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Figure 1: Navigating multiple videos of a climber. First and last images are from real cameras 40° apart.

Abstract

We present an algorithm designed for navigating around a perfor-
mance that was filmed as a “casual” multi-view video collection:
real-world footage captured on hand held cameras by a few au-
dience members. The objective is to easily navigate in 3D, gen-
erating a video-based rendering (VBR) of a performance filmed
with widely separated cameras. Casually filmed events are es-
pecially challenging because they yield footage with complicated
backgrounds and camera motion. Such challenging conditions pre-
clude the use of most algorithms that depend on correlation-based
stereo or 3D shape-from-silhouettes.

Our algorithm builds on the concepts developed for the explo-
ration of photo-collections of empty scenes. Interactive performer-
specific view-interpolation is now possible through innovations in
interactive rendering and offline-matting relating to i) modeling the
foreground subject as video-sprites on billboards, ii) modeling the
background geometry with adaptive view-dependent textures, and
iii) view interpolation that follows a performer. The billboards are
embedded in a simple but realistic reconstruction of the environ-
ment. The reconstructed environment provides very effective visual
cues for spatial navigation as the user transitions between view-
points. The prototype is tested on footage from several challenging
events, and demonstrates the editorial utility of the whole system
and the particular value of our new inter-billboard optimization.

1 Introduction

Photo- and video-collections exist online with copious amounts of
footage. Community-contributed photos of scenery can already
be registered together offline, allowing for navigation of specific
landmarks using a fast Image-Based Rendering (IBR) representa-
tion [Snavely et al. 2006]. We propose that similar capabilities
should exist for video of performances or chance events, filmed by
multiple passersby. The BBC, Reuters, and many other organiza-
tions already collect and use video from Citizen-journalists. This
allows them to better cover important events such as crimes, catas-
trophes, and performances. We expect that the coverage of events
by casually captured videos will increase. Organizing these videos
is difficult, because there are many potential ways a user or produc-
tion editor may want to navigate them, and just playing the multiple
videos in series or jump cutting between them may not convey the
important motion and context of the event.

The aim is to give the user the ability to replay an event by navigat-
ing around a performer, using footage from a multi-view collection
of videos. One can only make weak assumptions about the footage
because the audience members doing the filming may have various
video-recording devices, they could sit or move about far apart from
each other, indoors or out, and they may have a partially obstructed
view of the action. Unlike photos of a single place that sample
space with boundless density [Schindler and Dellaert 2010], videos
of an event must coincide in space and time. We must be realistic
about the actors and the types of videos available in such situations,
because that dictates the possible nature of the navigation. For this
reason, it is safest for the new video-based renderer to adhere to
actual recorded video when possible, or to interpolate a view of the
action only along virtual paths between real cameras.

Our work shares many challenges with but is distinct from vari-
ants of Free Viewpoint Video such as [Kilner et al. 2006] and [Car-
ranza et al. 2003], which seek a full 3D polygonal reconstruction
of the actors. We are intentionally relinquishing the ability to move
around freely to accommodate i) a greater variety of acceptable in-
put footage (viewing angles and subjects), and ii) a closer adher-
ence to the look and feel of the actual videos. Also, unlike the
freeze-motion effects used in “The Matrix” and for inspecting crit-



ical moments in football and soccer, we want the option of having
action continue while we navigate among the videos. We believe
that in many situations, it is more valuable to see the motion in
progress than to freeze time and inspect just one instant. Freez-
ing time is in some ways harder since greater scrutiny of details
is possible from all sides, but also easier because the situation re-
duces to one of multi-view static object reconstruction. For such
situations outdoors where custom scene models exist, we defer to
the formidable accomplishments of [Guillemaut et al. 2009; Guille-
maut et al. 2007], [Kanade 2001], and [Wiirmlin and Niederberger
2010], which have been used for sports broadcasting purposes.

The main contributions of this work are i) the very ability to interact
with and navigate casual footage of performances for the first time,
and ii) the perceptual smoothness of the inter-camera transitions. To
reach those goals, we developed an interactive algorithm to synthe-
size a hybrid representation with textured surface geometry for the
scenery, and billboard-based rendering of the actor. The segmenta-
tion of the moving performer is significantly refined by using our
own renderer to build a 3D variant of Video Matting [Chuang et al.
2002] (Section 3.3). The inter-billboard distance measure (Sec-
tion 4.2) and performer-specific view interpolation (Section 4.1)
are key to navigating between cameras whose angular separation
is rarely less than 30°.

1.1 System Overview

The proposed algorithm can be separated into three stages. The
user has varying degrees of control over each stage. It is assumed
that the multiple videos have already been collected and identified
as featuring the same events.

Scenery & Offline Processing The input data must first be
processed to synthesize the hybrid representation that will be navi-
gated. Each video recording device has its own clock and framerate.
Like [Hasler et al. 2009], one can use correlation of the audio sig-
nals to synchronize the video streams automatically. We silence the
quieter 90% of each video, align on the rest, and still need to man-
ually timeshift about one in four videos. Sound travels slowly, so
video-only synchronization [Sinha and Pollefeys 2004; Tuytelaars
and Van Gool 2004] may be preferable despite being more costly
computationally.

The system processes videos of the event and any available pho-
tographs of the area to reconstruct a 3D surface mesh and view-
independent texture maps. We use the robust dense geometry re-
construction technique of [Zach et al. 2007]. Online 3D models
of earth are improving in coverage and accuracy, to the point that
some algorithms take such geometry for granted [Kopf et al. 2008].
Our system can import parts of such scene models also. The video
cameras’ 3D poses are computed relative to the scene geometry. As
a final preprocessing step, the user selects-by-painting on the per-
former of interest in a few frames of each camera’s video. This
markup serves two purposes, namely to indicate which performer
should stay in focus during the Online Navigation phase, and to
learn a color model which will be used to automatically compute
video mattes for the cameras.

Online Navigation The user navigates in either Regular Mode
or Orbit Mode with a live preview, playing the timeline forward or
reverse, and gliding between neighboring camera’s vantage points.
The motion of the virtual camera is automatically adapted to ac-
count for the changing locations of the designated performer and
the real cameras. An optimization chooses parameters for the tran-
sition from one camera to the next, to better conceal visual artifacts
inherent in VBR of casually captured videos. The user can make

artistic choices among rendering styles for the performer’s context.

Offline Postprocessing Optionally, after the online naviga-
tion is recorded, the system can automatically perform extra com-
putations to re-render a version at higher-quality. Improvements
over the online rendering include use of the highest resolution im-
ages, performing a deeper search of possible transition parameters,
gradual color correction transition effects, and simple audio transi-
tions. Presented results are without postprocessing unless specified.

2 Background

This approach to navigating the footage of a performance benefits
from a variety of developments in user-interaction, graphics, and
vision. VBR of real footage, just like IBR [Chen and Williams
1993], depends on the density of available footage. In the context
of photo inpainting at least, [Hays and Efros 2007] showed that
some applications only become viable with immense quantities of
footage. We demonstrate that even before online video collections
reach such a critical mass, interesting interactive video navigation
is possible through our proposed technique. The related work can
be grouped into the following four areas.

Photo & Video Navigation Digital photos and videos can be
organized and explored with various applications in mind. Indi-
vidual photos are geo-tagged and anchored to pop up when one
zooms to that part of the globe in Google Earth or Microsoft’s
Virtual Earth. Local collections of normal photos can be browsed
and edited using Adobe Bridge for example, while community col-
lections are organized in online sites, often sorted based on user-
annotations. Research in this area has culminated in the Photo
Tourism work of [Snavely et al. 2006; Snavely et al. 2008] and
the commercially supported online PhotoSynth community. One
of their main contributions was the pivotal insight that instead of
stitching many people’s disparate photos together into a panorama,
it is possible and useful to compute a 3D point-cloud from the 2D
features that the photos have in common. The point-cloud in turn
serves as a scaffold and a non-photorealistic backdrop that provides
a spatial context. While a “visitor” navigates the original photos,
they see the point-cloud and hints of other photos in a way that
reflects the real spatial layout of, for example, the Trevi Fountain.

In-between views are generated during the transition from one
photo to the next. [Snavely et al. 2006] use a planar morph to
cross-fade the two photos. They found that this usually made fewer
visual artifacts than a triangulated mesh morph, despite being less
faithful to the non-planar geometry in the scene. Their subsequent
work [Snavely et al. 2008] gave one the option of specifying an
orbit-point. Forcing the planar proxy to go through the orbit-point
has the effect of stabilizing the user-selected part of the scene as
the virtual camera orbits between photos with small angular devia-
tions. The billboard part of our hybrid representation is positioned
in space similarly, but serves as proxy geometry for the moving
foreground actor, rather than the background scene.

Navigation and interaction with videos has new challenges and op-
portunities. [Sivic and Zisserman 2003] showed the viability of
example-based search for objects or people appearing in full-length
movies. For our purposes, one can imagine eventually using such
research to scour the internet for more multi-view footage of a
particular event. An interesting new paradigm for more interac-
tive video-playback has emerged in parallel from several research
groups [Karrer et al. 2008; Dragicevic et al. 2008; Goldman et al.
2008]. By offline clustering of the optical flow vectors throughout
a video, the user can then play back only “relevant” frames. For
example, by clicking in the area of a car and dragging the mouse



along a path, one sees the frames when the car finally did drive
that way. These algorithms operate over time in a 2D space, but
[Goldman 2007]’s version already explored a fascinating variety of
production-relevant applications.

Narrow Baseline View Interpolation IBR had normally been
developed for high quality realistic representations of static scenes
([Levoy and Hanrahan 1996] and [Gortler et al. 1996]. The special
cases, where a realistic 3D proxy object is available, have slightly
relaxed filming-angle requirements [Buehler et al. 2001; Heigl et al.
1999]. [Waschbiisch et al. 2007] show good free-viewpoint render-
ings when footage is acquired in a studio with multiple structured-
light 3D capture systems, and stationary high quality cameras. Like
us, part of their pipeline uses billboards, but theirs are substantially
enhanced with available 3D information. [Zitnick et al. 2004] found
that even sequences with highly dynamic human motion could have
temporally coherent per-pixel depth estimates of sufficient accu-
racy to allow stunning view interpolation between camera pairs.
They spanned a total of 30° of viewing angle using a chain of eight
cameras, and could tolerate 100 pixels disparity by focusing spe-
cial computations on depth discontinuities. In situations where the
inter-camera baseline is small and the scene controlled, this appears
to be the best system for view interpolation of motion. The recent
work of [Stich et al. 2008] demonstrates that under conditions of
even 15° angular separation, it can be sufficient to model the whole
scene with homography transformations of 2D superpixels whose
correspondence, based on sparse feature matches, is computed as
an alternative to per-pixel optical flow. The demonstrated exam-
ples are impressive, with revealing errors naturally occurring in the
largely low-texture areas. Also in a studio setting but starting with
crude geometry of a performer, [Eisemann et al. 2008] show how
good optical flow can fix texture-assignment problems that occur
where views of some geometry overlap. Previously, view interpo-
lations based on epipolar constraints was demonstrated by [Seitz
and Dyer 1996], where correspondences were specified manually.
However normally, these view interpolation algorithms rely heavily
on correlation-based stereo and nearby cameras.

Visual Hull Techniques The opposite case of widely separated
cameras lends itself to shape-from-silhouette techniques. Since ex-
cellent figure/ground image segmentation is possible in studio con-
ditions, there is an established thread of research focused on con-
verting multi-view silhouettes into visual hulls [Matusik et al. 2000;
Franco and Boyer 2005]. Those hulls, in turn, can receive view-
dependent texturing [Vedula et al. 2005] so that they look reason-
ably realistic when viewed from other angles. Careful fitting of
kinematic models inside the visual hull [Carranza et al. 2003], or of
3D body scans to the outside [de Aguiar et al. 2008], or both [Vlasic
et al. 2008; Ballan and Cortelazzo 2008], makes these Free View-
point Videos capable of representing the actor as temporally coher-
ent in 3D. The newest results in this direction [Hasler et al. 2009],
demonstrate such model-based tracking with moving cameras out-
doors. With fewer priors on shape and therefore at risk of topology
changes, [Starck and Hilton 2007] have produced stunning results,
even for actors with loosely fitting clothing.

For Free Viewpoint Video of outdoor scenes, soccer/football games
seem to be a favorite application domain [Hayashi and Saito 2006].
The broadcast-quality cameras are mostly fixed or calibrated based
on known coordinates of painted field-markings, but are certainly
far apart and subject to complicated outdoor effects. The largely
uniform green fields help with segmentation, but as discussed in
the most recent work from [Kilner et al. 2007], segmentations are
usually only approximate. Their work is notable for simultaneously
segmenting and modeling many players on the field who further,
project to only ~20 pixels in height. At that resolution, there is

some opportunity for stereo-based matching of gross appearance
features. They also demonstrate that naive use of billboard models
for moving players produces very noticeable artifacts, even in the
constrained planar world of sports fields. Our proposed work has
an alternative treatment of billboards that even works in somewhat
cluttered environments.

Static Object Techniques Our problem domain specifically
deals with navigating and presenting the footage of motion cap-
tured by multi-view cameras. Nevertheless, techniques for 3D re-
construction of static scenes are also relevant. For example, [Polle-
feys et al. 2004], [Lhuillier and Quan 2005], [Campbell et al. 2007],
and [Goesele et al. 2007] show how well hand-held videos or pho-
tos like ours can be sufficient to reconstruct sections of a complex
3D scene. [Seitz et al. 2006] is a good survey of static-model re-
construction algorithms used mostly in idealized conditions, but
complementary research continues on 3D image-based modeling
techniques that leverage human effort. From [Debevec et al. 1996]
through [van den Hengel et al. 2007] and now [Sinha et al. 2008] or
Google Sketch-up’s PhotoMatch, it is increasingly possible to semi-
automatically produce static scene surface geometry both indoors
and out. Our algorithm takes advantage of this, so that after-the-
fact navigation of an event can be placed within the spatial context
of the surrounding environment.

3 Scenery & Offline Processing

Background Scene Reconstruction Our system uses a 3D
reconstruction of the static background scene to: i) provide context
while rendering transitions, ii) calibrate the camera poses for each
video frame, and iii) refine each camera’s video matte. A variety of
3D vision methods exist for static scene reconstruction. Aside from
photos and videos of a specific event, one could also use online
photo collections of specific places to build dense 3D models [Goe-
sele et al. 2007]. We follow the same structure from “motion” strat-
egy as [Snavely et al. 2006], matching SIFT features [Lowe 2004]
between photos, estimating initial camera poses and 3D points, and
refining the 3D solutions via bundle adjustment. However from
there, we proceed by computing a depthmap for each photo using
standard multi-view planesweep stereo based on normalized cross-
correlation. The final polygonal surface mesh is generated using
the robust range image fusion of [Zach et al. 2007]. A static texture
for the background geometry is also extracted from the photos and
baked on. Since the background scene is fairly dynamic in places,
much of that texture will be replaced during the interactive stage
of the system, by sampling the view-dependent colors opportunis-
tically from each camera’s video.

3.1 Camera Poses

The system computes camera poses for the video frames relative to
the reconstructed background scene. We refer to I as the real
image seen by camera A at time t. We estimate the intrinsics,
K# e R®*®, and the extrinsics Ef* = [R{|T7], composed of
a 3 x 3 rotation R and 3 x 1 translation 7;*. SIFT features,
found in images that had been used to reconstruct the background,
are searched for potential matches to features found in each video
frame. When a successful match is found, that 2D feature m in a
frame of camera A corresponds to a 3D point p in the reconstructed
geometry, and has the relationship [zm, z}T = K{E{p, which
holds up to the unknown depth z. The linear solution for X;* and
E# is the Direct Linear Transform (DLT) [Hartley and Zisserman
2000], and 6 matches are sufficient to solve for it.

The DLT does not guarantee that the poses of different cameras are
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Figure 2: [Illustration of different segmentation steps for a frame of the
Juggler sequence.

recovered with the same 3D accuracy. Similar reprojection errors
of sparse features, as measured in pixels, could indicate very differ-
ent qualities of pose-estimation, especially when depths and reso-
lutions vary greatly. While this is a known problem for video-based
reconstruction, our VBR system can cope with this limitation. The
key is to achieve a calibration that looks correct when the textured
geometry is rendered in conjunction with the performer during the
interaction stage, even if it is off by a few meters. Treating the cali-
bration so far as an initialization, we perform a second optimization
of camera poses. We use particle filtering (see [Arulampalam et al.
2002]) to minimize the sum-of-square-difference (SSD) between
each I;* and our render-engine’s versions of the reconstructed and
textured scene in different poses. In this case, the texture is obtained
as the median reprojected texture from a temporal window of 1000
frames of the same camera A (subsampled for efficiency).

3.2 Initial Segmentation

Segmentation in complex environments is an ongoing challenge,
particularly when camera motion and moving backgrounds are ex-
pected. In our system, the user need only paint the pixels of two
random images from each video camera with the binary labels
L € {1,0}, to indicate foreground pixels that belong to the per-
former, vs. background pixels that do not. With multiple videos,
each lasting potentially thousands of frames, all subsequent seg-
mentation, both here and in Section 3.3, is computed automatically,
despite the obvious complications for our VBR. Even using a primi-
tive paint program, the user effort does not exceed 10 min. per input
video. Video SnapCut [Bai et al. 2009] and Video Cutout [Wang
et al. 2005] have nice interfaces allowing one to walk through and
potentially correct each frame. Background Cut [Sun et al. 2006] is
most effective for stationary cameras or at least static background
colors. We expressly focus on changing scenes, and cannot afford
to have a user check each frame.

The user-labeled training pixels define a foreground and a back-
ground color model. We simply use a k-nearest-neighbor classi-
fier (k = 60) in RGB space, so the pixel-wise independent poste-
rior probability is %L, amounting to the fraction of a pixel’s color
neighbors that had been labeled L. To get a conservative fore-
ground mask ¢ and to compute it efficiently, we store the class-
conditional likelihood ratio of foreground to background in a dis-
cretized 256> color cube lookup table. The table usually takes 5
min. to compute, and each frame is then segmented in 2-3 sec., us-
ing 0.6 as the necessary distance ratio to label a pixel as foreground
(see Figure 2). To get a conservative foreground mask during the
initial segmentation step, mean-shift tracking was used to predict
the area of the foreground pixels. Only pixels labeled as foreground
and belonging to that area are considered foreground objects. This
decreases the number of false positive foreground pixels.

3.3 Matting Through Adaptive Scene Rendering

The quality of the initial segmentation is insufficient for our ren-
dering purposes (see Figure 2). To improve it, our matting process
includes a new background color model, the same foreground color
model as in Section 3.2, and graph cuts [Boykov and Kolmogorov
2004] to optimize the boundary. Each image I is treated as a mov-
ing foreground f: with changing background b;. By the composit-
ing equation, It = auf: + (1 — o) by, where o is the per-pixel
alpha matte. With a binary initial segmentation ; in hand, we now
seek to estimate f, b and a refined « for each frame. The Video
Matting approach of [Chuang et al. 2002] is attractive because it
produces high-quality mattes for moving cameras. However, their
assumptions about users being able to spend significant time with
each video (5 min. per 100 frames) and treatment of the back-
ground as a planar homography do not apply to our situations. We
knowingly trade matte quality for i) less user interaction (none be-
yond what was done for the Initial Segmentation) ii) 3D background
scenes and camera motion, and iii) potentially significant motion of
people and objects positioned between the foreground and the back-
ground. Our downstream rendering process is designed specifically
to cope with our lower-quality mattes.

A per-pixel color model for the background b, of each video frame
is estimated first. Dilation of the initial segmentation v, by 10 pix-
els gives a conservative background mask, removing the need for
a manually specified traveling garbage matte. Knowing both the
background geometry and the calibration parameters, we can ren-
der the “empty” scene seen at time ¢ from camera A using the col-
ors from elsewhere in A’s timeline. In one sense our approach is
similar to that of [Rav-Acha et al. 2008], where a model of the
background is generated and textured using the input video. Here,
much like Chuang et al., we determine the probability distribution
of b; by sampling from temporally proximate frames. Our algo-
rithm collects samples of b; (m) for m’s which are not labeled as
foreground at time ¢, i.e., those where ;¢ (m) = 0. Further sam-
ples are collected by searching backward and forward in time with
increasing A, projecting the images I;1+ A with their related v+ A,
onto the scene, according to A’s calibrations. Once 10 samples for
the same pixel m have been collected, a Gaussian is fitted to model
b: (m), though we save the medians instead of the means. This
procedure has been parallelized and runs with GPU acceleration.

We first solve the compositing equation assuming «’s are binary,
leading to a trimap that is ready for further processing. Graph cuts is
applied to maximize the conditional probability P(c|I¢), which is
proportional to P(I;|ay) P (). Applying the logarithm and under
the usual assumptions of conditional independence, log (P (c:))
represents the binary potential, while log (P (I¢|c)) represents the
unary potential. For each pixel m in I,

P(I (m) |ow) = P (f)**™) P (b, (m))72™) (1)

where P ( ;) is the foreground color model estimated in Section 3.2
and P (b: (m)) is the aforementioned Gaussian distribution. Due
to the inevitable presence of small calibration and background ge-
ometry errors, the projection of I:+A can be imperfect by some
small local transformations. To account for this, P (b (m)) is ac-
tually considered to be the maximum of all the pixelsina 5 x 5
neighborhood. The binary potential is formulated as the standard
smoothness term, but modified to take into account both spatial and
temporal gradients in the video. Once this discrete solution for o
is found, a trimap is automatically generated by erosion and dila-
tion (3 and 1 pixels respectively). For all grey pixels in the trimap,
we apply the matting technique proposed in [Chuang et al. 2001].

It should be noted that the background subtraction/matting tech-
nique presented here only uses information from a single camera.



Figure 3: Interactive Navigation Interface: Regular Mode (left) is a live
preview of the content being rendered to the final output video. Orbit Mode
(right) has the same functionality, but also depicts the scenery, performer,
and moving cameras. Users can switch between the two modes, and always
have jog/shuttle control over both the timeline of the input footage. Please
see the video for a demonstration.

While there are obvious benefits from information of other cameras,
the requirements for precise geometric and photometric calibration
make it challenging to improve on our present results. This is also
the main reason we abstain from attempting 3D reconstruction of
the dynamic elements of the scene, but prefer to use planar prox-
ies for the foreground during transitions. When, in addition to the
foreground object of interest, other elements appear in the scene,
i.e., the middleground, the presented segmentation procedure also
extracts those. The mean-shift tracker of Section 3.2 is able to dis-
tinguish such elements from the object of interest so that during
rendering, those elements are modeled as separate billboards, i.e.,
objects of interest but with optional blur, and without focus stabi-
lization. When instead, the 3D position of a middleground element
cannot be triangulated, as happens when it appears in only one cam-
era, our system makes it disappear before a transition starts, and
reappear as the transition concludes. This situation can be observed
in the Magician and the Juggler sequences, when people stand in
front of somebody’s cameras.

4 Online Navigation

Having precomputed a hybrid representation of the event of inter-
est, we now present our real-time online navigation tool which al-
lows a user to interactively explore the event from multiple view-
points. The hybrid representation of the performance, so far, encap-
sulates i) static surface geometry for the scenery, ii) the surface ge-
ometry’s view-independent texture, iii) time-varying camera poses,
and iv) segmentations of the actor in every frame. These elements
were prepared offline, in order that subsequent interactions and ren-
dering could be real-time.

The largely GPU-driven user interface of the system lets the user
smoothly navigate the video collection in both space and time. The
GUI can be operated in two different modes, Regular Mode and
Orbit Mode, where the same jog/shuttle and camera-transition com-
mands are available by keyboard or mouse at all times. Those com-
mands can be recorded and used as an edit-list for more elaborate
postprocessing of an output video. The Regular Mode is essentially
a rendering of the event from either a real cameras’s perspective,
or the virtual camera’s transition when the user clicks on the navi-
gation arrows (see Figure 3). The navigator icon on the lower right
corner of the interface, indicates the possible directions that the user
can go (up, down, left, right, forward and backward depending on
the availability of nearby videos). Each camera’s neighbors are de-
termined relative to its image plane. Orbit Mode has a live preview
window to the side, and serves primarily as a digital production
control-room, where the scenery, performer, and all the moving
cameras are depicted as elements of a dynamic 3D world. Orbit
Mode also has a video wall option where inset views of each cam-
era are fixed in place on the screen, but some users preferred when
these individual videos played as moving screens inside the scene.

Figure 4: Movement of the subject’s baricenter through six transitions in
the image for linear-SLERP (A), cylindrical-SLERP (B) and our proposed
approach (C) (see Section 4.1).

The user always watches the scene from the point of view of the
Virtual Camera V. In our system, the virtual camera intrinsic pa-
rameters /" are assumed to be fixed and equal to one of the cam-
eras recording the scene. Its extrinsic parameters £, are always
locked to one of the cameras of the collection and unlocked only
during a transition from one camera to another. From the user point
of view, between user-interactions, the currently selected camera’s
video plays onscreen without modification. In reality, the video is
playing as a texture-mapped billboard fixed relative to its camera.
In this section, we introduce our billboard representation and dis-
cuss how the transition is optimized to minimize visual artifacts.

4.1 Performer-Specific Virtual Camera Path

When a camera change is requested, a virtual camera V' performs
the view interpolation from a starting camera A to an ending camera
B, over a period of time [to, t1]. By, = E{z at the beginning of the
transition, and EX = EtBl by the end.

The naive approach for computing the intermediate R’s and 71"s is
to interpolate linearly between the two projection centers, and to
interpolate the camera’s orientation using Spherical Linear intER-
Polation (SLERP). As our attention should be focused on the sub-
ject, it seems obvious to use a cylindrical interpolation centered on
the intersection of the billboards. This approach has also been ex-
ploited in [Snavely et al. 2008] and achieved good results because
the focus of attention is fixed in the center of the image, while the
rest of the world, including our point of view, orbits around.

Our situation is different as there is no guarantee that the performer
is centered in either image 1{3 or image ItBl’ . The previously men-
tioned techniques generate annoying artifacts here because the vir-
tual camera’s motion tries to follow parabolic paths (see Figure 4A
and 4B). We still do a cylindrical interpolation of the camera pro-
jection centers, but instead of using SLERP for the rotations, we
force the camera to maintain a constant and linear translation of the
image of the actor (see Figure 5 and Figure 4C). Formally, given the
point in space p, representing the barycenter of the actor, we force
the image of this point in the virtual camera, at any time ¢ € [to, t1],
to be the exact linear interpolation between what it was at time ¢
(in view A) and what it will be at ¢; (in view B).

Let IT; (-) denote the projection map of the virtual camera V" at time
t, i.e., the function mapping a generic point p in space to its projec-
tion onto the virtual camera image plane at time ¢. In homogeneous
coordinates, IT; (-) is subjected to the following

). )" = kY (RVp+ 1)) = KVRY (p-0)) @

where z is an unknown scalar and O} = — (R} )71 T repre-
sents the virtual camera origin at time ¢. Our goal is to generate a
virtual camera path from camera A to camera B. It must satisfy the
condition that for each ¢ € [to, ¢1], the coordinates of IT; (p;) must
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Figure 5: A virtual camera transitions from the real camera A to the
target real camera B. The rotation of the camera is defined such that the
projection of the center of the main character moves along a straight line
in the image. Note that the movement of the main character in the image is
due to both the movement of the character in space as well as the movement
of the virtual camera throughout the transition.

be the linear interpolation of Iy, (p¢,) and Iy, (py, ), i.e.,
I (pe) = oll (peo) + (1 — ) Iy, (pey) 3)

where o = (t —to) / (t1 — to). We assume that O} is cylindri-
cally interpolated between Ot‘g and Ot‘i . Our goal is to compute

a R} that aligns the vector (pt — OtV) to (Kv) -t [IT¢ (pe) 1]T
The Orthogonal Procrustes method [Schonemann 1966] can be
used on the normalized versions of these vectors to obtain Ry , up

to one degree of freedom of rotation around (K") ™~ ! [IL; (p:),1]"
That degree of freedom is fixed by linearly interpolating the angles
obtained for view A and view B at the ends of the transition.

4.2 Billboard Model

Between user-interactions, the video is playing as a texture-mapped
billboard fixed relative to the current real camera. As soon as a
camera-change is requested from camera A to B, the foreground
actor is modeled by the proxy shape of two billboards (the same
is done for all the other dynamic elements of the scene, i.e., the
middleground). Both the blllboard ¢ and ¢® continue to face their
respective cameras. ¢ and ¢Z are positioned at depths that make
them coincide at one line in 3D space (see Figure 6). The depth of
that line is computed by imposing that its projection contains the
barycenters of the subject in both views. A billboard’s appearance
is defined by backward mapping to find the texture coordinates in
the video and segmentation frames.

A billboard approximates the actor’s geometry using a planar proxy,
and so can introduce significant artifacts while one navigates be-
tween cameras. We propose that for lack of a better proxy, bill-
boards can actually be quite effective, as long as we use them in tan-
dem with a good measure of the expected visual disturbance. Ide-
ally, while V" is traveling along its path between A and B, V/ would
cross-fade 1mperc%pt1bly from rendering mostly the billboard ¢
showing mostly (. We have observed that a well-placed blllboard
is a convincing enough proxy shape for viewing-angle changes
around 10°, but the illusion can quickly be lost when the second
billboard comes into view, especially gradually, as is the case with
a linear cross-fade. The enhanced Cross Dissolve of [Grundland
et al. 2006] could help, but we have found that if timed correctly,
a cut from one billboard to the next can be almost unnoticeable.
[Schodl et al. 2000] made a similar observation.

Figure 6: As the virtual camera transitions from view A to view B, the
foreground object is represented by two video sprites on planar billboards,
one for each view. The video footage from each camera is rendered onto the
respective billboard with the segmentation mask applied.

It is preferable for the user to confuse a sharper appearance change-
over with the performer’s natural ongoing motions. The best time
for appearance change-over is when the action is at its most fronto-
parallel to the two cameras. Choosing a bad time will reveal the
actor’s current 3D shape as non-planar. Section 4.3 explains the
simple strategy that finds the best change-over time, but first we
introduce the error measure to be optimized.

The Inter-Billboard Distance at time ¢ for camera V' is computed
using the following procedure. Each billboard, ¢ and ¢?, is first
rendered separately from the view Bomt of the virtual camera V' at
time ¢ using the masks af and of as texture. Those two images
are then thresholded, producing two silhouette images, S1 and Sa.
Overlaying S2 on Si, as pictured in the V' camera of Figure 6,
allows one to evaluate how much change a user can perceive if the
two billboards are suddenly swapped during the transition. The
change is less perceptible the more these two images agree. To
quantify this agreement, we use the distance measure

_#s deSg—f——de& @

meSy me Sy

D(S1,S2)

where m represents a pixel inside the silhouette, and d (m, S) is
the [2-distance between this point and a silhouette S. #S5; and
#S> represent the numbers of points in silhouette S; and Sa, re-
spectively. This error can be quickly computed in a fragment shader
using the distance transform [Rong and Tan 2006]. We also tried a
correlation-based distance, but found it less effective at matching
the perceptual differences observed by the user. In fact, changes
of appearance within the silhouette that occur during a change-over
are often perceptually confused with subject motion.

4.3 Transition Optimization

The Inter-Billboard Distance (4) largely dictates the right moment
to switch billboards. We have found that also including the start
time as a parameter can lead to a much better optimum. Thus we
optimize over two variables: p which is the fraction of the transition
interval at which the billboard transition occurs, and A which is the
transition delay, the time between the user’s request and its actual
start. This search is similar in spirit to the approach [Wang and
Bodenheimer 2008] proposed for combining motion capture data.
The start time is delayed by no more than 3 sec., and the transition
time was set to 1.5 sec. Since the search domain is limited and
known, a fast grid search optimizes both parameters in a separate
thread to preserve real-time playback.
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Figure 7: During a transition, the moment at which to switch from ren-
dering one billboard to rendering the next is computed by a grid search
optimization. The parameters are p the fraction of the transition interval at
which to switch, and A the (small) amount of time to delay the transition
start time. In this case A is the optimum.

Figure 7 illustrates the Inter-Billboard distance evaluated at a cer-
tain time in the Juggler sequence. Notice that the graph exhibits a
clear diagonal structure. This is because the points in the diago-
nally aligned valleys are points corresponding to the same billboard
transition frame. Thus in this case, there is a clear moment at which
the billboard transition should occur.

4.4 Rendering

During normal playback of a video in Regular Mode, the virtual
camera position is locked to the real camera’s extrinsics. Depend-
ing on camera A’s intrinsic parameters K, the original video is
played at a different size in relation to the virtual camera intrinsics
KV Black borders are added to the video if its size is smaller than
the virtual camera. This happens, for instance, when one camera
has landscape orientation while the other is in portrait mode, or if
the zooms are different. While it is possible to adapt the intrinsic
camera parameters of the virtual camera to those of the real one,
that can create perceptually undesirable effects (i.e., the Vertigo ef-
fect).

Once the user requests a transition, the exact timing is optimized as
described in Section 4.3. The transition is performed to minimize
disturbing visual artifacts. During the first 20% of the transition,
the virtual camera remains locked to the original viewpoint, but
the scene rendering fades from the original video to the syntheti-
cally rendered scene (at which point the black borders disappear).
Then the virtual camera starts moving along the path defined in
Section 4.1 while the video is still playing. Like the start of the
transition, the virtual camera is locked to the target camera position
for the last 20% of the transition, when video of the target camera
fades in. During the entire transition, the video is rendered using
the color space of the original camera. This is done by using pre-
computed 3 X 3 color transformations, approximately mapping the
appearance between videos, and also from the view-independent
texture to the videos. Only during the last 20% is the appearance
gradually transformed to the target video.

Next, the middle of the synthetically rendered video transition is
created. Although a very large amount of footage available for ren-
dering, a real-time rendering application must take bandwidth and
other system hardware limitations into account. Using all the avail-
able videos, masks, and background videos simultaneously would

Figure 8: Background rendered from left, right, and view-independent
texture (top), corresponding suitability maps (middle), final rendered back-
ground and generated motion blurred background (bottom).

require far too many resources to render the scene interactively.

To render a transition from camera A to camera B, we chose to
load and use only data extracted from videos A and B, and the
static information of the scene. These two cameras are normally
also the closest to the virtual camera path, and the benefits of using
more videos are often limited. This tradeoff is similar to the one
made for IBR of static scenes by [Debevec et al. 1998], where at
most three views were used to texture each scene element.

We adapt the Unstructured Lumigraph Rendering frame-
work [Buehler et al. 2001] to cope with the fact that some parts
of the background scene are occluded by foreground and that we
can only afford to use two videos. At each time ¢, the images I;*
and I'Z are used to color the geometry of the background scene, as
in [Buehler et al. 2001]. We generate a-masks from the af and
af associated with the foreground, to mask the foreground pixel
elements of I;* and I, respectively. Three images of the scene
from the point of view V' are generated: the first one uses only the
color information from I{“, the second uses colors from 1, tB , while
the last one uses the view-independent texture extracted in the
pre-processing stage. The view-independent texture is necessary
because on the path between A and B, the virtual camera can
see parts of the scene that are hidden in both A and B. For
each generated image, a per-pixel suitability mask is generated
in parallel, taking into account the a-masks (i.e., that a pixel is
background or not), occlusions, and viewing angles. Occlusions
are handled by rendering the depth maps of both I7* and IZ. We
use the angle differences with respect to the surface normals to
weight each pixel from the two sources. This is important in the
presence of miscalibrations and geometry errors.The suitability
mask of the image generated using the static texture is given a
constant low value so that its colors are used only where neither
of the other images can provide useful information. After the
suitability has been computed, a dilation/erosion and smoothing
filter is applied to ensure a spatially smooth transition between
the texture during the blending, and to account for discontinuities
and blobs that can appear due to occlusion handling and matting
errors. The entire procedure is implemented on the GPU using a
3-pass rendering. As a final step, a motion blur filter is applied to
all the pixels belonging to the background scene, which makes the
foreground object stand out. This is a user-controllable option in
the software, and we found that, when enabled, the user’s attention
is focused on the performer, i.e., the center of the action, while
the motion blur gives peripheral cues about the direction and the
speed of the transition. The whole background rendering approach
is illustrated in Figure 8.

The foreground elements of the scene are then rendered using a



similar technique with the images I;* and I, and the appropriate
alpha masks o' and aZ. Only the two billboards ¢# and ¢Z are
rendered for each foreground element. The transition from ¢4 to
¢B is decided as described in Section 4.3.

5 Results

There are many casually filmed events, but multi-view footage that
is public-domain is so far, readily available only when Citizen-
journalists are provided with a specified portal for submissions e.g.,
after a U2 concert. We obtained the Climber and Dancer datasets
from [Hasler et al. 2009] and INRIA Grenoble Rhone-Alpes re-
spectively, and the Juggler, Magician, and Rothman data by attend-
ing real events, handing out cameras to members of the public with
instructions to play with the settings, and where needed, obtaining
signatures allowing for use and dissemination of the footage. These
events were chosen because together, they explore a variety of chal-
lenges in terms of inter-camera distance, large out-of-plane motion,
fast performances of skill, complicated outdoor and indoor lighting
conditions, and intrusive objects in the field of view. We performed
the manual part of the process ourselves, labeling the performer in
two frames per video, and locating ~ 40 12MP photos of each new
environment. The Climber videos are 720 x 544, the Dancer videos
are 780 x 582, and the new footage measures 960 x 544 pixels,
with people filming in landscape or portrait mode (or switching),
with different settings for zoom, automatic gain, and white balance.
Some people adjusted these manually at times.

Naturally, the results of this interactive VBR system are best
evaluated in video, so please see http://cvg.ethz.ch/
research/unstructured-vbr/. Among the videos, sev-
eral demonstrate specific stages of the algorithm such as rendering-
for-matting, and several show events produced by volunteer test-
subjects.

Similar colors on the performer and the background are inevitable,
which our Initial Segmentation confirms repeatedly. Even drasti-
cally increasing the amount of training data had no effect. The
masks are frequently exaggerated in size, but that being only an in-
termediate stage, simply meant that the Adaptive Scene Renderer
had to seek further out in the timeline to obtain enough samples.
With our new form of background subtraction, even significant im-
perfections in the reconstructed scene geometry did not hinder us
from pulling a useful matte, probably because those imperfections
coincided with textureless areas. The bigger segmentation prob-
lems occur when the subject exhibits significant motion blur, be-
cause mixed pixels can match the rendered background quite well.

Clutter in the scene is caused by both objects that change and peo-
ple who move around the performer. Theoretically, enough moving
cameras could allow 3D visual hull reconstruction for the Juggler,
if our pipeline were followed through Section 3.3. However, while
scenes like Magician and Rothman have enough cameras in posi-
tions to triangulate billboards (of the performer and the clutter),
their coverage is sparse and their calibrations and segmentations
are off by too much to yield acceptable 3D shapes. We also experi-
mented with computing heightfields to augment our billboards, but
without structured lights like those of [Waschbiisch et al. 2007], the
results were disappointing. These findings seem consistent with
[Kilner et al. 2006]. The modicum of clutter in the scenes we
tested was handled with relatively few artifacts because elements
that were rejected from the background model either ended up as
middleground billboards due to their 3D separation from the per-
former, or when incorrectly merged with the performer in one view,
were deemed too costly by the Transition Optimization.

The prototype system is real-time, running at 25 fps on an Intel
i7 2.93Ghz Quad-core with 8GB of memory, an nVidia GTX285
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Figure 9: # of users with each preference: 32 users reported how often
they would use each transition type. Dots, InFocus, and Blurred refer to the
three styles used to render the background geometry while transitioning.

GPU, and a RAIDO with four SSD hard drives. Even events filmed
with at least six cameras can be explored without impacting perfor-
mance, because videos are streamed locally, and can be subsampled
if HD footage were available. The information necessary for the
next frames are preloaded by a separate thread to allow undisturbed
real-time rendering. An optional post-processing stage can be trig-
gered after the user has recorded their intended interactions. Not
shown here, but this renders a higher-quality composite, with audio,
from the original source videos, which are heavily compressed by
at least our Canon HG10’s, but are non-ideal for streaming. In Fig-
ure 10, three of our many example transitions are shown between
different cameras.

32 volunteers were asked to use the prototype system while navigat-
ing 3 prepared video collections captured at different performances.
Users varied in experience, having from none to extensive practice
with video editing. Each user received 4 minutes of instruction,
a printed list of the possible navigation and rendering modes, and
eventually filled in a questionnaire. The overall response was quite
positive, and Figure 9 shows the responses when users were asked
to evaluate how often they would switch between videos using the
available transitions. Of the available navigation modes, 4 preferred
Regular Mode, 3 preferred Orbit Mode, and 25 liked both.

6 Discussion

The benefit of using our multi-view VBR algorithm rests in the
added editorial value of this new system. This new framework is
unique in giving interactive control over what would normally be
a collection of one-at-a-time hand-held videos of a performance.
A few superb algorithms can already stabilize casually captured
footage [Liu et al. 2009], or re-synthesize moving actors filmed
in studio conditions or with fixed and narrow camera baselines.
However, our system substantially increases the domain of usable
footage, running, to our knowledge, on the most difficult sequences
considered thus far for input to VBR.

The contribution of our technique is that those difficult videos are
combined into an interactive representation that can be navigated
along visually realistic paths. The user-navigation is simple, but
sufficient to navigate among the available cameras while letting the
user keep track of the overall 3D environment. The spatial aware-
ness offered by the interface is carried over into the system’s out-
put video, which renders camera viewpoint changes by providing
smooth visual transitions of the background scene, even across big
angular and spatial separations.

The main insight from this work is that it is possible to design
some VBR applications with mechanisms for coping with flawed
input, such as our optimization of inter-billboard distances. Our
rendering-based video matting and pose-estimation algorithms at-
tempt to improve on a hard situation, and while user-intervention


http://cvg.ethz.ch/research/unstructured-vbr/
http://cvg.ethz.ch/research/unstructured-vbr/

Figure 10: Each row shows a different transition. The three consecu-
tive frames span the best changeover (i.e., switch between billboards) found
within a given timeframe. The optimization is successful if this changeover
is hard to perceive. The background can be motion blurred or not.

is the normal way of “repairing” problems, this quantity of data
requires explicit bad-situation avoidance.

Limitations Some of the limitations of our system are obvious,
such as subtle segmentation problems near object boundaries, that
appear as shimmering during the transitions, or motion-blurred ob-
jects which we cannot segment correctly at all. Further, it would be
nice to segment the videos with even less user-input. In the future,
we would hope to find ways to cope with multiple performers that
come close to each other in 3D, possibly by learning the statistics
of each actor’s appearance. Since our segmentation currently relies
on the scene reconstruction stage, it could be interesting to leverage
both the spatial 3D and temporal correlation to segment each frame
in a multi-view sequence jointly. Certainly, future improvements
in video matting could also be incorporated into our system, as our
main goal has been to provide a proof of concept, and certain parts
can be replaced. Each scene’s geometry takes ~1hr to reconstruct
and is automatic except that part way through, the [Zach et al. 2007]
pipeline requires the user to designate a bounding box for the vol-
ume reconstruction, and afterwards fit a plane for the ground. After
this user effort, the automatic processing takes multiple hours, as

detailed in the supplemental materials. Semi-/Automatic geometric
reconstruction of even static scenes continues to be an important
research challenge.

In summary, with less than 30min. training and a small amount of
user-input, our approach converts a collection of hand-held videos
into a digital performance that can easily be navigated and re-
rendered in a way that was previously impossible.
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