
To appear in International Journal of Computer Vision

Multilinear Factorizations for Multi-Camera Rigid Structure from
Motion Problems

Roland Angst ⋅ Marc Pollefeys

Received: January 28, 2011 / Accepted: August 27, 2012

Abstract Camera networks have gained increased impor-
tance in recent years. Existing approaches mostly use point
correspondences between different camera views to calibrate
such systems. However, it is often difficult or even impossible
to establish such correspondences. But even without feature
point correspondences between different camera views, if
the cameras are temporally synchronized then the data from
the cameras are strongly linked together by the motion corre-
spondence: all the cameras observe the same motion.

The present article therefore develops the necessary the-
ory to use this motion correspondence for general rigid as
well as planar rigid motions. Given multiple static affine cam-
eras which observe a rigidly moving object and track feature
points located on this object, what can be said about the
resulting point trajectories? Are there any useful algebraic
constraints hidden in the data? Is a 3D reconstruction of the
scene possible even if there are no point correspondences
between the different cameras? And if so, how many points
are sufficient? Is there an algorithm which warrants finding
the correct solution to this highly non-convex problem?

This article addresses these questions and thereby in-
troduces the concept of low-dimensional motion subspaces.
The constraints provided by these motion subspaces enable
an algorithm which ensures finding the correct solution to
this non-convex reconstruction problem. The algorithm is

Roland Angst
ETH Zürich
Universitätstrasse 6
CH-8092 Zürich
Tel.: +41-44-632-06-38
E-mail: rangst@inf.ethz.ch

Marc Pollefeys
ETH Zürich
Universitätstrasse 6
CH-8092 Zürich
Tel.: Tel: +41-44-632-31-05
E-mail: marc.pollefeys@inf.ethz.ch

based on multilinear analysis, matrix and tensor factoriza-
tions. Our new approach can handle extreme configurations,
e.g. a camera in a camera network tracking only one single
point. Results on synthetic as well as on real data sequences
act as a proof of concept for the presented insights.

Keywords Computer Vision ⋅ 3D Reconstruction ⋅ Structure
from Motion ⋅ Multilinear Factorizations ⋅ Tensor Algebra

1 Introduction

1.1 Related Work and Motivation

Factorization-based solutions to the structure from motion
(SfM) problem have been heavily investigated and extended
ever since Tomasi’s and Kanade’s seminal work about rigid
factorizations [Tomasi and Kanade, 1992]. Such factorization
based approaches enjoy interesting properties: e.g.given an
almost affine camera these techniques provide an optimal,
closed-form1 solution using only non-iterative techniques
from linear algebra. The factorization approach, which is
based on the singular value decomposition of a data matrix,
has been further extended to multi-body motion segmenta-
tion [Tron and Vidal, 2007], to perspective cameras [Sturm
and Triggs, 1996], non-rigid objects [Bregler et al, 2000;
Torresani et al, 2001; Brand, 2001, 2005; Wang et al, 2008],
and articulated objects [Yan and Pollefeys, 2008; Tresadern
and Reid, 2005]. More flexible methods which can deal with
missing data entries in the data matrix have been proposed

1 Throughout this paper, the term closed-form solution denotes a
solution which is given by following a fixed number of prescribed, non-
iterative steps. Solutions provided by algorithms which iteratively refine
a current best guess are thus not closed-form solutions. Stretching the
notion of closed-form solutions a little further, algorithms involving
matrix factorization steps such as the singular value decomposition will
still be considered as closed-form, even though nowadays such matrix
decompositions are often implemented iteratively.

http://www.springer.com/computer/image+processing/journal/11263

2 Roland Angst, Marc Pollefeys

in order to overcome shortcomings of singular value based
decompositions which can not cope with such situations [Bre-
gler et al, 2000; Hartley and Schaffalitzky, 2004; Wang et al,
2008; Guerreiro and Aguiar, 2002]. These approaches are
all based on a method known as the alternating least squares
method which is a well-known algorithm in the multilinear
algebra community (a short introduction to this method will
be given in Sec. 10).

We therefore propose in Sec. 4 to model the data as a
tensor rather than a matrix because this provides valuable
insight into the algebraic structure of the factorization and al-
lows to draw from tensor decomposition techniques in related
fields. By doing so rigid factorizations can be extended from
the monocular setting to the multi-camera setup where the
cameras are assumed to be static w.r.t. each other and to be
well approximated with an affine camera model. At this point
we would like to mention that there is a duality in the motion
interpretation: static cameras observing a moving rigid object
are completely equivalent to a moving rigid camera rig in
an otherwise static rigid world. Therefore, all our reasonings
also apply to the case of a moving rigid camera rig. Several
methods [Torresani et al, 2001; Bue and de Agapito, 2006]
already extended the factorization approach to a two-camera
setup and Svoboda et.al.[Svoboda et al, 2005] proposed a pro-
jective multi-camera self calibration method based on rank-4
factorizations. Unfortunately, these methods all require fea-
ture point correspondences between the camera views to be
known. Computing correspondences across a wide baseline
is a difficult problem in itself and sometimes even impossible
to solve (think of two cameras which point at two completely
different sides of the rigid object or of two cameras attached
to a camera rig whose field of view do not intersect at all).

Sequences from two camera views have also been investi-
gated [Zelnik-Manor and Irani, 2006] in order to temporally
synchronize the cameras or to find correspondences between
the camera views. Non-factorization based methods have
been proposed to deal with non-overlapping camera views,
e.g.hand-eye-calibration [Daniilidis, 1999] or mirror-based
[Kumar et al, 2008]. These methods make strong assumptions
about the captured data of each camera since in a first step,
a reconstruction for each camera is usually computed sepa-
rately. Wolf’s and Zomet’s approach [Wolf and Zomet, 2006]
is most closely related to ours. In this work, a two-camera
setting is investigated where the points tracked by the second
camera are assumed to be expressible as a linear combination
of the points in the first camera. This formulation even covers
non-rigid deformations. However, the available data from the
two cameras are treated asymmetrically and are not fused
uniformly into one consistent solution. Even worse, if the
first sequence can not provide a robust estimate of the whole
motion and structure on its own then this method is doomed
to failure. In contrast, our method readily fuses partial obser-
vations from any number of cameras into one consistent and

more robust solution. The monocular structure from planar
motion problem has previously attracted some interest [Li
and Chellappa, 2005; Vidal and Oliensis, 2002]. However,
these approaches either resort to iterative solutions or require
additional information, like the relative position of the plane
of rotation w.r.t. the camera.

1.2 Paper Overview

The present article targets the difficult situation where no fea-
ture point correspondences between different camera views
are available or where it is even impossible to establish such
correspondences due to occlusions: each camera is thus al-
lowed to track its own set of feature points. The only available
correspondence between the cameras is the motion correspon-
dence: all the cameras observe the same rigid motion. This
article presents a thorough analysis of the geometric and al-
gebraic structure contained in 2D feature point trajectories in
the camera image planes. It unifies our previous analysis for
general rigid motions [Angst and Pollefeys, 2009] with our
analysis of planar rigid motion [Angst and Pollefeys, 2010].
Planar motions are probably the most important special case
of rigid motions. Vehicles moving on the street, traffic surveil-
lance and analysis represent prominent examples. Even data
from a camera rig mounted on a moving car behaves accord-
ing to the above described setting: the camera rig can be
considered as stationary and the whole surrounding world
as a moving rigid object. Because the car is moving on the
ground plane, the motion is restricted to a planar motion.

We decided to use a tensor-based formulation of the affine
SfM factorization problem. The reasons which have lead to
this decision will be explained shortly in Sec. 1.3. For the
specific SfM problem at hand, there are two major insights
gained by such a tensorial formulation:

i) As a theoretical contribution, the formulation readily re-
veals that any trajectory seen by any camera is restricted
to a low dimensional linear subspace, specifically to a
13D motion subspace for general rigid motions and to a
5D motion subspace for planar rigid motions.

ii) In practical terms, the rank constraint of the motion sub-
spaces together with the knowledge of the algebraic struc-
ture contained in the data enables a closed-form solution
to the SfM problem, for both the general rigid motions
(Sec. 7) and the planar rigid motions (Sec. 8).

It is interesting to note that even though the multilinear for-
mulation stays almost the same for both the general and
the planar rigid motions, the actual algorithm to compute a
closed-form solution changes drastically. Our algorithms in-
troduce several new techniques and tricks which might prove
useful for other factorization problems, as well.

The applicability of our algorithm is shown on synthetic
as well as on real data sequences in Sec. 11 and Sec. 12. We

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 3

even show how to calibrate a camera which only tracks one
single feature point which is not in correspondence with any
other point tracked by any other camera. The paper concludes
in Sec. 13 by presenting some ideas for potential future re-
search.

1.3 Why Tensors?

As we will derive in Sec. 4, the algebraic constraints hidden
in feature point trajectories due to a common rigid motion
are most easily captured by a trilinear tensor interpretation.
This enables an intuitive and concise formulation and inter-
pretation of the data, as visualized in Fig. 1 (The notation
used in this figure will described in detail in Sec. 4).

Getting familiar with tensor formulations requires some
effort, but as we will shortly see in more detail in the up-
coming sections, tensor notation offers several advantages
to formalize and unify the various factorization approaches.
Firstly, the derivation of rank constraints on certain matrices
follows directly from tensor decomposition analysis (Sec. 4).
This avoids a cumbersome formulation on how to reorder
the coordinates of feature point tracks into a matrix. Sec-
ondly, ambiguities (Sec. 5) and degenerate cases (Sec. 9) are
discovered more easily and proofs are simplified. Finally, a
tensor-based formulation establishes a link to other fields
of research dealing with similar problems, such as microar-
ray data analysis in bioinformatics, blind source separation
problems in signal processing, or collaborative filtering in
machine learning. A common formulation shared between
different communities allows to share ideas more easily. For
example iterative schemes (like the ones presented in Sec. 10)
developed especially for multilinear problems can easily be
applied if a more general framework and notation is at hand.

2 Notation

The following notation will be used throughout the paper.
Matrices are denoted with bold upper case letters A whereas
vectors are bold lower case a. We use calligraphic letters
A for tensors. Matrices built up from multiple submatrices
are enclosed whenever possible by square brackets [⋯], vec-
tors built from multiple subvectors by round brackets (⋮).
The identity matrix of dimension D ×D is denoted as ID.
A∗ denotes the Moore-Penrose pseudo-inverse of matrix A.
The orthogonal projection matrix onto the column space of
a matrix A is denoted as PA. The projection matrix onto
the orthogonal complement of the column space of A is
P�A = I − PA. A matrix whose columns span the orthogonal
complement of the columns of matrix A is denoted as [A]�.
Concatenation of multiple matrices indexed with a sub- or
supscript i is represented with arrows. For example, [⇓i Ai]
concatenates all the matrices Ai below each other, implicitly

C

F

N

2K

13

4

4

13

4
4

F N

2K

=

W M S ST

Fig. 1 The data tensorW containing the feature point tracks can be
viewed as a linear combination of 3rd-order tensors each of which equals
the outer product of three vectors (so called simple tensors). The coeffi-
cients for this linear combination are stored in the core tensor S, which
in our case simply consists of only 13 non-zero entries (visualized as
black squares). Stacking all the vectors of these simple tensors accord-
ing to their mode next to each other reveals the motion matrix M, the
camera matrix C, and the coordinates of the points S. The difficulty
lies in decomposing the given data tensor into these 13 simple tensors
in the presence of missing data entries.

assuming that each of them consists of the same number of
columns. The operator⇘k stacks multiple matrices Ak into
a block-diagonal matrix [⇘k Ak]. The Matlab® standard
indexing notation is used for the slicing operation (cutting
out certain rows and columns of a matrix), so A[i∶j,k∶l] cor-
responds to the submatrix of A which is given by selecting
rows i to j and columns k to l. The cross product between two
three-vectors can be formulated as a matrix-vector product

a × b =
⎡⎢⎢⎢⎢⎢⎣

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎥⎥⎥⎥⎥⎦
b = [a]× b

where [a]× denotes the skew-symmetric cross-product matrix
built from the indices of vector a.

K is the total number of static cameras, k ∈ {1,⋯,K}
denotes one specific camera, F is the total number of ob-
served frames and f ∈ {1,⋯, F} labels one specific frame.
The number of tracked feature points in camera k is given by
Nk. Coordinates in an affine world coordinate frame will be
denoted with a tilde Ã whereas coordinates in an Euclidean
frame will simply be stated as a bold letter A. As we will see
later on, some matrices appearing in our formulation must
comply with a certain algebraic structure. A matrix which
spans the same subspace as matrix A but which does not
comply with the algebraic structure for A prescribed by the
problem at hand is denoted with a hat Â.

4 Roland Angst, Marc Pollefeys

3 Multilinear Algebra

Concepts from tensor calculus will be introduced in this sec-
tion. More specifically the mode-i product and the Tucker
tensor decomposition [Tucker, 1966] are defined and sev-
eral relationships between tensors, the Kronecker product ⊗,
and the vec (⋅)-operator are stated. We refer to [Lathauwer
et al, 2000; Magnus and Neudecker, 1999; Kolda and Bader,
2009] for an introductory text on multilinear algebra, tensor
operations and decomposition.

3.1 Tensors and the Tucker Tensor Decomposition

Tensors express multilinear relationships between variables
and are thus a generalization of entities used in linear alge-
bra, i.e., vectors (1st-order tensors) and matrices (2nd-order
tensors). A tensor of order n can be thought of as a n-
dimensional array of numbers. Varying the ith index of a
tensor while keeping the remaining indices fixed defines the
mode-i vectors. An important tool for the analysis and us-
age of tensors is the mode-i product. The mode-i product
B = A ×i M is a tensor-valued bivariate function of a nth-
order tensor A ∈ RI1×I2×⋯×In and a Ji-by-Ii matrix M. The
resulting tensor B is given by left-multiplying all the mode-
i vectors by the matrix M. The tensor B is still of order
n, the dimension of the mode-i vectors however changed
from Ii to Ji. An efficient and easy way to compute such a
mode-i product is to flatten the tensor A along its ith-mode
(which means stacking all the mode-i vectors of A into one
big matrix A(i) ∈ RIi×∏

n
j≠i Ij) and to left-multiply by the

matrix M. This provides the resulting flattened version of
B(i) = MA(i). A straight forward reordering of the elements
of this flattened tensor leads to the tensor B. Note that the
order in which the mode-i vectors are put next to each other
is unimportant as long as the reshaping of B(i) into a tensor
B is performed consistently. Interestingly, the order in which
the mode-i products are applied to a tensor does not matter,
as long as they are applied along different modes. So for
example we have (A×1 U1)×2 U2 = (A×2 U2)×1 U1, and
thus we simply write A ×1 U1 ×2 U2.

Given that the measured data can be modeled as a tensor,
various algorithms exist to analyze the underlying algebraic
structure of the process which generated the measured data
and also to decompose the data tensor into more meaning-
ful parts. The most prominent two tensor decompositions
are the canonical decomposition (aka. parallel factor model
PARAFAC) [Carroll and Chang, 1970; Harshman, 1970]
and the Tucker decomposition [Tucker, 1966]. A more re-
cent decomposition [Lathauwer et al, 2000], the higher order
singular value decomposition, extends the Tucker decomposi-
tion by imposing certain orthogonality constraints. However,
the Tucker decomposition without orthogonality constraints
is the most suitable tensor decomposition for our purposes

because it reveals the underlying mode-i subspaces without
imposing unnecessary orthogonality constraints on them. The
mode-i subspace is the span of all the mode-i vectors of a
tensor. The Tucker decomposition of a nth-order tensor A
expresses the tensor as n mode-i products between a smaller
core tensor S ∈ Rr1×⋯rn and n matrices Mi ∈ RIi×ri

A = S ×1 M1 ×2 M2 ×3 ⋯×n Mn, (1)

where the columns of Mi represent a basis for the mode-i
subspace. If for all ri < Ii, the Tucker decomposition pro-
vides a dimensionality reduction since the number of pa-
rameters decreases when using a smaller core tensor. This
representation is exact if each mode-i subspace is indeed
only of dimension ri < Ii, otherwise the Tucker decompo-
sition provides a suitable low-dimensional approximation
to the original data tensor [Lathauwer et al, 2000]. Unfor-
tunately, the Tucker decomposition is known to be non-
unique since a basis transformation applied to the mode-i
subspace can be compensated by the mode-i product of the
core tensor with the inverse of this linear transformation
S ×i M = (S ×i Q−1) ×i [MiQ]. This fact will become
important in Sec. 5.

3.2 The Kronecker Product and the vec ()-operator

The Kronecker product ⊗ is closely related to the tensor
product, it is not by accident that both products share the
very same symbol. The Kronecker product is a matrix-valued
bilinear product of two matrices and generalizes the bilinear
outer product of vectors abT to matrices. Throughout this
section, let A ∈ Rm×n and B ∈ Rp×q . Then A⊗B ∈ Rmp×nq
is a block structured matrix where the (i, j)th block equals the
matrix B scaled by the (i, j)th element of A. This implies for
example that the first column of A⊗B equals the vectorized
outer product vec (B∶,1A

T
∶,1) of the first column of A and B.

Here, the vectorization operator vec (A) has been used which
is usually defined in matrix calculus as the vector which
results by stacking all the columns of matrix A into a column
vector. We also define a permutation matrix Tm,n ∈ Rmn×mn
such that vec (AT) = Tm,n vec (A).

The Kronecker product is helpful in rewriting matrix
equations of the form AXBT = C which is equivalent to

vec (C) = vec (AXBT) = [B⊗A]vec (X) . (2)

If the number of rows and columns of the matrices A, B, C,
and D are such that AC and BD can be formed, then the
mixed-product property of the Kronecker product states that

[A⊗B][C⊗D] = [AC]⊗ [BD]. (3)

Closer inspection of Eq. (1) reveals a first link between the
Kronecker product and tensors: the tensor A is actually a
sum of n-fold outer products M1,(∶,i1)⊗⋯⊗Mn,(∶,in) (these

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 5

products are also known as decomposable, simple, or pure
tensors) weighted by the corresponding entry of the core
tensor

A = ∑
1≤i1≤ri,⋯,1≤in≤rn

Si1,⋯,inM1,(∶,i1) ⊗⋯⊗Mn,(∶,in). (4)

The Kronecker product provides a link between the Tucker
decomposition and ordinary matrix multiplication. Specifi-
cally, given a Tucker decomposition A = S ×1 M1 ×2 ⋯×n
Mn, the flattened tensor A(i) along mode i is then given by

A(i) = MiS(i) [M1 ⊗⋯⊗Mi−1 ⊗Mi+1 ⊗⋯⊗Mn]T ,

or equivalently vec (A) = [M1 ⊗ . . .⊗Mn]vec (S) (as-
suming a consistent vectorization of the tensor entries). The
previous equations clearly show the relation to Eq. (2): The
core tensor generalizes the matrix X in Eq. (2) by capturing
interactions between more than just two subspaces (induced
by the column and row span of matrix C in Eq. (2)).

A slight variation of the Kronecker product is the Khatri-
Rao product A ⊙ B ∈ Rmn×p which is defined for two
matrices A ∈ Rm×p and B ∈ Rn×p with the same number
of columns. Specifically, the Khatri-Rao product takes the
columnwise Kronecker product between corresponding pairs
of columns A⊙B = [⇒i A∶,i ⊗B∶,i]. The Khatri-Rao prod-
uct also enjoys a product property for matrices of appropriate
dimensions [C⊗D] [A⊙B] = [CA⊙DB].

3.3 Solving Multilinear Matrix Equations

The paper is heavily based on multilinear matrix and tensor
notations. As we will see, this representations facilitates rea-
soning about specific problem instances. Eventually however,
often a linear least squares problem has to be solved for the
unknowns or the Jacobian with respect to a matrix unknown
has to be computed. Linear systems in standard form Ax = b

can be readily solved with any least-squares method of choice
(e.g. with QR-decomposition or singular-value decomposi-
tion) and analytical Jacobians allow for more efficient imple-
mentation of iterative methods. Thus, there is a need to do
matrix calculus, but unfortunately there is no clear consensus
on how to do calculus with matrix unknowns. We stick with
the concepts introduced in [Magnus and Neudecker, 1999]
and refer the interested reader to this reference for details
which go beyond the following brief introduction.

Knowing how to rewrite the three following instances of
matrix equations allows to express all the matrix equations
mentioned in the paper in standard form (these identities will
become especially handy in App. A and App. B).

i) The Matrix Equation AXB = C: The Jacobian of
AXB w.r.t. x = vec (X) is Jx = BT ⊗A which leads to
the linear system in standard form Jxx = vec (C).

ii) The equation vec (X⊗Y): Let X ∈ Rm×n and Y ∈
Rp×q . Then the following identities hold:

vec (X⊗Y) = [In ⊗Tq,m ⊗ Ip] (vec (X)⊗ vec (Y))
= [In ⊗Tq,m ⊗ Ip] ⋅

[Imn ⊗ vec (Y)]vec (X) (5)

= [In ⊗Tq,m ⊗ Ip] ⋅
[vec (X)⊗ Ipq]vec (Y) (6)

iii) The Matrix Equation X⊗Y = C: Let X ∈ Rm×n and
Y ∈ Rp×q. Using the previous identity, we see that the
Jacobian w.r.t. the vectorized unknowns x = vec (X) and
y = vec (Y) is

Jx,y = [In ⊗Tq,m ⊗ Ip] ⋅
[Imn ⊗ vec (Y) ,vec (X)⊗ Ipq] . (7)

The bilinear matrix equation X⊗Y = C is thus equiva-
lent to

Jx,y (vec (X)
vec (Y)) = vec (C) . (8)

4 Applying Tensor Algebra to SfM Problems

This section applies the techniques introduced in Sec. 3 to
the structure-from-motion (SfM) problem for affine cameras.
The rigid monocular affine SfM problem was introduced
in the seminal work by Tomasi and Kanade [Tomasi and
Kanade, 1992]. In the following two sections, this approach
is extended to the case of multiple cameras, firstly when
the cameras observe general rigid motions, and secondly
when the cameras observe a planar motion. Throughout the
derivation, we ask the reader to keep the illustration in Fig. 1
in mind which shows a graphical illustration of the tensor
decomposition of the structure-from-motion data tensor.

4.1 General Rigid Motion: 13D Motion Subspace

For the following derivation, the x- and y-axis of a cam-
era are initially treated separately. Hence, 1D projections
of 3D points onto a single camera axis will be considered
first. The affine projectionW[k,f,n] of the nth feature point
with homogeneous coordinates sn ∈ R4×1 undergoing a rigid
motion [Rf tf] at frame f , onto the k-th affine camera axis
cTk ∈ R1×4 reads like

W[k,f,n] = cTk [Rf tf
0 1

] sn = vec([Rf tf
0 1

])
T

[sn ⊗ ck]

= [vec (Rf)T tTf 1]S(f) [sn ⊗ ck] , (9)

whereW[k,f,n] = WT
[k,f,n] ∈ R and the Kronecker product

property of Eq. (2) was used in the second step. In the last line,

6 Roland Angst, Marc Pollefeys

we introduced the core tensor S ∈ R4×13×4 flattened along
the temporal mode in order to get rid of the zero columns
from the vectorized rigid motion. This flattened tensor thus
looks like

S(f) = [I3 ⊗ [I3 03×1] 09×4

04×12 I4
] ∈ R13×16. (10)

We recall that by Eq. (4), the core tensor captures the interac-
tions between the involved subspaces of the data tensor. The
camera axes of all the K cameras can be stacked vertically
into a camera matrix C = [⇓k cTk] ∈ R2K×4 (each camera
has a x- and y-axis). In a similar way, the tracked feature
points can be stacked into a structure matrix S = [⇒n sn] ∈
R4×∑kNk . By introducing the motion matrix

M = [⇓f [vec (Rf)T tTf 1]] ∈ RF×13

we finally get the equation for the coordinates of the tra-
jectory of the nth feature point projected onto the kth cam-
era axis W[k,∶,n] = MS(f)[ST[∶,n] ⊗ C[k,∶]]T . Fixing a col-
umn ordering scheme⇒n,k consistent with the Kronecker
product, we derive the equation for a 3rd-order data tensor
W ∈ R2K×F×∑kNk flattened along the temporal mode f

W(f) = [⇒n,k W[k,∶,n]] = MS(f)[ST ⊗C]T . (11)

This leads to the following

Observation 1 Any trajectory over F frames of a feature
point on an object which transforms rigidly according to Rf

and tf at frame f and observed by any static affine camera
axis is restricted to lie in a 13-dimensional subspace of a
F -dimensional linear space. This subspace is spanned by the
columns of the rigid motion matrix

M = [⇓f [vec (Rf)T tTf 1]] ∈ RF×13, (12)

and is independent of both the camera axis and the coordi-
nates of the feature point.

Eq. (11) exactly corresponds to a Tucker decomposition of
the data tensor flattened along the temporal mode with a core
tensor S. The original tensor is therefore given by consis-
tently reordering the elements of the flattened core tensor
into a 3rd order tensor S ∈ R4×13×4 and by applying the three
mode-i products between the core tensor and the mode-f ,
mode-k, and mode-n subspaces M, C, and ST , respectively:

W = S ×f M ×k C ×n ST (13)

Note that f , k, and n are used for readability reasons as
labels for the mode-i product along the temporal mode, the
mode of the camera axes, or the mode of the feature points,
respectively. This derivation clearly shows the trilinear nature
of the image coordinates of the projected feature trajectories.

4.2 Planar Rigid Motion: 5D Motion Subspace

The rotation around an axis a by an angle α can be expressed
as a rotation matrix Ra,α = cosαI3 + (1 − cosα)aaT +
sinα [a]×. Rotation matrices Ra,α around a fixed axis a

are thus restricted to a three dimensional subspace in nine
dimensional Euclidean ambient space

vec (R) = [vec (I3) vec (aaT) vec ([a]×)]
⎛
⎜
⎝

cosα

1 − cosα

sinα

⎞
⎟
⎠

.

Let the columns of V = [a]� ∈ R3×2 denote an orthonormal
basis for the orthogonal complement of the rotation axis a,
i.e. these columns span the plane orthogonal to the rotation
axis. A rigid motion induced by this plane (i.e. the rotation is
around the plane normal and the translations are restricted to
shifts inside the plane) is then given by

⎛
⎜
⎝

vec (Ra,α)
vec (Vt)

1

⎞
⎟
⎠

=
⎡⎢⎢⎢⎢⎢⎣

vec (I3) vec (aaT) vec ([a]×) 09×2

03×1 03×1 03×1 V

1 1 0 01×2

⎤⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

cosα

1 − cosα

sinα

t

⎞
⎟⎟⎟
⎠

, (14)

which shows that any rigid motion in this plane is restricted
to a five dimensional subspace of 13-dimensional (or 16 if
zero-entries are not disregarded) Euclidean space. Interest-
ingly, by noting that the space of symmetric rank-1 matrices
vec (aaT) considered as a linear space is 6 dimensional, we
see that rotations around at least five different axes of rotation
are required to span the full 13-dimensional space (the vector
space of skew-symmetric matrices [a]× is 3 dimensional and
thus rotations around 3 different axes already span this space,
whereas the identity matrix is also symmetric and therefore
only 5 remaining linear degrees of freedom of the 3 × 3-
symmetric rank-1 matrices must be provided by additional
rotation axes).

Plugging the representation Eq. (14) into the motion ma-
trix of Eq. (12) we get

M =[⇓f (cosαf , (1 − cosαf), sinαf , tTf)]⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec (I3)T 01×3 1

vec (aaT)T 01×3 1

vec ([a]×)
T

01×3 0

02×9 VT 02×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

which shows that the temporally varying variables separate
from the temporally constant variables, namely the axis of
rotation a and the plane of rotation V. When combining
Eq. (15) with Eq. (11), the temporally constant matrix built

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 7

from the axis of rotation and plane of rotation can be absorbed
into a new core tensor

C(f) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vec (I3)
T 01×3 1

vec (aaT)
T

01×3 1

vec ([a]×)
T

01×3 0
02×9 VT 02×1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
I3 ⊗ [I3 03×1] 09×4

04×12 I4
]

´¹¹¹¸¹¹¹¶
=S(f)

∈ R5×16

(16)

and the number of columns in the new planar motion matrix

M = [⇓f (cosαf , (1 − cosαf), sinαf , tTf)] (17)

hence reduces to 5. The resulting matrix is exactly the same
as the data tensor flattened along the temporal mode W =
W(f) = MC(f) [S⊗CT], in contrast to the general rigid
motion this time the matrix is only of rank 5. The data tensor
is thus described again as a Tucker tensor decomposition
W = C ×kC×f M×nST ∈ R2K×F×N with slightly modified
motion matrix M ∈ RF×5 (see Eq. (17)) and core tensor
C ∈ R4×5×4 as given in Eq. (16). We summarize these findings
in

Observation 2 Any trajectory over F frames of a feature
point on an object which transforms rigidly in a plane (with
plane normal a and orthogonal complement V = [a]� ∈
R3×2) according to Ra,αf

and Vtf at frame f and observed
by any static affine camera axis is restricted to lie in a 5-
dimensional subspace of a F -dimensional linear space. This
subspace is spanned by the columns of the planar rigid mo-
tion matrix

M = [⇓f (cosαf , (1 − cosαf), sinαf , tTf)] ∈ RF×5, (18)

and is independent of both the camera axis and the coordi-
nates of the feature point.

5 Ambiguities

Due to inherent gauge freedoms, a matrix or tensor factor-
ization (and thus also a 3D reconstruction) is never unique.
This section presents ambiguities arising in multi-camera
structure-from-motion problems. Thanks to the tensor formu-
lation, the derivation of such ambiguities is rather straight-
forward, at least for the general rigid motion case. Note that
these gauge freedoms will lead to rank deficient linear sys-
tems (e.g.see Sec. 7) since there is an infinite number of
valid solutions. In order to solve these linear systems, it is
paramount to know the dimensionality of their nullspace
which is revealed by an analysis of the ambiguities. Further-
more, the algorithm for planar rigid motions in Sec. 8 is
strongly based on exploiting the ambiguities due to the inher-
ent gauge freedom in order to derive a closed-form solution.

5.1 Multi-Camera Rigid Motion

The Tucker decomposition is known to be non-unique since
a basis transformation applied to the mode-i subspace can be
compensated by the mode-i product of the core tensor with
the inverse of this linear transformation A ×i Mi = (A ×i
Qi) ×i MiQ

−1
i (see Sec. 3.1). This would obviously result

in changing the entries of the known core tensor (Eq. (10)).
However, affine transformations of the camera matrix and
points can be compensated by a suitable transformation of
the motion subspace keeping the known core tensor thus
unchanged. Let

QC = [RC tC
01×3 1

] and QS = [RS tS
01×3 1

]

denote two affine transformations of the global camera refer-
ence frame and the global point reference frame, respectively.
The factorization is obviously ambiguous

W[∶,f,∶] = CQ−1
C QC [Rf tf

01×3 1
]QSQ−1

S S. (19)

In tensor notation, this equation looks like

W = (S ×k QC ×f QM ×n QT
S)

×k CQ−1
C ×f MQ−1

M ×n [STQ−T
S] ,

where QM denotes an appropriate transformation of the mo-
tion matrix. Now the question is, how does this transforma-
tion QM have to look like in order to compensate for the
affine transformations of the cameras and the points, i.e. such
that the core tensor does not change? We can simply solve
for QM in the equation S = S ×f QM ×k QC ×n QT

S which
leads to

QM = S(f)[Q−T
S ⊗Q−1

C]TST(f). (20)

The inverse of this transformation is then applied to the mo-
tion matrix M ←MQ−1

M which compensates for the affine
transformations of the cameras and points. Note that even
if we are working in an Euclidean reference frame (which
means that the motion matrix fulfills certain rotational con-
straints) and the transformation applied to the camera and
point matrices are Euclidean transformations then the implied
motion matrix MQ−1

M still fulfills the rotational constraints.
This clearly shows that the factorization is only unique up
to two affine resp. two Euclidean transformations QS and
QC which should not come as a surprise since Eq. (9) is a
product involving three factors and hence two ambiguities
arise between these factors as shown in Eq. (19).

8 Roland Angst, Marc Pollefeys

5.2 Multi-Camera Planar Rigid Motion

A similar reasoning as in the previous section also applies in
the case of planar rigid motions. The factorization is again
ambiguous

W[∶,f,∶] = CQ−1
C QC [Ra,αf

Vtf
01×3 1

]QSQ−1
S S. (21)

The planar case however requires a distinction between two
components of a transformation: Any transformation can be
decomposed into a component which solely acts on the space
spanned by the plane of motion and a component which cap-
tures the remaining transformation. We refer to the former
component as a transformation inside the plane whereas the
latter is called a transformation outside the plane. Analo-
gously to the fact that the plane at infinity is invariant under
affine transformations, the plane of rotation is invariant (not
point-wise, though!) under transformations inside the plane.

Interestingly in contrast to general rigid motions, only
transformations QC and QS which are restricted to similarity
transformations inside the plane of motion can be compen-
sated by a corresponding transformation QM of the reference
frame of the motion matrix without changing the core ten-
sor C. In mathematical terms, the overconstrained system
C ×k QC ×f QM ×n QT

S = C can be solved exactly for QM ,
i.e. QM = C(f) [Q−1

S ⊗Q−T
C]C∗

(f) if the transformations QC

and QS are restricted to similarity transformations inside the
plane of motion. Since the first three columns of MQ−1

M

should still lead to proper rotations, the scaling factor of the
similarity transformations of the cameras and points must
cancel each other. The reconstruction restricted to the plane
of motion is thus unique up to two similarity transformations
with reciprocal scaling (one for the cameras and one for the
points). Only transformations, whose restrictions to the plane
of motion are similarity transformations with reciprocal scal-
ings, seem to allow a solution to C×kQC ×f QM ×nQT

S = C.
This fact will be important later on in our algorithm: Let us
assume that a motion matrix has been found whose restriction
to the plane of motion has proper algebraic structure, then
we are guaranteed that the reconstruction restricted to this
plane is uniquely determined up to a similarity transforma-
tion, which is a stronger guarantee than just being unique up
to an affine transformation.

Transformations of the points or cameras outside the
plane of rotation can not be compensated by a transformation
of the motion. A out-of-plane transformation of the cameras
has to be compensated directly by a suitable transformation
of the points. Let Za,λ = [V a]diag (I2, λ) [V a]T be a
scaling along the rotation axis, R an arbitrary rotation matrix,
and t∥ = aβ a translation along the rotation axis. With the
camera and point transformations

QC = [RZa,λ −RZa,λt∥
01×3 1

] and QS = [Z
−1
a,λR

T t∥
01×3 1

]

it can be shown that Ca,V ×k QC ×n QT
S = CRa,RV where

Ca,V denotes the core tensor with rotation axis a and orthog-
onal complement V. Note that neither the scaling nor the
translation along the rotation axis influences the core tensor
or the motion matrix. Hence, there is a scaling and translation
ambiguity along the axis of rotation.

In the problem we are targeting, there are no point corre-
spondences between different cameras. In this situation there
is a per camera scale and translation ambiguity along the ro-
tation axis. There is still only one global out-of-plane rotation
ambiguity: the transformation of the plane of rotation is still
linked to the other cameras through the commonly observed
planar motion, even in the presence of missing correspon-
dences. Fortunately, as we will see later, the scale ambiguity
along the rotation axis can be resolved by using orthogonality
and equality of norm constraints on the camera axes. The
translation ambiguities along the rotation axis however can
not be resolved without correspondences between different
camera views. Nevertheless, by registering the centroids of
the points observed by each camera to the same height along
the rotation axis, a solution close to the ground truth can
usually be recovered.

6 Rank-4 vs. Rank-8 Factorization

We first state the classical factorization approach for rigid
motions for one single camera [Tomasi and Kanade, 1992]
in our tensor formulation. We recall the dual interpretation:
either we can think of the data being generated by a mov-
ing rigid object observed by a static camera or by a moving
camera observing a stationary rigid object. Let us first stick
with the latter interpretation. The rigid motion is then ab-
sorbed in a temporally varying sequence of camera matrices

Cf = C [Rf tf
01×3 1

] ∈ R2×4 . The projections of the points

S = [⇒n sn] ∈ R4×N are collected in a matrix

W = [⇓f Cf] [⇒n sn] ∈ R2F×N , (22)

which is maximally of rank 4 due to the rank theorem. So
where is the connection to our previously derived tensor
formulation? By closer inspection of Eq. (22), we note that
this data matrix actually exposes the structure matrix and
thus equals the transpose of the previously described data
tensor flattened along the mode of the points W =WT

(n) =
[M⊗C]ST

(n)S with the motion matrix as given in Eq. (12).
Here, the duality of the interpretation whether the camera or
the structure is moving is clearly revealed.

Decomposing this data matrix using the rank-4 singular
value decomposition

W = UΛVT = [UΛ
1
2][Λ 1

2 VT] = P̂Ŝ (23)

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 9

results in an affine reconstruction of the moving camera
matrices P̂ = UΛ

1
2 and the structure matrix Ŝ = Λ

1
2 VT .

The affine reconstruction can be upgraded via a corrective
transformation to a similarity reconstruction by computing
the least squares solution of an overconstrained system of
linear equations which ensures the orthogonality and equality
of norms conditions between the two rows of the camera
rotation matrix. [Brand, 2001] nicely describes the algorithm
to compute this corrective transformation.

Later, we will see that the flattening along the temporal
modeW(f) is more revealing than the flattening along the
mode of the points. This is related to Akhter et.al.’s notion
of duality between trajectory and shape space for non-rigid
motions [Akhter et al, 2011]. Note that our tensor formulation
shows these results more explicitly and easily, together with
all the ambiguities due to the inherent gauge freedoms. We
note, that in the single camera case, W(f) will maximally
be of rank 8 instead of 13. This is due to the fact that the
rank of a Kronecker product between two matrices equals the
product of the rank of its two factors. The rank of matrix C

is only two in the single camera case, and hence the matrix
ST ⊗C in Eq. (11) is of rank 8. Interestingly, for rigid planar
motions, even a single camera already spans the complete 5D
motion space since the rank ofW(f) will be upper bounded
by 5 anyway.

The major question in the upcoming two sections is how
to find a corrective transformation when multiple cameras
are observing the very same rigid body motion, but no fea-
ture point correspondences between different cameras are
available. This corrective transformation should ensure or-
thogonality constraints on rotation or camera matrices as well
as ensure a correct algebraic Kronecker structure. This prob-
lem is closely linked to the problem of finding a corrective
transformation in non-rigid SfM formulations using blend
shapes. We refer to [Xiao et al, 2004] for some insights on
how to compute the corrective transformation in closed-form
in the case of the non-rigid blend shape formulation.

7 Rank-13 Factorization

With the previously derived formulation, our problem can
be restated in the following way. Given the knowledge of
certain elements of the 3rd-order tensorW , compute the un-
derlying mode-f , mode-n, and mode-k subspaces (M, ST ,
and C, respectively) which generate the data tensor accord-
ing to Eq. (13). Our problem thus essentially boils down
to a multilinear tensor factorization problem. If there is no
missing data, i.e. ∀k, f, n ∶W[k,f,n] is known, the computa-
tion of the Tucker decomposition [Tucker, 1966] is straight
forward and the unknown subspaces M, S, and C are di-
rectly revealed by this decomposition. Missing entries in the
data tensor however prevent the application of the standard
Tucker decomposition algorithm. If the pattern of missing

Input: Feature points trajectories in measurement matrix
W ∈ RF×2∑k Nk

Output: Rigid motion M ∈ RF×13, camera matrix
C ∈ R2K×4, and points S ∈ R4×∑k Nk

Rank-13 factorization according to Eq. (24) ; // Sec. 7.1
Stratified upgrade ; // Sec. 7.2

Affine upgrade ; // Sec. 7.2.1
Affine cameras ; // Sec. 7.2.2
Enforcing Kronecker-structure ; // Sec. 7.2.4
Similarity upgrade ; // Sec. 7.2.5

Algorithm 1: Closed-form algorithm for general rigid mo-
tions.

entries is completely unstructured, we must resort to iterative
factorization methods. The problem of matrix factorization
in the presence of missing or outlying measurements pops
up in many different fields of research, such as bioinformat-
ics, signal processing, and collaborative filtering. We think
this is an interesting route of research and needs further in-
vestigation. We only glimpse at the tip of the iceberg of
iterative techniques in Sec. 10 bearing in mind that there are
many different approaches to attack factorization problems
with general patterns of missing entries (see e.g.Aguiar et al
[2008] for an algebraically oriented approach for bilinear
matrix factorizations if the pattern of missing entries follows
a certain pattern known as the Young diagram and references
therein for other approaches). This paper however focuses
on how a certain pattern of missing entries can be combined
with the very specific structure of the SfM problem in order
to derive a closed-form solution. This solution is based on
several sequential steps which are summarized by Alg. 1
from high level whereas the upcoming sections provide a
detailed description of each individual step.

7.1 Missing Correspondences

Let us now consider the setting where each camera k ob-
serves its own set of feature points Sk ∈ R4×Nk and hence,
there are no correspondences available between different
camera views. In this case, each camera no longer observes
every point, i.e., there are tuples (k,n) for which the value
W[k,f,n] is unknown. Without loss of generality we can as-
sume that the points in S are given by stacking the individ-
ual Sk next to each other S = [⇒k Sk]. As we can see in
Tab. 2, only the flattened tensor W(f) along the temporal
mode f contains some columns whose entries are all known,
amongst many completely unknown columns. These known
columns however still span the complete 13-dimensional
mode-f subspace. Analogously to the well-known rank-4
factorization approach, this rank-13 constraint can be used
to robustly decompose the known 2∑kNk columns of the
flattened data tensorW(f) with a singular value decompo-
sition into a product of two rank-13 matrices. Formally, the
data tensorWk ∈ R2×F×Nk of each camera is flattened along

10 Roland Angst, Marc Pollefeys

W = S ×k C ×f M ×n ST W(f) =MS(f)(S
T ⊗C)T W(k) =CS(k)(S

T ⊗M)T W(n) = STS(n)(C⊗M)T

Points

Camera Axes

F
ra

m
e

s

2468101214161820
1

2

3

4

5

6

7

8

10

20

30

40

50

60

70

80

90

100

W ∈ R2K×F×∑k Nk W(f) ∈ RF×2K∑k Nk W(k) ∈ R2K×F ∑k Nk W(n) ∈ R∑k Nk×2KF

Fig. 2 If there are no feature point correspondences between different camera views then the data tensorW has many missing data entries (missing
data entries are visualized transparently). Along the third order data tensor itself, its three flattened versions are shown as well. Note that onlyW(f)
has completely known columns which allows to compute a basis of the motion subspace span (M). Due to the block-diagonal structure of the
known data entries, the remaining two flattened tensors cannot be used to compute a consistent subspace for the camera matrices or the coordinates
of the points.

the temporal mode and the resulting matrices Wk =Wk
(f) =

MS(f)[Sk ⊗CkT] are concatenated column-wise in a com-
bined data matrix W = [⇒k Wk]. A rank-13 matrix factor-
ization (e.g. with SVD W = UΣVT) reveals the two factors
M̂ = U ∈ RF×13 and Â = ΣVT ∈ R13×2∑kNk which fulfill

W = MS(f) [⇓k Sk
T ⊗Ck]

T
= [M̂Q][Q−1Â]. (24)

This factorization separates the temporally varying compo-
nent (the motion) from temporally static component (the
points and the cameras). The factorization is possible since
all the cameras share the same temporally varying component
as all of them observe the same rigid motion. However, as
indicated with an unknown 13-by-13 transformation matrix
Q, the factorization provided by the singular value decompo-
sition does not conform to the correct algebraic structure of
the flattened tensor along the temporal mode. For example,

the second factor S(f) [⇓k Sk
T ⊗Ck]

T
must have a specific

algebraic structure induced by the Kronecker-product but a
general rank-13 factorization will yield a matrix Â which
does not conform to this structure. The main problem is there-
fore to find a corrective transformation Q which establishes
a correct algebraic structure in M̂Q and in Q−1Â.

7.2 Stratified Corrective Transformation

Inspired by stratified upgrades for projective structure-from-
motion reconstructions (where the plane at infinity is fixed
first and after that, the image of the absolute conic is com-
puted, see Chapter 10.4 in Hartley and Zisserman [2004]
for more details.), we propose to use a stratified approach
to compute the unknown corrective transformation matrix
Q = Qaff Q−1

kronQmetric . Qaff isolates the camera transla-
tions from the remaining rows of Â and thus resembles an
affine upgrade. The correct algebraic Kronecker-structure
of an affine version Ã of A is enforced by Q−1

kron , whereas

Qmetric finally performs a similarity upgrade. The following
subsections present each step in detail.

7.2.1 Affine Upgrade

The first step in computing Q consists in transforming the
last column of the motion matrix M̂ such that it conforms
to the one vector 1 of M. We will call this step the affine
upgrade. Specifically, we solve for qaff in 1F×1 = M̂qaff .
A guaranteed non-singular affine upgrade is then given by
Qaff = [[qaff]

�
qaff], where [qaff]

�
denotes an orthogonal

basis for the nullspace of qaff . We can not gain any more
knowledge by analyzing M̂, yet. We therefore turn our atten-
tion toward Â.

7.2.2 Computing Affine Cameras

As previously mentioned, in this step we look for a transfor-
mation Qkron which ensures the correct algebraic structure
of an affine reconstruction

Ã = QkronQ−1
aff Â = S(f) [⇓k S̃k

T ⊗ C̃k]
T

. (25)

This is a bilinear problem in the unknowns Qkron , S̃, and
C̃. Since the product between Q−1

kron and Qmetric should not
modify the last column of Qaff anymore, the last column of
Q−1

metricQkron has to be equal to (01×12,1)T . This together
with the fact that the structure of Qmetric must follow the
structure in Eq. (20) implies that the last column of Qkron

equals (01×12,1)T and thus only the first twelve columns of
Qkron are actually unknown. By realizing that the last row
of S̃ corresponds to the one vector we see that the last four
rows of Eq. (25) actually describe an over-determined linear
problem in the 4 ⋅ 12+ 2K ⋅ 4 unknowns of Qkron,[10∶13,1∶12]

and C̃. The resulting system can be solved linearly in the
least-squared sense (see App. A for details).

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 11

7.2.3 Camera Self-Calibration

A self calibration approach can be used by assuming zero
skew, principal point at origin, and a known aspect ratio
equal to 1. This yields a diagonal intrinsic camera matrix
Kk = diag (sk, sk,1) and we can use self-calibration meth-
ods using the dual quadric, see [Hartley and Zisserman, 2004]
section 19.3. Since we computed affine camera matrices,

the dual quadric is of the form Ω∗
∞ = [Ω3×3 03×1

01×4
], which

means we only require at least three rather than four cameras
observing the scene to compute symmetric Ω∗

∞. However, if
there is no prior knowledge about the intrinsic camera matri-
ces available, if there are only two cameras, or if we are not
only interested in the camera matrices but also in the rigid
transformations and the points observed by the cameras, the
steps explained in the next subsections are necessary.

7.2.4 Enforcing the Kronecker-Structure

Once an affine camera matrix C̃ is known, the originally
bilinear problem reduces to a linear one

Ã = S(f)[⇓k S̃k
T ⊗ C̃k]T = QkronQ−1

aff Â (26)

in the unknowns S̃k and Qkron . This is again an over-deter-
mined linear problem with 3∑kNk + 9 ⋅ 12 unknowns since
the last four rows and the last column of Qkron are already
known and the last column of S̃ should equal the constant
one vector (App. B provides details on how to set up and
solve this system).

7.2.5 Metric Upgrade

There is not enough information contained in S(f)(S̃T ⊗
C̃)T = QkronQ−1

aff Â to perform the metric upgrade and we
thus have to turn our attention again to the rigid motion
matrix M̂. However, in contrast to Sec. 7.2.1, an affine recon-
struction with a valid Kronecker structure of the rigid motion
is now available. Thus, the metric correction matrix Qmetric

must fulfill the algebraic structure derived in Eq. (20). We
are therefore looking for affine transformations QC and QS

such that

M = [⇓f ((vec (Rf))T , tTf ,1)] (27)

= [⇓f ((vec (R̃f))T , t̃Tf ,1)]
´¹¹¹¸¹¹¶

=M̃=M̂Qaff Q−1
kron

S(f)[QT
S ⊗QC]TST(f)

´¹¹¸¹¹¹¶
=Qmetric

conforms to an Euclidean rigid motion matrix. Let

QS = [T−1
S tS

01×3 1
] and QC = [TC tC

01×3 1
] .

Using the Kronecker product property of Eq. (2), the above
equation Eq. (27) is equivalent to the set of equations

Rf = TCR̃fT
−1
S (28)

tf = TCR̃ftS +TC t̃f + tC (29)

for f ∈ {1⋯F}. Eq. (28) is in turn equivalent to TCR̃f =
RfTS . Since Rf is a rotation matrix we have

[TCR̃f]
T [TCR̃f] = [RfTS]T [RfTS] (30)

= R̃T
f TT

CTCR̃f =TT
STS . (31)

This set of equations is linear in symmetric TT
CTC and

TT
STS and can be solved by similar techniques as the one

presented in [Brand, 2001, 2005] for the rigid case. Each
frame provides 6 constraints on the 12 unknowns and a solu-
tion for TT

CTC and TT
STS can be found given sufficiently

many frames are available. A final eigenvalue decomposition
of these symmetric matrices finally yields the matrices TS

and TC . These matrices are then used to render Eq. (29)
linear in the unknowns, i.e., the translations tS , tC , and tf .
This provides 3F constraints on the 3F + 6 unknowns. The
resulting linear system therefore has a six dimensional solu-
tion space which accounts for the six degrees of freedoms for
choosing tC and tS . Note that we have not made use of any
orthogonality constraints on the camera axes. These orthog-
onality constraints implicitly imply a scaled orthographic
camera model, whereas our factorization algorithm can deal
with general affine cameras.

Note that on the other hand, if the dual quadric Q∗
∞ has

been used to perform the similarity upgrade of the cameras
(implicitly assuming a special form for the intrinsic calibra-
tion matrix), TC can be fixed to the identity and is no longer
required to be treated as an unknown. All the experiments
in Sec. 11 are computed without the camera self-calibration
approach of Sec. 7.2.3.

8 Rank-5 Factorization

In contrast to a rank-13 motion subspace, one camera is suf-
ficient in order to span the complete 5 dimensional motion
subspace of a planar motion. This leads to the following idea:
Intuitively, a separate reconstruction can be made for each
camera. These separate reconstructions are unique up to the
ambiguities mentioned previously. This especially means that
the reconstruction of each camera restricted to (or projected
onto) the plane of rotation is a valid similarity reconstruction,
i.e. the individual reconstructions are expressed in varying
coordinate reference frames which, however, only differ from
each other by similarity transformations. Using knowledge
from the 5D-motion subspace, these reconstructions can then
be aligned in a consistent world reference frame. If the addi-
tional assumption is made that the two camera axes of each

12 Roland Angst, Marc Pollefeys

Input: Feature points trajectories in measurement matrix
W ∈ RF×2∑k Nk

Output: Rigid motion M ∈ RF×5, camera matrix C ∈ R2K×4,
and points S ∈ R4×∑k Nk

Rank-5 factorization according to Eq. (32) ; // Sec. 8.1
Trigonometric upgrade ; // Sec. 8.2
Metric upgrade in plane of motion ; // Sec. 8.3

Projection onto plane of motion ; // Sec. 8.3.1
Per-camera metric reconstruction inside plane of motion ;
// Sec. 8.3.2
Registration in common coordinate system in plane of motion
; // Sec. 8.3.3
Metric upgrade of component outside of plane of motion ;
// Sec. 8.3.4

Algorithm 2: Closed-form algorithm for planar rigid mo-
tions.

camera are orthogonal and have equal norm (the norm can
vary between different cameras) then the coordinate frame
of the reconstruction can be upgraded to a similarity frame
in all three dimensions. We thus end up with a consistent
3D-reconstruction.

There is a major drawback in the above algorithmic
sketch. The fact that all the cameras observe the very same
rigid motion is only used in the final step to align all the
individual reconstructions. It is a desirable property that the
information from all the cameras should be fused right at
the first stage of the algorithm in order to get a more robust
reconstruction. Furthermore, in order to compute the initial
reconstruction of a camera, this camera needs to track at least
two points. If the camera tracks only one feature point, a
reconstruction based solely on this camera is not possible:
at least two points are necessary to span the 5D-motion sub-
space. The algorithm which is presented in the upcoming
sections on the other hand does not suffer from these short-
comings. The algorithm fuses the information from all the
cameras right at the first stage and works even when each
camera tracks only one single point. Last but not least, the
algorithm provides a closed-form solution. Again, Alg. 2 pro-
vides an overview of the multiple sequential steps whereas
the following sections give detailed explanations.

8.1 Rank-5 Factorization

In a similar spirit to Sec. 7, we can fuse the data from all
the cameras in order to compute a consistent estimate of the
motion matrix. But this time, a rank-5 factorization of the
combined data matrix W = [⇒k Wk

(f)] reveals the correct

column span span (M) = span (M̂) of the motion matrix

W = M̂Â = [⇓f cosαf 1 − cosαf sinαf tf,1 tf,2]
´¹¹¸¹¹¹¶

=M̂Q

⋅

C(f) [⇒k Sk ⊗CkT]
´¹¹¹¸¹¹¹¶

=Q−1Â

, (32)

where we have introduced the corrective transformation Q ∈
R5×5 in order to establish the correct algebraic structure. If
all the cameras only track two points in total, the combined
data matrix W will then only consist of four columns and
thus a rank-5 factorization is obviously impossible. Luckily,
we know that the first two columns of the motion matrix in
Eq. (17) should sum to the constant one vector. Hence, only
a rank 4 factorization of the data matrix W is performed, the
resulting motion matrix is augmented with the constant one
vector M̂← [M̂,1F×1] and the second factor is adapted cor-
respondingly Â← [ÂT ,02N×1]T . The rest of the algorithm
remains the same.

The corrective transformation is again computed in a
piecewise (or stratified) way. Specifically, the corrective
transformation is split into three separate transformations
Q = QtrigQ−1

orientQ
−1
transl where the transformation Qtrig

establishes the correct trigonometric structure on the first
three columns of the motion matrix, Qorient aligns the ori-
entations of the cameras in a consistent similarity reference
frame, and Qtransl is related to correctly translate the recon-
struction. The individual steps are described in detail in the
next sections.

8.2 Trigonometric Structure

The first three columns of Q = [q1,q2,q3,q4,q5] can be
solved for in the following way: since M̂[f,∶]qiq

T
i M̂T

[f,∶] =
M[f,i]

2 we have

1 = M̂[f,∶] [(q1 + q2)(q1 + q2)T]M̂T
[f,∶]

= (cosαf + (1 − cosαf))2 (33)

1 = M̂[f,∶] [q1q
T
1 + q3q

T
3]M̂T

[f,∶] = cos2 αf + sin2 αf .

These observations lead to F constraints on symmetric rank-
2 matrix q1q

T
1 + q3q

T
3 , symmetric rank-1 matrix (q1 +

q2)(q1+q2)T , or symmetric rank-3 matrix b [q1q
T
1 + q3q

T
3]+

(1 − b)(q1 + q2)(q1 + q2)T with b ∈ R:

1 = M̂[f,∶] [(q1 + q2)(q1 + q2)T]M̂T
[f,∶]

= M̂[f,∶] [q1q
T
1 + q3q

T
3]M̂T

[f,∶] (34)

= M̂[f,∶] [b [q1q
T
1 + q3q

T
3] + (1 − b) [q1q

T
1 + q2q

T
2]]M̂T

[f,∶]

These F equations are linear in the unknown symmetric ma-
trices and result in a one dimensional solution space (since

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 13

W(f) M̂ Â

=

= [⊗]

M C(f) [S ⊗ CT]

Fig. 3 Visual representation of the rank-5 factorization. Missing data entries due to missing correspondences between different cameras are depicted
transparently.

there is a valid solution for any b ∈ R). App. C shows how
to extract the solution vectors q1, q2, and q3 from this one
dimensional solution space. Once this is done, the correc-
tive transformation Qtrig = [q1 q2 q3 [q1,q2,q3]�] is ap-
plied to the first factor M̂Qtrig which establishes the correct
trigonometric structure in the first three columns. The in-
verse of this transformation is applied to the second factor
Ã = Q−1

trigÂ. Note that the structure of the first three columns
of the motion matrix should not get modified anymore and
hence any further corrective transformation must have upper
block-diagonal structure with an identity matrix of dimen-
sion 3 in the upper left corner. The inverse of such an upper
block-diagonal matrix has exactly the same non-zero pattern,
i.e.

QtranslQorient = [I3 Q3×2

02×3 I2
] [I3 03×2

02×3 Q2×2
] = [I3 Q3×2

02×3 Q2×2
] .

8.3 Euclidean Camera Reference Frame

No more information can be extracted from the motion ma-
trix and thus, we turn our attention to the second factor Ã

which after applying a proper transformation should have the
following algebraic form

A = [I3 Q3×2

02×3 Q2×2
] Ã = C(f) [⇒k Sk ⊗CkT] . (35)

This is a particularly tricky instance of a bilinear system of
equations in Q3×2, Q2×2, Sk, and Ck. Based on our experi-
ences, even algebraic computer software does not succeed in
finding a closed-form solution. Nevertheless, we succeeded
in deriving manually a solution using geometric intuition and
reasoning.

8.3.1 Projection onto Plane of Motion

Eq. (35) together with the known matrix C(f) in Eq. (16)

tells that Ã[4∶5,∶] = [⇒k 11×Nk
⊗ [Ck

[∶,1∶3]VQ−T
2×2]

T
], which

means that the columns of Ã[4∶5,∶] contain the coordinates
(w.r.t. the basis V) of the projection of the rows of the camera

matrices (barring the translational component) onto the plane
of rotation. These coordinates however have been distorted
with a common, but unknown transformation Q2×2. This
observation motivates the fact to restrict the reconstruction
first to the plane of rotation. Such a step requires a projection
of the available data onto the plane of rotation. App. D shows
that this can be done by subtracting the second from the first
row and keeping the third row of Eq. (35)

[1 −1 0

0 0 1
] Ã[1∶3,∶] + [1 −1 0

0 0 1
]Q3×2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=T2×2

Ã[4∶5,∶]

= [vec (PV)T

vec ([a]×)
T] [⇒k [PVSk[1∶3,∶]]⊗ [PVCk

[∶,1∶3]

T]]
´¹¹¹¸¹¹¹¶

= [vec (PV)T

vec ([a]×)
T] ⋅

[⇒k [PVSk[1∶3,∶]]⊗ [VQ2×2] [Q−1
2×2V

TCk
[∶,1∶3]

T]] . (36)

In the last step we have used PV = VQ2×2Q
−1
2×2V

T and
the parenthesis in the last term should stress out that for all
the cameras the term Q−1

2×2V
TCk

[∶,1∶3]

T
can be read off from

Ã[4∶5,∶]. The unknowns of this bilinear equation are the points
and the 2-by-2 transformations T2×2 and Q2×2.

8.3.2 Per-Camera Reconstruction in the Plane of Rotation

Eq. (36) describes a reconstruction problem in a plane which
is still bilinear. As with any rigid reconstruction, there are
several gauge freedoms. Specifically, the origin and the ori-
entation of the reference frame can be chosen arbitrarily2. In
the planar case, this means a 2D offset and the orientation
of one 2D vector can be chosen freely. In the following we
will make use of the gauge freedoms in order to render this
bilinear problem in multiple sequential linear problems. The

2 The first three columns of the motion matrix have already been
fixed and the translation of the cameras has been lost by the projection
step. Thus, there is only one planar similarity transformation left from
the two mentioned in Sec. 5.

14 Roland Angst, Marc Pollefeys

reconstruction procedure described in the upcoming para-
graphs could be applied to one single camera. This would
provide T2×2 and Q2×2 which could then be used to solve
for the points in the remaining cameras. However, increased
robustness can be achieved by solving the sequential linear
problems for each camera separately and aligning the results
in a final step in a consistent coordinate frame. For each cam-
era, the gauge freedoms will be fixed in a different way which
enables the computation of a reconstruction for each camera.
The reference frames of the reconstructions then differ only
by similarity transformations. This fact will be used in the
next section in order to register all the reconstructions in a
globally consistent reference frame.

In single camera rigid factorizations, the translational
gauge freedoms are usually chosen such that the centroid of
the points matches the origin of the coordinate system, i.e.
1
N

S1N×1 = 0. We will make the same choice 1
Nk

Sk1Nk×1 =
0 on a per-camera basis. Let Ãk denote the columns of Ã

corresponding to camera k. By closer inspection of Eq. (36)
and with the Kronecker product property of Eq. (3) we get

[[1 −1 0

0 0 1
] Ãk

[1∶3,∶] +T2×2Ã
k
[4∶5,∶]] [

1

Nk
1Nk×1 ⊗ I2]

= [vec (PV)T

vec ([a]×)
T] ⋅

(PVSk[1∶3,∶]
1

Nk
1Nk×1)⊗ (PVCk

[∶,1∶3]

T) = 02×2. (37)

The last equation followed since the centroid has been chosen
as the origin. The above linear system consists of four linearly
independent equations which can readily be solved for the
four unknowns in T2×2.

The remaining two gauge freedoms are due to the arbi-
trary choice of the orientation of the coordinate frame inside
the plane of rotation. These gauge freedoms can be chosen s.t.
the first row (1 0)Ck

[∶,1∶3]V of the kth camera matrix equals
the known row (1 0)Ck

[∶,1∶3]VQ−T
2×2. Such a choice poses

two constraints on Q2×2

(1 0)Ck
[∶,1∶3]V = (1 0) [Ck

[∶,1∶3]VQ−T
2×2]

= (1 0) [Ck
[∶,1∶3]VQ−T

2×2]QT
2×2. (38)

Knowing T2×2 as well as the first row of Ck
[∶,1∶3]V im-

plies that the remaining unknowns in every second column
of Ãk (i.e. the columns which depend on the first row)
are only the points. This results in 2Nk linear equations
in the 2Nk unknowns of the projected point coordinates
PVSk

[1∶3,∶]. After solving this system, only the entries of Q2×2

are not yet known. The two linear constraints of Eq. (38) en-
able a reparameterization with only two parameters Q2×2 =
Q0 + λ1Q1 + λ2Q2. Inserting this parameterization into
Eq. (36) and considering only every other second column (i.e.
the columns corresponding to the second row of the camera)

leads to a linear system in λ1 and λ2 with 2Nk linear equa-
tions. The linear least squares solution provides the values
for λ1 and λ2.

The above procedure works fine as long as every camera
tracks at least two points. Otherwise the computation of λ1
and λ2 in the final step will fail because of our choice to
set the mean to the origin. The coordinates of the single
point are then equal to the zero vector and hence, this single
point does not provide any constraints on the two unknowns.
In order to avoid this problem we use the following trick:
instead of choosing the origin as the mean of the points which
are tracked by the camera currently under investigation, the
origin is rather fixed at the mean of the points of another
camera. Such a choice is perfectly fine as the origin can be
chosen arbitrarily. The computation of T2×2 for camera k is
therefore based on the data of another camera k′ ≠ k. This
trick allows to compute a reconstruction even for cameras
which only track one single point.

8.3.3 Registration in a Common Frame Inside the Plane of
Motion

After the previous per-camera reconstruction, the camera ma-
trix restricted to the plane of motion Ck

[∶,1∶3]PV is known for

each camera. Let C̃k denotes its first three columns whose
projection onto the plane of rotation is correct up to a registra-
tion with a 2-by-2 scaled rotation matrix λkRk. On the other
hand, we also know the projections Ck

[∶,1∶3]VQ−T
2×2 of the

camera matrices onto the plane of rotation up to an unknown
distortion transformation Q2×2 which is the same for all the
cameras. This implies C̃kVRkλk = Ck

[∶,1∶3]VQ−T
2×2 and thus

C̃kVVT C̃k,Tλ2k

= [Ck
[∶,1∶3]VQ−T

2×2]QT
2×2Q2×2 [Q−1

2×2V
TCk

[∶,1∶3]

T] .

This is a linear system in the three unknowns of symmetric
QT

2×2Q2×2 and K scale factors λ2k which is again solved in
the least squares sense. Doing so provides a least squares
estimate of the three unknowns of QT

2×2Q2×2. An eigenvalue
decomposition EΛET = QT

2×2Q2×2 provides a mean to re-
cover Q2×2 = ETΛ

1
2 which allows to express the projections

of the camera matrices

Ck
[∶,1∶3]PV = [Ck

[∶,1∶3]VQ−T
2×2]QT

2×2V
T

onto the plane in one single similarity frame.

8.3.4 Orthogonality and Equality of Norm Constraints

As has been previously mentioned in Sec. 5.2, the correct
scaling along the rotation axis can only be recovered by
using additional constraints, like the orthogonality and equal
norm constraints on the two camera axes of a camera (which
implicitly assumes a partially known intrinsic calibration

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 15

matrix). These constraints will be used in the following to
compute the remaining projection of the camera matrix onto
the axis of rotation. Due to Ck

[∶,1∶3] = Ck
[∶,1∶3][PV + Pa] and

PVPa = 0 we get

λ2kI2 = Ck
[∶,1∶3]C

kT

[∶,1∶3]

= Ck
[∶,1∶3]PVCk

[∶,1∶3]

T +Ck
[∶,1∶3]PaCk

[∶,1∶3]

T
.

Thanks to the previous registration step, the projections
Ck

[∶,1∶3]PV are known for all cameras. Since

Ck
[∶,1∶3]PaCk

[∶,1∶3]

T = Ck
[∶,1∶3]aaTCk

[∶,1∶3]

T

and replacing Ck
[∶,1∶3]a by wk, the unknowns of the above

equation become λk and the two components of the vector
wk. This results in K independent 2nd-order polynomial sys-
tem of equations with 3 independent equations in the three
unknowns wk and λk. Straight-forward algebraic manipula-
tion will reveal the closed-form solution to this system (see
App. E for details). Once wk is recovered, the camera ma-
trix is given by solving the linear system Ck

[∶,1∶3] [PV,a] =
[Ck

[∶,1∶3]PV,w
k]. The solution of the polynomial equation is

unique up to the sign. This means that there is a per-camera
sign ambiguity along the axis of rotation. Note that this is
not a shortcoming of our algorithm, but this ambiguity is
rather inherent due to the planar motion setting. However,
the qualitative orientations of the cameras w.r.t. the rotation
axis are often known. For example, the cameras might be
known to observe a motion on the ground plane. Then the
axis of rotation should point upwards in the camera images,
otherwise the camera is mounted upside-down. Using this
additional assumption, the sign ambiguity can be resolved.

Using the orthogonality and equality of norm constraints,
it is tempting to omit the registration step in the plane of
rotation and to directly set up the system of equations

λ2kI2 =Ck
[∶,1∶3]C

k
[∶,1∶3]

T

=Ck
[∶,1∶3]PVCk

[∶,1∶3]

T +Ck
[∶,1∶3]PaCkT

[∶,1∶3]

= [Ck
[∶,1∶3]VQ−T

2×2]QT
2×2Q2×2 [Q−1

2×2V
TCk

[∶,1∶3]

T]+

wkwkT

in the three unknowns of QT
2×2Q2×2, the 2K unknowns of

wk, and the K unknowns λ2k. Interestingly, these constraints
on the camera axes are insufficient to compute a valid ma-
trix Q2×2 and valid vectors wk, even using non-linear local
optimization methods (there are solutions with residuum 0

which however turn out to be invalid solutions). Moreover,
experiments showed that this nonlinear formulation suffers
from many local minima. This observation justifies the need
for the registration step in the plane of motion.

8.3.5 Final Step

Once the first three columns of the camera matrices are
known in an Euclidean reference frame, the first three rows
in Eq. (35) become linear in the unknowns Q3×2, S, and the
camera translations. A least squares approach again provides
the solutions to the unknowns of this overdetermined linear
system. The linear system has a 4+K-dimensional nullspace
in the noisefree case: 4 degrees of freedom due to the pla-
nar translational ambiguities (planar translation of the points
or the cameras can be compensated by the planar motion)
and K degrees of freedom for the per-camera translation
ambiguities along the axis of rotation.

9 Minimal Configurations

Our two algorithms require the union of all the feature trajec-
tories spanning the complete 13- resp. 5-dimensional motion
space. This poses constraints on the minimal number of cam-
era axes, feature points, and on the rigid motion. In typical
situations, the number of frames F is much larger than 13 or
5 and we can assume the rigid motion being general enough
such that the whole 13 resp. 5 dimensional motion subspace
gets explored. On the other hand, the constraints on the min-
imal number of camera axes and feature points are more
interesting.

The derivation of Eq. (13) assumed a rank-4 structure
matrix S. This assumption is violated if the observed object is
planar. Our algorithm currently can not handle such situations
and thus planar objects represent degenerated cases. Note
however that each camera is allowed to track feature points
which lie in a plane, as long as they are not contained in a
common plane and the combined structure matrix [⇒k Sk]
is thus non-planar (see also the evaluation of the real data
sequence in Sec. 11.2).

As mentioned in Sec. 8, the algorithm for the rank-5
factorization can handle even the minimal case of just two
points being tracked, either by one single camera, or by two
cameras each of them tracking one point. Thus, the discus-
sion about minimal configurations for the rank-5 case is less
interesting than for the rank-13 factorization. A detailed look
at the algorithm for the rank-13 factorization however reveals
surprising properties, but requires some considerable effort
using facts from tensor product spaces. The reward is some
deeper insight in linear independence relationships in tensor
product spaces.

9.1 Digression to Linear Independence in Tensor Product
Spaces

Let us assume we are given full column-rank matrices Ai ∈
Rm×rAi and Bi ∈ Rn×rBi for i = 1,⋯, n. We compute the

16 Roland Angst, Marc Pollefeys

points per camera (3,N2 ≥ 4) (4,4) (1,3,3) (2,3,3) (2,2,N3 ≥ 4) (2,2,2,2) (2,2,2,3) (2,2,2,2,2)

rank (A)
?
= 13 rank (A) ≤ 12 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13

Sec. 7.2 applicable × ✓ × ✓ × × ✓ ✓

Table 1 Minimal cases: This table lists the number of points per camera (for example, (N1,N2) means the first camera observesN1 points whereas
the second tracks N2 points) and whether the linear algorithm of Sec. 7.2 succeeds in computing a valid factorization or not (summarized in the last
row). The first condition states that the observed points should span the complete 13-dimensional mode-f subspace. The second condition ensures
that valid affine camera matrices are computable (see Sec. 7.2.2). Note that any additional data can only support the algorithm (e.g.if (N1, N2)
works then (N ′

1, N ′
2, N3) with N ′

1 ≥ N1 and N ′
2 ≥ N2 works as well, even if N3 = 1).

Kronecker products Ci = Ai ⊗ Bi and ask ourselves how
long the columns of the resulting matrices continue to be
linearly independent, i.e. when does the matrix C = [⇒i Ci]
become rank-deficient. As long as either the columns of Ai

are linearly independent from all the columns of previous Aj

with j < i or the columns of Bi are linearly independent from
all the columns of previous Bj with j < i, concatenating the
Kronecker product Ci = Ai ⊗Bi to C = [C1,⋯,Ci−1] in-
creases the latter’s rank by rAirBi and hence the columns
stay linearly independent. However, as soon as both the
columns of Ak and Bk become linearly dependent w.r.t.
the columns of the previous matrices Ai and Bi with i < k,
the resulting columns of the Kronecker product Ak ⊗ Bk

might become linearly dependent on the columns of previ-
ous Kronecker products. In order to show that, the columns
of Ak and Bk are expressed as a linear combination of the
columns of the previous matrices

Ak = [⇒i<k Ai] [⇓i<k Xi] =∑
i<k

AiXi (39)

Bk = [⇒i<k Bi] [⇓i<k Yi] =∑
i<k

BiYi. (40)

Due to the bilinearity and the product property of the Kro-
necker product, it holds

Ak ⊗Bk = [∑
i<k

AiXi]⊗
⎡⎢⎢⎢⎢⎣
∑
j<k

BjYj

⎤⎥⎥⎥⎥⎦
=∑
i<k

[Ai ⊗Bi]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

previously existing vectors

[Xi ⊗Yi]+

∑
i<k,j<k,i≠j

[Ai ⊗Bj]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

new linearly independent vectors

[Xi ⊗Yj] .

The matrix resulting from the first sum is for sure linearly
dependent on the previous matrices, as Ai ⊗Bi capture the
previously already existing vectors. The second sum however
can result in new potentially linearly independent vectors.
We need to answer the question: under which circumstances
can we be sure that no Ai ⊗Bj with i ≠ j contributes to an
increase of the rank? A case distinction is necessary in order
to answer this question.

1. Assume all the columns of Ai with i < k are linearly
independent and also all the columns of Bi with i < k

are linearly independent. Then the representation in the
coefficients Xi and Yi in Eq. (39) and Eq. (40) is unique.
The only way Ak ⊗Bk not to increase the rank is if all
the Xi ⊗Yj = 0 with i ≠ j. Ignoring trivial cases where
either Xi = 0 for all i < k or Yj = 0 for all j < k, this
in turn implies Xi = 0 and Yi = 0 for all i except at
most one, say for i = 1. Hence, only one single summand
Xi⊗Yi in the first sum can be non-zero. These cases are
thus easy to spot.

2. Assume the columns of Ai with i < k are already linearly
dependent, whereas the columns of Bi with i < k are
linearly independent. This implies that the representation
in Eq. (39) is no longer unique. This is important, as
the reasoning in the previous case for Ak ⊗ Bk not to
increase the rank no longer applies. Consider for example
the case where we have k − 1 different representations of
the form Ak = AiXi. Then we can deduce

Ak ⊗Bk = ∑
j<k

Ak ⊗BjYj = ∑
j<k

AjXj ⊗BjYj

= ∑
j<k

[Aj ⊗Bj] [Xj ⊗Yj] ,

which shows that the new columns of Ak ⊗Bk are just a
linear combination of previously existing Aj ⊗Bj with
j < k and hence the rank does not increase. This example
shows that these cases are no longer as easy to spot as
the cases described previously. As we will see in the next
section, this example exactly covers the situation when
the first camera tracks at least 4 points.

9.2 Returning to Rank-13 Factorizations

We realize that especially the second cases are more diffi-
cult to discover and might require detailed knowledge of
the specific problem at hand. Therefore, let us look at a
specific example which also sheds some light on the re-
lationship between the previous reasonings and our rank-
13 factorization problem. Assume a full rank S1 ∈ R4×4,
two equal s2 = s3 = S1x ∈ R4×1, two linearly independent
C1 ∈ R3×2 and c2 ∈ R3×1, and finally a linearly dependent

c3 = [C1,c2] (
y1

y2
) ∈ R3×1. Of course, the matrix S1 can

be interpreted as the points tracked by the first camera, the

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 17

matrix C1 as the first camera matrix, c2 and c3 as the first
and second camera axes of the second camera, and s2 = s3 as
a point observed by the second camera. This setup leads to

S1 ⊗C1 → 4 ⋅ 2 basis vectors

s2 ⊗ c2 = S1x⊗ c2 → 1 additional basis vector

s3 ⊗ c3 = s3 ⊗ [C1,c2] (
y1

y2
)

= S1x⊗C1y1 + s2 ⊗ c2y2

= [S1 ⊗C1][x⊗ y1] + [s2 ⊗ c2][I4 ⊗ y2]
→ no new basis vectors.

In the last step, we concluded that s3 ⊗ c3 does not provide
any new linearly independent vector since it is expressible
as a linear combination of previously existing vectors. The
important observation is the following: if the first camera
tracks at least four points then the second camera axis of any
additional camera does only provide linearly dependent data
(the second camera axis is redundant so to speak). A detailed
analysis for each possible minimal case similar to the one
above leads to the results summarized in Tab. 1. Note that for
some cases, even though the rank of their mode-f subspace
is 13, the computation of the affine cameras (Sec. 7.2.2) still
fails because the points do not provide enough linear indepen-
dent constraints for solving the linear system of Eq. (25) due
to reasons akin to the one shown above. Interestingly, exper-
iments showed that direct nonlinear iterative minimization
such as the ones presented in Sec. 10 sometimes succeeded
in solving

S(f)[⇓k S̃k
T ⊗ C̃k]T = QkronQ−1

aff Â

for C̃k, S̃k, and Qkron in cases where the linear algorithm
was not applicable.

10 Iterative Optimization

Even thought the algorithmic part of this paper focuses on the
closed-form factorization based solution, due to practical rea-
sons there is without doubt a need for iterative optimization
methods: Firstly, the solution given by the linear algorithm
described in Sec. 7.2 is suboptimal w.r.t. the trilinear nature of
the data because sequentially solving linear problems might
transfer errors from a previous step to the current step. This
is especially true for data which originates from projective
cameras. However, as our experiments with synthetic and
real world data showed, the above mentioned closed-form
solution still provides an accurate initial guess for an iterative
non-linear optimization scheme. Secondly, in real world ex-
amples, it is often difficult to track feature points over all the
frames even for just one camera. Feature points are usually
only trackable over a couple of frames. They disappear and

new ones will emerge. Each trajectory then has some missing
entries and the factorization approach using a singular value
decomposition is thus no longer applicable. However, thanks
to the tensor formulation in Eq. (13) we know how the under-
lying algebraic structure of our data should look like and this
still provides strong constraints on the known data entries.
Thus, provided enough entries are known, these entries can
be used to compute a valid Tucker tensor decomposition with
an iterative algorithm.

As a starting point for further work in multilinear factor-
ization methods with missing entries, we provide two algo-
rithms which proved to work very well in our application.
[Chen, 2008] recently analyzed several iterative algorithms
for bilinear matrix factorization problems with missing en-
tries, amongst others the Alternating Least Squares (ALS)
method and the Wiberg algorithm. The extension of the ALS
algorithm to our multilinear setting is apparent once we re-
alize that the data can be modeled as a third order tensor.
This tensor can then be flattened along its three modes in
alternation. A linear closed form solution is found for the
subspace which has been exposed by flattening the tensor
while keeping the remaining two subspace estimates fixed
and by only considering the known entries. The Wiberg algo-
rithm, which was originally developed for bilinear problems,
can be adapted to the matrix factorization ofW(f) where the
gradient is taken with respect to the unknown camera and
structure matrices C resp. S. In all our experiments, both the
ALS and Wiberg optimization methods converged after just
very few iterations (roughly 5 to 10 iterations) in a minimum
when initialized with the closed-form solution. The closed-
form solution thus seems to suit perfectly as an initial guess
for an iterative refinement.

The ALS method is a first-order gradient based scheme
(not steepest descent, however!). It is well known that the
convergence behavior of ALS methods for general tensor
decompositions with missing entries is very instable: at the
beginning of the iterations the convergence is quite fast. Mul-
tilinear factorization problems have many plateaus where the
local gradients approach zero. It is in these areas where the
ALS scheme often gets stuck and the convergence then flat-
lines. In these circumstances it is advantageous to switch to
a second-order method like Newton’s method or the Wiberg
algorithm. Based on our experience, the combination of ALS
with the Wiberg algorithm proves to be very suitable to gen-
eral tensor factorizations with missing entries. The next two
sections therefore shortly provide an introduction to these
methods, shown at the example of rigid multi-camera fac-
torization. With the tools presented in Sec. 3.3, it should be
possible to apply these ideas to other multilinear matrix and
tensor equations.

18 Roland Angst, Marc Pollefeys

10.1 Alternating Least Squares

A Rank-13 factorization minimizes the Frobenius norm be-
tween the data matrixW(f) and its best rank-13 approxima-
tion. This can can be rewritten as a sum of squares over all
the elements of the matrix

Φ =1
2
∥MS(f) (ST ⊗C)T −W(f)∥

2

F
(41)

=1
2
∑
f,k,n

(M[f,∶]S(f) (ST[∶,n] ⊗C[k,∶])
T −W[f,k,n])

2

.

We introduce w(f) = vec (W(f)), w(k) = vec (W(k)), and
w(n) = vec (W(n)) in addition to m = vec (M), c = vec (C),
and s = vec (S). The sum of squares problem in Eq. (41) is
then equivalent to Φ = 1

2
∥r∥22 with the residuum

r = [(ST ⊗C)ST
(f) ⊗ IF]m −w(f) (42)

= Πk→f ([(ST ⊗M)ST
(k) ⊗ I2K]c −w(k))

= Πn→f ([(MT ⊗C)ST
(n) ⊗ IN] s −w(n)) ,

where Eq. (2) has been used to expose the unknown vectors
m, c, and s and the row-permutation matrices Πk→f and
Πn→f reorder the rows of the residuum to match those of
Eq. (42). For later reference, we also note the partial deriva-
tives of the residuum

∂mr = [(ST ⊗C)ST
(f) ⊗ IF]

∂cr = Πk→f [(ST ⊗M)ST
(k) ⊗ I2K]

∂sr = Πn→f [(MT ⊗C)ST
(n) ⊗ IN] .

With this notation in place, the alternating least squares
algorithm (ALS) is easily explained as a cyclic block coordi-
nate gradient descent algorithm which alternates its descent
directions according to the partial derivatives of Φ w.r.t. m,
c, and s (see Alg. 3). If there are unknown entries in data
tensorW , then these entries are simply omitted in the sum
of squares which corresponds to only considering the known
rows of the residuum vector r. The ALS algorithm can be
slightly optimized by making use of the known constant one-
vector of the motion matrix M and the known homogeneous
coordinate of the points S. Moreover, the linear systems can
be formulated without vectorizing the unknowns which leads
to smaller linear systems.

10.2 Wiberg Algorithm

Throughout this derivation we have to distinguish between
the partial derivative ∂xf of a function f w.r.t. input argument
x and the total derivative dxf of f w.r.t. input argument x.
The latter might require the application of the chain-rule, as
we will see later.

Input: Measurements w and initial guesses for rigid motion m,
camera matrix c, and points s

Output: Affine estimates for rigid motion m, camera matrix c,
and points s

while not converged do
m = argminm ∥[(ST ⊗C)ST

(f) ⊗ IF]m −w(f)∥
2

2

c = argminc ∥[(ST ⊗M)ST
(k) ⊗ I2K]c −w(k)∥

2

2

s = argmins ∥[(M
T ⊗C)ST

(n) ⊗ IN] s −w(n)∥
2

2

end
Algorithm 3: ALS applied to our trilinear factorization
problem

The Wiberg algorithm is a variation of the Gauss-Newton
algorithm with an interleaved variable projection step. Thus,
we again minimize the norm Φ = 1

2
∥r∥22 of the residuum

r = [(ST ⊗C)ST
(f) ⊗ IF]m −w(f), (43)

but this time Eq. (43) is considered as a function of only c and
s since a least-squares, closed-form solution for m is easily
computable if c and s are fixed (m is therefore considered
as a function of c and s). In analogy to Gauss-Newton, a
2nd-order Taylor expansion of the objective function at the
current ith iteration is minimized

(dc

ds
) = arg min

dc,ds
(Φci,si + rT dci,sir(dc

ds
)+

1

2
(dc

ds
)
T

Hci,si (
dc

ds
)
⎞
⎠

(44)

with approximative Hessian Hci,si ≈ dci,sir
T dci,sir. This

minimization problem has the same minimum as the linear
least squares problem

(dc

ds
) = arg min

dc,ds

⎛
⎝
∥r + dci,si (

dc

ds
)∥

2

2

⎞
⎠

which will be solved instead of the Taylor expansion. The
method is complete, if we can find an expression for the total
derivative dci,sir.

Since Φ is a sum of squares, a critical point of Φ must
fulfill

0 = ∂mΦ = (∂mr)T r = [(ST ⊗C)ST
(f) ⊗ IF]T r. (45)

As the left-hand side of Eq. (45) equals the constant zero-
vector, its total derivative w.r.t. c and s is also zero and hence
with the product rule

0 = dc,s ((∂mr)T r)

= dc,s ((∂mr)T) r + (∂mr)T dc,sr. (46)

With a similar justification as in the Gauss-Newton algorithm,
the multiplication between the residuum and its second order

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 19

derivative is assumed to be negligible dc,s ((∂mr)T) r ≈ 0.
This approximation together with the chain-rule for total
derivatives

dc,sr = ∂mr∂c,sm + ∂c,sr (47)

allows to rewrite Eq. (46) as

0 = (∂mr)T dc,sr
= (∂mr)T (∂mr∂c,sm + ∂c,sr) (48)

This last equation provides us with an estimate for the partial
derivative of m considered as a function of c and s

∂c,sm = − ((∂mr)T ∂mr)
−1

(∂mr)T ∂c,sr (49)

Finally, an approximation of the sought after total derivative
is given by (Eq. (47) and Eq. (49))

dc,sr = [−∂mr ((∂mr)T ∂mr)
−1

(∂mr)T + I]∂c,sr

= P�∂rr∂c,sr.

In the last equation, the projection matrix P�∂rr onto the
orthogonal complement of the columns (i.e. the column
nullspace) of ∂mr has been introduced. Note that the residuum
is also expressible in terms of this projection matrix r =
−P�∂rrw. Now, we have everything in place to state the Wiberg
algorithm applied to our trilinear factorization problem (Alg. 4).

Input: Measurements w and initial guesses for rigid motion m,
camera matrix c, and points s

Output: Affine estimates for rigid motion m, camera matrix c,
and points s

while not converged do
C = reshape(c) ;
S = reshape(s) ;

m = argminm ∥[(ST ⊗C)ST
(f) ⊗ IF]m −w∥

2

2
;

[dc ds] = argmindc,ds ∥r + dc,sr(
dc
ds

)∥

2

2

;

c = c + dc ;
s = s + ds ;

end
Algorithm 4: Wiberg algorithm applied to our trilinear
factorization problem

11 Results: Rank-13 Factorization

The steps described in Sec. 7.2.1, Sec. 7.2.2, and Sec. 7.2.4
were applied sequentially to synthetically generated data and
to a real data sequence in order to get an initial estimate for
an iterative non-linear refinement. The ALS scheme was then
iterated up to 10 times, with the previously computed solu-
tion as an initial guess. This already provided a very good

reconstruction which could be even further improved by per-
forming a couple of Wiberg iterations with the ALS solution
as initialization. Finally, the metric upgrade was performed
as described in Sec. 7.2.5. Because the metric upgrade step
is based on a least squares formulation, orthogonality con-
straints are not enforced strictly on the rotation matrices of
the rigid motion and the resulting motion is thus not perfectly
rigid. Perfectly rigid motions can be enforced if required in a
supplemental step. We computed a polar decomposition of
the matrix Rf = RP at every frame, replaced Rf by R and
ignored the non-rotational part P 3.

11.1 Synthetic Data

For the synthetic data experiments, the cameras were mod-
eled as similar to the ones used for the real data experiments
as possible (pixel density of 1080pixels

4.035mm
, image resolution of

1920× 1080). The rigid motion was generated by specifying
5 keyframes and interpolating in between using third-order
splines. We randomly picked 5 axes of rotation and rotation
angles (which were limited to a maximum of 45 degrees).
The translation vector of the rigid motions and the feature
points were drawn from a normal distribution with a stan-
dard deviation of 5cm . K = 4 cameras with focal length
f = 90mm were placed randomly 7.5m apart from the scene
pointing toward the origin each of which tracked Nk = 10

feature points over 100 frames. 2D trajectories generated
with this approach are visualized in Fig. 4(a).

Firstly, the robustness with respect to isotropic Gaussian
noise on the coordinates of the projected feature points was
investigated. The synthetic data was generated with an affine
camera model for this experiment. Inspecting Fig. 4(b) shows
that our algorithm with non-strict orthogonality constraints
even slightly overfits the ground truth. This is mainly due
to the fact that the rigidity of the motion was not strictly
imposed. Enforcing truly rigid motions using polar decom-
positions increased the root mean squared (RMS) error

1√
F ∑kNk

∥W −MS(f) [⇒k Sk ⊗CkT]∥
F

(50)

of the reprojected moving points slightly.
Secondly, the influence of the distance between cameras

and rigid object was investigated. The magnification factor
was set to a constant of m = 61mm

5m
which can be interpreted

as choosing a focal length of 61mm with an average distance
between camera and rigid object of 5m . In order to keep the
magnification factor constant, the focal length of the cameras
was updated accordingly while changing the distance. In this
second experiment the data was generated with projective

3 The polar decomposition A = RP provides the optimal approx-
imation R ≈ A of a matrix A with an orthogonal matrix R w.r.t. the
Frobenius-norm R = argminQ ∥A −Q∥F subject to QTQ = I.

20 Roland Angst, Marc Pollefeys

0 500 1000 1500

0

200

400

600

800

1000

0 500 1000 1500

0

200

400

600

800

1000

0 500 1000 1500

0

200

400

600

800

1000

0 500 1000 1500

0

200

400

600

800

1000

(a) Example 2D input trajectories for the syn-
thetic experiments

Standard deviation of noise in pixel units

R
M

S

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

(b) RMS as a function of the standard deviation
of the noise

1 / Distance

R
M

S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

(c) RMS as a function of the inverse of the dis-
tance between the rigid object and projective cam-
eras

Fig. 4 Synthetic data experiments: The green line corresponds to the error between ground truth and noisy projections, the red line is the error of
our algorithm where the orthogonality constraints on rotation matrices are not enforced strictly whereas the blue line shows the resulting error if
exact rigid rotations are enforced with a polar decomposition. The orange line shows the error of the optimal affine camera approximation to the
projective cameras in the absence of noise.

camera models and noise with a standard deviation of σ = 10

pixels was added to the projections in order to make the
experiment more realistic (Fig. 4(c)).

In a third synthetic experiment, the stability of the method
w.r.t. the number of points observed per camera is investi-
gated. The data has been generated in the same way as for
the first experiment, but this time with K = 6 affine cameras.
The method has been applied several times to an increasing
number of points visible per camera by adding additional
feature trajectories (each camera still tracked a different set
of points). Fig. 5 shows the results of this experiment. From
this figure, we can conclude that the method is stable to a
fair amount of noise if at least 3 to 4 points are tracked per
camera. The more extreme cases of just 2 points per camera
seem to be substantially less robust w.r.t. noise.

The influence of an increasing number of cameras is
shown in a last synthetic experiment. The total number of
points N = ∑kNk was held fixed but the number of affine
cameras K varied. For each K, the N points were split into
evenly sized disjoint subsets. Based on the results in Fig. 6,
our methods does not seem to depend strongly on the number
of cameras.

Combining the results from Fig. 6 with Fig. 5, we con-
clude that the method is considerably robust as soon as there
is sufficient redundancy in the input data. For example, the
accuracy decreases slightly in the K = 6 with Nk = 2 case
as seen in Fig. 5, however in the case K = 10 with Nk = 2

shown in Fig. 6 the accuracy stays more or less the same.

11.2 Real Data Sequence

We evaluated our algorithm on a real sequence of a rotating
rigid box. The cameras recorded in a resolution of 1920 ×
1080 pixels. In order to ease the tracking we used a template
based tracking algorithm [D. Wagner and D. Schmalstieg,
2007] which provides 5 points per template (the 4 vertices
and the middle point). The cameras were not aware of the
fact that they might have tracked the very same feature points

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11

12

Number of points per camera

R
M

S

σ = 0 pixels
σ = 1 pixels

σ = 2 pixels

σ = 3 pixels

σ = 4 pixels
σ = 5 pixels

Fig. 5 Synthetic data experiment showing the influence of an increasing
number of points observed per camera while holding the number of
cameras fixed: The x-axis shows the number of points tracked in each
of the K = 6 cameras whereas the y-axis shows the resulting RMS. The
continuous lines show the error when the orthogonality constraints on
rotation matrices are not strictly enforced and the dashed lines show
the result after applying a subsequent polar decomposition in order to
enforce exact rotation matrices. The dotted lines show the error of the
ground truth reconstruction, i.e.they show the error due to the noise in
the data. The amount of noise added to the images varied between 0
and 5 pixels.

(i.e., no correspondences were established between different
camera views). Each camera tracked 2 templates which were
located on the same side of the box and hence, the struc-
ture of the points tracked by one single camera was actually
planar. As the results show, our algorithm can handle this con-
figuration. Fig. 7 shows the accuracy of the reconstruction.
Cameras 1, 4, and 6 tracked the templates on the front facing
plane of the box (these templates are drawn in cyan, magenta,
and red color), cameras 2 and 5 tracked the templates on

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 21

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

Number of cameras

R
M

S

σ = 0 pixels

σ = 1 pixels

σ = 2 pixels

σ = 3 pixels

σ = 4 pixels

σ = 5 pixels

Fig. 6 Synthetic data experiment showing the influence of an increasing
number of cameras while holding the total number of points fixed: The
x-axis shows the number of cameras whereas the y-axis shows the
resulting RMS. The total number of points was fixed to N = ∑kNk =

20 and the number of points per cameras was split evenly (e.g.forK = 2
each camera observed 10 points and for K = 10 cameras each camera
observed 2 points). The line patterns encode the same semantics as as
in Fig. 5.

another side of the box (blue and yellow), whereas camera
3 was the only camera which tracked the templates on the
opposite side (green). Note that a template which was tracked
by more than two cameras gets reconstructed at almost the
very same location in space, even though the algorithm is
intentionally unaware of such correspondences. Since affine
camera poses suffer from a depth ambiguity along the z-axis,
all the cameras are drawn with the same distance to the scene.
The size of the image plane however encodes the scaling
factor of the cameras (the larger the image plane, the further
away the camera) and together with a known focal length
this would determine the distance along the z-axis. In our
experiments, cameras 2 and 5 (4 and 6) have an almost paral-
lel image plane, but camera 5 (6) was placed slightly further
away from the box. A RMS of about 12.3 pixels resulted by
using our linear algorithm to initialize 5 iterations of the ALS
algorithm. Additional 5 iterations with the Wiberg optimiza-
tion finally gave a RMS of about 2.6 pixels. Enforcing true
rigid motions as a last step increased the RMS of the recon-
struction to about 8.5 pixels. All the results shown in Fig. 8
and Fig. 7 are based on the reconstruction which enforces
true rigid motions.

In a second experiment, we tried how robustly our al-
gorithm can handle a camera which only tracks one single
feature point. We therefore excluded all but one feature tra-

Fig. 8 Comparison between two reconstructions of the real data se-
quence: All the 10 feature points per camera view are used for the
first reconstruction (feature points are drawn as dots). In contrast, for
the second reconstruction (feature points drawn as circles), the right-
most camera 3 only tracked one single feature point (black arrow). The
pose and the tracked feature point of the third camera nonetheless got
reconstructed very accurately. The cameras of the first (second) recon-
struction are visualized semi-transparently in blue (red) color. The areas
of overlap thus appear in violet color.

jectory in camera 3 and run the same algorithm again. The
resulting reconstruction again had a RMS of about 2.6 pixels,
respectively 8.5 pixels with enforced rotation matrices. Fig. 8
compares this reconstruction with the previous reconstruc-
tion which used all the 10 feature points per camera. This
result shows that the new rank-13 constraint can be used to
calibrate cameras which only track one single point which
is not in correspondence with any other point tracked by the
remaining cameras.

12 Evaluation: Rank-5 Factorization

If synthetic data is generated with affine cameras and with-
out noise, the algorithm expectedly finds the exact solution
in closed-form, even for the case of only two cameras each
of them tracking one single point. Based on our experience
with synthetic data according to a more realistic setting (i.e.
projective camera models with realistic internal parameters,
some noise and plausible planar motions) we concluded that
the robustness of the algorithm strongly depends on the ob-
served motion. This is actually an expected behavior. If the
motion clearly spans the 5D motion subspace, the algorithm
works robustly. However, if a dimension of this subspace is
not explored sufficiently, noise will overrule this dimension
and the reconstruction will deteriorate.

As a proof of concept the algorithm has been applied to a
real data sequence. Fig. 9 shows the results of a real sequence
with four cameras observing the planar motion of a rigid box.
This time, no iterative refinement has been applied to the
closed-form solution provided by the rank-5 factorization.

22 Roland Angst, Marc Pollefeys

1st Camera 2nd Camera 3rd Camera

4th Camera 5th Camera 6th Camera
(a) Example Frames

C1

C2

C3

C4

C5

C6

(b) 3D view of reconstruction (c) Closeup view

Fig. 7 Resulting reconstruction of the real data sequence. Fig. 7(a) shows the reprojection of feature points (red circles) into three camera views
along with the ground truth (blue crosses) for one specific frame (the frames are cropped in order to fit in the figure). Fig. 7(b) shows a 3D view of
the reconstructed camera poses together with the points of the box at one specific frame. Fig. 7(c) shows a closeup view of the reconstructed points
at this frame.

The translation ambiguity along the rotation axis has been
resolved such that the centroids of the front-facing tags share
the same coordinate along the axis of rotation. A template
based tracker [D. Wagner and D. Schmalstieg, 2007] has
been used to generate the feature trajectories. Each camera
tracked between 10 to 20 points. Even though some cam-
eras actually tracked the very same points, the algorithm was
purposely not aware of these correspondences. Such hidden
correspondences allow to evaluate the accuracy of the recon-
struction. Based on the overlapping area of the 3D model
of the tracked feature tags, we conclude that the algorithm
succeeds in computing an accurate reconstruction given the
fact that the reconstruction is based on the approximate affine
camera model and the solution is given in a non-iterative
closed-form. The reprojection error of the closed-form solu-
tion is

1√
F ∑kNk

∥W −MC(f) [⇒k Sk ⊗CkT]∥
F
= 7.5 pixels,

where the resolution of the cameras is 1920 × 1080. A suc-
cessive nonlinear refinement step still based on the affine
camera model did not improve the reprojection error. This
provides evidence that most of the error is due to the discrep-
ancy between the employed affine camera approximation and
the real projective cameras and not due to the sub-optimal
sequential steps of the closed-form solution.

13 Conclusions and Future Work

This article brought together the ideas previously presented
in [Angst and Pollefeys, 2009] and [Angst and Pollefeys,
2010]. Specifically, this article presented a unified analysis

of rigidly moving objects, for general rigid motions as well
as for the special case of planar rigid motions (Sec. 4). The
key insight was that any trajectory of any point seen by any
camera is restricted to a low-dimensional subspace, namely
to a 13-dimensional subspace for general rigid motions and
to a 5-dimensional subspace for planar rigid motions. The
theoretical insights gained thereby enabled the development
of two algorithms, which provide a closed-form solution to
the structure from motion reconstruction problem where no
feature point correspondences between the different camera
views exist (Sec. 7 and Sec. 8). The cameras are only assumed
to track feature points on a commonly observed moving rigid
object. The motion correspondence, namely that all the cam-
eras observe the same rigid motion, was captured by a 13D
resp. by a 5D motion subspace. Tensorial notation provided
us with the necessary tools and insights to derive two non-
iterative algorithms which provide a closed-form solution.
The first algorithm handles the case of general rigid motions
and is based on a rank-13 factorization, whereas the second
algorithm is applicable when the observed rigid motion is
planar and is based on a rank-5 factorization. Even though
the setup for the two algorithms is almost the same, the steps
required to compute a closed-form solution largely differ.
These individual steps introduced several ideas and tricks
which might prove useful for other factorization problems,
as well. The algorithms were evaluated on synthetic data and
have been shown to work on real data sequences (Sec. 11 and
Sec. 12).

We hope the analysis and techniques presented in this
article will be stimulating and boost potential future work.
We see several opportunities which build upon the present
work. For example, one could think of adapting the rigid
motion subspace constraints to a formulation with projective

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 23

Fig. 9 Reconstruction of a planarly moving box: The right image shows a close-up view of the reconstructed structure (tags tracked by one specific
camera share the same color). Two cameras have been positioned slightly below resp. above the remaining other cameras which is nicely captured
by the reconstruction.

camera models. This probably asks for iterative solutions
for which the closed-form algorithms might provide a good
initialization. The low-rank constraint might also be used as
a means to temporally synchronize multiple camera streams.
A drawback of our current method is that the methods as-
sume the feature tracks of each camera to be complete, i.e.the
camera succeeds in tracking its feature points at every single
frame of the sequence (see also Tab. 2). This prevents large
rotations of the rigid object which cause eventual occlusions.
This leads to a problem which currently enjoys interest from
a wide variety of research communities, namely the so-called
matrix completion problem. The power of iterative factoriza-
tion methods which can deal with general patterns of missing
data is not yet completely understood. The methods presented
in Sec. 10 are only a first step towards this goal. The tensor
notation introduced in this article is hopefully conducive to
transferring ideas between different communities since the
theory of matrix completion is currently rapidly evolving in
parallel in different research areas.

Acknowledgements Roland Angst is a recipient of the Google Europe
Fellowship in Computer Vision, and this research is supported in part
by this Google Fellowship.

We gratefully acknowledge the support of the 4DVideo ERC Start-
ing Grant Nr. 210806 and a Packard Foundation Fellowship.

References

Aguiar PMQ, Xavier JMF, Stosic M (2008) Spectrally opti-
mal factorization of incomplete matrices. In: CVPR, IEEE
Computer Society 9

Akhter I, Sheikh Y, Khan S, Kanade T (2011) Trajectory
space: A dual representation for nonrigid structure from
motion. IEEE Trans Pattern Anal Mach Intell 33(7):1442–
1456, DOI 10.1109/TPAMI.2010.201 9

Angst R, Pollefeys M (2009) Static multi-camera factoriza-
tion using rigid motion. In: Proc. of ICCV ’09, IEEE Com-

puter Society, Washington, DC, USA, pp 1203–1210 2,
22

Angst R, Pollefeys M (2010) 5d motion subspaces for planar
motions. In: Proceedings of the 11th European conference
on computer vision conference on Computer vision: Part
III, Springer-Verlag, Berlin, Heidelberg, ECCV’10, pp
144–157 2, 22

Brand M (2001) Morphable 3d models from video. In: CVPR
(2), IEEE Computer Society, pp 456–463 1, 9, 11

Brand M (2005) A direct method for 3d factorization of
nonrigid motion observed in 2d. In: CVPR (2), IEEE Com-
puter Society, pp 122–128 1, 11

Bregler C, Hertzmann A, Biermann H (2000) Recovering
non-rigid 3d shape from image streams. In: CVPR, IEEE
Computer Society, pp 2690–2696 1, 2

Bue AD, de Agapito L (2006) Non-rigid stereo factorization.
International Journal of Computer Vision 66(2):193–207
2

Carroll J, Chang JJ (1970) Analysis of individual differences
in multidimensional scaling via an n-way generalization
of eckart-young decomposition. Psychometrika 35(3):283–
319 4

Chen P (2008) Optimization algorithms on subspaces: Re-
visiting missing data problem in low-rank matrix. Interna-
tional Journal of Computer Vision 80(1):125–142 17

D Wagner and D Schmalstieg (2007) Artoolkitplus for pose
tracking on mobile devices. In: Proc. of 12th Computer
Vision Winter Workshop 20, 22

Daniilidis K (1999) Hand-Eye Calibration Using Dual
Quaternions. International Journal of Robotics Research
18(3):286–298 2

Guerreiro RFC, Aguiar PMQ (2002) 3d structure from video
streams with partially overlapping images. In: ICIP (3), pp
897–900 2

Harshman R (1970) Foundations of the parafac procedure:
Models and conditions for an explanatory multi-modal
factor analysis. Working Papers in Phonetics 16 4

24 Roland Angst, Marc Pollefeys

Hartley R, Schaffalitzky F (2004) PowerFactorization : 3D
reconstruction with missing or uncertain data. In: Japan-
Australia Workshop on Computer Vision 2

Hartley RI, Zisserman A (2004) Multiple View Geometry in
Computer Vision, 2nd edn. Cambridge University Press,
ISBN: 0521540518 10, 11

Kolda TG, Bader BW (2009) Tensor Decompositions and
Applications. SIAM Review 51(3):455–500, DOI 10.1137/
07070111X 4

Kumar RK, Ilie A, Frahm JM, Pollefeys M (2008) Simple
calibration of non-overlapping cameras with a mirror. In:
CVPR, IEEE Computer Society 2

Lathauwer LD, Moor BD, Vandewalle J (2000) A multilin-
ear singular value decomposition. SIAM J Matrix Anal
Appl 21(4):1253–1278, DOI http://dx.doi.org/10.1137/
S0895479896305696 4

Li J, Chellappa R (2005) A factorization method for structure
from planar motion. In: WACV/MOTION, IEEE Computer
Society, pp 154–159 2

Magnus JR, Neudecker H (1999) Matrix Differential Calcu-
lus with Applications in Statistics and Econometrics, 2nd
edn. John Wiley & Sons 4, 5, 25

Sturm PF, Triggs B (1996) A factorization based algorithm
for multi-image projective structure and motion. In: Bux-
ton BF, Cipolla R (eds) ECCV (2), Springer, Lecture Notes
in Computer Science, vol 1065, pp 709–720 1

Svoboda T, Martinec D, Pajdla T (2005) A convenient multi-
camera self-calibration for virtual environments. Presence
14(4):407–422 2

Tomasi C, Kanade T (1992) Shape and motion from image
streams under orthography: a factorization method. Inter-
national Journal of Computer Vision 9(2):137–154 1, 5,
8

Torresani L, Yang DB, Alexander EJ, Bregler C (2001) Track-
ing and modeling non-rigid objects with rank constraints.
In: CVPR (1), IEEE Computer Society, pp 493–500 1, 2

Tresadern PA, Reid ID (2005) Articulated structure from
motion by factorization. In: CVPR (2), IEEE Computer
Society, pp 1110–1115 1

Tron R, Vidal R (2007) A benchmark for the comparison
of 3-d motion segmentation algorithms. In: CVPR, IEEE
Computer Society 1

Tucker L (1966) Some mathematical notes on three-mode
factor analysis. Psychometrika 31(3):279–311 4, 9

Vidal R, Oliensis J (2002) Structure from planar motions
with small baselines. In: Heyden A, Sparr G, Nielsen M,
Johansen P (eds) ECCV (2), Springer, Lecture Notes in
Computer Science, vol 2351, pp 383–398 2

Wang G, Tsui HT, Wu QMJ (2008) Rotation constrained
power factorization for structure from motion of nonrigid
objects. Pattern Recognition Letters 29(1):72–80 1, 2

Wolf L, Zomet A (2006) Wide baseline matching between
unsynchronized video sequences. International Journal of

Computer Vision 68(1):43–52 2
Xiao J, Chai J, Kanade T (2004) A closed-form solution to

non-rigid shape and motion recovery. In: Pajdla T, Matas
J (eds) ECCV (4), Springer, Lecture Notes in Computer
Science, vol 3024, pp 573–587 9

Yan J, Pollefeys M (2008) A factorization-based approach
for articulated nonrigid shape, motion and kinematic chain
recovery from video. IEEE Trans Pattern Anal Mach Intell
30(5):865–877 1

Zelnik-Manor L, Irani M (2006) On single-sequence and
multi-sequence factorizations. International Journal of
Computer Vision 67(3):313–326 2

A Linear System for Affine Reconstruction of Camera
matrices

The affine camera matrices must fulfill

S(f),[10∶13,∶] [⇓k S̃kT
⊗ C̃k

]
T
=Qkron,[10∶13,∶]Q

−1
aff Â (51)

= [⇒k 11×Nk
⊗ C̃kT

] =Qkron,[10∶13,∶]Q
−1
aff [⇒k Âk] , (52)

where we used Âk to denote the submatrix of Â due to camera k. Let
us first investigate only such a submatrix S(f),[10∶13,∶] [S̃

kT
⊗ C̃k]

T

due to one single camera k. Vectorization of this matrix equation using
Eq. (6) and Eq. (3) gives

Gk vec (C̃kT
) = [(Q−1

aff Âk
)
T
⊗ I4]vec (Qkron,[10∶13,∶]) (53)

=Hk vec (Qkron,[10∶13,1∶12]) + bk (54)

where the following matrices were introduced for abbreviation

Gk
= [INk

⊗T2,1 ⊗ I4] [1Nk×1 ⊗ I2⋅4] (55)

Hk
= [[[Q−1

aff][1∶12,∶]Â
k]

T
⊗ I4] (56)

bk
= [[[Q−1

aff][13,∶]Â
k]

T
⊗ I4]vec (Qkron,[10∶13,13]) . (57)

Combining each of the linear systems due to a camera in one single
linear system leads to

[⇘k Gk − ⇓k Hk]
⎛

⎝

⇓k vec(C̃kT
)

vec (Qkron,[10∶13,1∶12])

⎞

⎠
= (⇓k bk) . (58)

However, closer inspection of Eq. (52) reveals that successive rows re-
sult in the very same linear constraints. To avoid an unnecessary increase
in unknowns, we therefore only consider one row i ∈ {1,2,3,4} for
setting up the linear system which results in slightly changed matrices

Gk
= [INk

⊗T2,1 ⊗ I1] [1Nk×1 ⊗ I2] (59)

Hk
= [[[Q−1

aff][1∶12,∶]Â
k]

T
⊗ I1] (60)

bk
= [[[Q−1

aff][13,∶]Â
k]

T
⊗ I1]vec (Qkron,(9+i,13)) . (61)

The resulting over-constrained linear system reads like

[⇘k Gk − ⇓k Hk]
⎛

⎝

⇓k vec (C̃k
[∶,i]

T
)

vec (Qkron,[9+i,1∶12])

⎞

⎠
= (⇓k bk) , (62)

which consists of only 2K + 1 ⋅ 12 unknowns instead of 4 ⋅ 2K + 4 ⋅ 12
unknowns. Note that Qkron,[10∶13,13] = (0,0,0,1)T and therefore
bk is only non-zero for the last row which is associated with the cam-
era translation. The system matrix in Eq. (62) however has a three-
dimensional nullspace, and therefore provides four linear independent
solutions for the four rows.

Multilinear Factorizations for Multi-Camera Rigid Structure from Motion Problems 25

B Linear System for Affine Reconstruction of Points

This derivation closely follows the one from Sec. A. Let Xk denote the
non-homogeneous part of the points SkT

= [XkT
1Nk×1] and Pk

stands for the non-translational columns of the camera matrix Ck =

[Pk tk]. Using this notation, a valid affine reconstruction must fulfill

S(f),[1∶9,∶][⇓k S̃kT
⊗ C̃k

]
T
=Qkron,[1∶9,∶]Q

−1
aff Â (63)

= [⇒k X̃k ⊗ P̃kT
] =Qkron,[1∶9,∶]Q

−1
aff [⇒k Âk] (64)

Vectorization of the submatrix equation due to camera k using Eq. (5)
and Eq. (3) leads to

Gk vec (X̃k) = [[Q−1
aff Âk

]
T
⊗ I9]vec (Qkron,[1∶9,∶]) (65)

=Hk vec (Qkron,[1∶9,1∶12]) + bk (66)

where the following matrices were introduced for abbreviation

Gk
= [INk

⊗T2,3 ⊗ I3][I3Nk
⊗ vec(P̃kT

)] (67)

Hk
= [[[Q−1

aff][1∶12,∶]Â
k]

T
⊗ I9] (68)

bk
= [[[Q−1

aff][13,∶]Â
k]

T
⊗ I9]vec (Qkron,[1∶9,13]) . (69)

Combining again each of the linear systems due to a camera in one
single linear system leads to

[⇘k Gk − ⇓k Hk] (
⇓k vec (X̃k)

vec (Qkron,[1∶9,1∶12])
) = (⇓k bk) . (70)

A similar observation as in Sec. A holds true for Eq. (70). More specifi-
cally, successive row-triples in Eq. (64) result in the very same linear
constraints. To avoid an unnecessary increase in unknowns, we there-
fore only consider one row triple for setting up the linear system which
results again in slightly changed matrices

Gk
= [INk

⊗T2,1 ⊗ I3][INk
⊗ vec (P̃T

k)] (71)

Hk
= [[[Q−1

aff][1∶12,∶]Â
k]

T
⊗ I3] (72)

bk
= [[[Q−1

aff][13,∶]Â
k]

T
⊗ I3]vec (Qkron,[3i−2∶3i,13]) . (73)

The resulting over-constrained linear system reads like

[⇘k Gk − ⇓k Hk] (
⇓k vec (X̃k,[i,∶])

vec (Qkron,[3i−2∶3i,1∶12])
) = (⇓k bk) ,

(74)

which consists of only∑kNk +3 ⋅12 unknowns instead of 3∑kNk +

9 ⋅ 12 unknowns. Note that Qkron,[1∶9,13] = 09×1 and therefore bk

is zero for every row-triple. However, the system matrix has a four
dimensional nullspace, which should not come as a surprise since each
basis vector of this nullspace provides a solution to a different row triple
(one solution corresponds to the homogeneous coordinate of the points,
which we do not need to solve for).

C Extracting Rank-Degenerate Solutions

The linear system in Eq. (34) is concisely formulated as

[M̂T ⊙ M̂T]
T
K5 vecs (Q) = 1, (75)

where ⊙ denotes the Khatri-Rao product with column-wise block par-
titioning (i.e. column-wise Kronecker product), vecs () vectorizes the
upper triangular part of a matrix, and K5 is the duplicity matrix s.t.

vec (Q) =K5 vecs (Q) (we refer to reference [Magnus and Neudecker,
1999] for more details about these operators). Eq. (75) can be solved
in the least squares sense. The solution will in general have rank 3.
Let Q0 ∈ R5×5 denote a particular solution and N ∈ R5×5 denote the
nullspace of the linear system in Eq. (75). The particular solution and
the solution of the nullspace will be of rank 3 and will have the follow-
ing parameterization b(q1qT

1 +q3qT
3)+(1−b)(q1+q2)(q1+q2)

T

with b ∈ R in the unknown bQ0
resp. bN. In order to find the rank defi-

cient solutions, a 3rd-order polynomial constraint in x could be imposed
on all the 3 × 3 subdeterminants of Q0 + xN. However, it is difficult
to robustly combine the constraints of all the 3-by-3 subdeterminants
in one polynomial constraint. Another approach is based on the fact,
that we can readily solve M̂(q1 +q2) = 1F×1 for the vector q1 +q2.
Then we have

P�q1+q2
[Q0 + xN] =P�q1+q2

[(bQ0
+ xbN) [q1q

T
1 + q3q

T
3]+

(1 − bQ0
+ x (1 − bN)) (q1 + q2) (q1 + q2)

T]

=P�q1+q2
[(bQ0

+ xbN) [q1q
T
1 + q3q

T
3]] .

The row space of the resulting matrix reveals the span of the rank-2
matrix q1qT

1 + q3qT
3 . This allows us to compute

P�
q1q

T
1
+q3q

T
3

Q0P�q1q
T
1
+q3q

T
3

(76)

= (1 − bQ0
)P�

q1q
T
1
+q3q

T
3

(q1 + q2) (q1 + q2)
T P�

q1q
T
1
+q3q

T
3

and

P�
q1q

T
1
+q3q

T
3

NP�
q1q

T
1
+q3q

T
3

(77)

= (1 − bN)P�
q1q

T
1
+q3q

T
3

(q1 + q2) (q1 + q2)
T P�

q1q
T
1
+q3q

T
3

,

which in turn enables the computation of the fraction
1−bQ0

1−bN
. Finally,

this leads to a valid rank-2 solution

Q0 −
1 − bQ0

1 − bN
N = (bQ0

−
1 − bQ0

1 − bN
bN) [q1q

T
1 + q3q

T
3]+

(1 − bQ0
−
1 − bQ0

1 − bN
(1 − bN))

´¹¹¸¹¹¹¶
=0

(q1 + q2) (q1 + q2) . (78)

The last step consists in decomposing the solution Q2 = q1qT
1 +

qT
3 qT

3 into the vectors q1 and q2. This can be done with an eigenvalue
decomposition of Q2 and assigning q1 and q3 the eigenvectors scaled
by the square root of its corresponding eigenvalue.

A small detail needs to be mentioned. Because cos2 αf + (−1 −
cosαf)

2 + 2 cosαf(1 − cosαf) = 1 (compare with Eq. (33)) the
second column of M̂Qtrig might correspond to −1 − cosαf rather
than 1− cosαf . However, if this happens (which is easy to check since
−1−cosαf ≤ 0 ≤ 1−cosαf), q2 is replaced with −q2−2q1 (because
−(−1 − cosαf) − 2 cosαf = 1 − cosαf).

D Projection onto Plane of Rotation

This section shows how feature trajectories of planar motions can be
projected onto the plane of rotation knowing neither the camera matrices
nor the 3D coordinates of the points. The derivation starts by subtracting
the first row (the mean of the rows could be subtracted instead as well)
from the data matrix

[IF − 1F×1 [1,01×F−1]]W

= [IF − 1F×1 [1,01×F−1]]MC(f)S⊗CT

= [⇓f cosαf − cosα1, sinαf − sinα1, t
T
f − tT1] ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 01×2
0 0 1 01×2

02×1 02×1 02×1 I2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

C(f)S⊗CT .

26 Roland Angst, Marc Pollefeys

The algebraic structure of M = [⇓f cosαf ,1 − cosαf , sinαf , t
T
f]

together with (1 − cosαf) − (1 − cosα1) = − cosαf + cosα1 has
been used to replace the motion matrix M of rank 5 by a rank 4 matrix
which is right multiplied with a suitable matrix in order to get the motion
matrix with subtracted first row. It is interesting to see what happens if
this matrix is left multiplied with the second factor A = C(f)S⊗CT

of the rank-5 decomposition

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 01×2
0 0 1 01×2

02×1 02×1 02×1 I2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

C(f)S⊗CT

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

vec (I3 − aaT) 01×3 0

vec ([a]×) 01×3 0
02×9 VT 02×1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

S⊗CT

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

vec (P�a) 01×3 0
vec ([a]×) 01×3 0

02×9 VTPV 02×1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

S⊗CT

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

vec (PV) 01×3
vec (PV [a]× PV) 01×3

02×9 VTPV

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[[
PV 03×1
01×3 1

]S]⊗ [PVCT
[∶,1∶3]] .

The properties I3 − aaT = P�a = PV, [a]× = PV [a]× PV, VT =

VTPV, and the symmetry and idempotence of orthogonal projection
matrices have been used. This final formula actually has a very intuitive
explanation. By subtracting the first row (or the mean of all the rows)
the non-dynamic aspect in the data is removed. The coordinates of
the points along the rotation axis remain constant, so does the camera
translation. Both the point coordinates along the rotation axis and the
camera translation are thus removed by subtracting the first row.

E Polynomial Solution to Orthogonality and Equality of
Norm Constraints

For notational reasons, the symmetric 2-by-2 matrix Ck
[∶,1∶3]PVCk

[∶,1∶3]
T

in

λ2
kI2 =Ck

[∶,1∶3]C
k
[∶,1∶3]

T

=Ck
[∶,1∶3]PVCk

[∶,1∶3]
T
+Ck

[∶,1∶3]PaC
k
[∶,1∶3]

T

is denoted as Gk. Thus, it follows

λ2
kI2 =Gk

+wkw
T
k

= [
Gk

[1,1] Gk
[1,2]

Gk
[1,2] Gk

[2,2]
] + [

w2
k,[1] wk,[1]wk,[2]

wk,[1]wk,[2] w2
k,[2]

] .

The unknown scale factor λ2
k can be eliminated by subtracting the two

equations on the diagonal from each other which leads to the system

Gk
[1,1] −Gk

[2,2] +w2
k,[1] −w2

k,[2] = 0 (79)

Gk
[1,2] +wk,[1]wk,[2] = 0. (80)

The second equation Eq. (80) can be solved for wk,[1] = −
Gk

[1,2]
wk,[2]

(if
either wk,[2] = 0 or wk,[1] = 0 the above system becomes a second-
order polynomial in one unknown which is trivial to solve). Substituting
wk,[1] in Eq. (79) leads to a polynomial in the monomials w2

k,[2] and
w4

k,[2]. This polynomial can be solved for w2
k,[2] which implicitly

gives wk,[2] and wk,[1]. This approach provides four solutions, two
of them are conjugate complex and the remaining two are equal up to
the sign. Hence, the solution is unique up to the sign.

