provide the correct low-rank solution with high probability.

We plan to investigate whether similar results can be stated

for the operator appearing in the projective SfM formulation

with a generalized trace norm regularization.
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