Tracking Based Structure and Motion Recovery for
Augmented Video Productions

E3
Kurt Cornelis
K. U. Leuven, ESAT-PSI
Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee,
Belgium

kurt.cornelis@
esat.kuleuven.ac.be

ABSTRACT

Augmented Reality (AR) can hardly be called uncharted
territory. Much research in this area revealed solutions to
the three most prominent challenges of AR: accurate camera
state retrieval, resolving occlusions between real and virtual
objects and extraction of environment illumination distri-
bution. Solving these three challenges improves the illu-
sion of virtual entities belonging to our reality. This paper
demonstrates an elaborated framework that recovers accu-
rate camera states from a video sequence based on feature
tracking. Without prior calibration knowledge, it is able
to create AR Video products with negligible/invisible jitter
or drift of virtual entities starting from general input video
sequences. Together with the referenced papers, this work
describes a readily implementable and robust AR-System.

Keywords

Augmented Reality, accurate registration, jitter reduction

1. INTRODUCTION
1.1 Previous Work

The literature on Augmented Reality has become abun-
dant [2]. Research reports on accurate registration [22, 28,
30], resolving virtual-real occlusions [4, 7, 33] and extraction
of environment illumination [11, 20, 21] are readily avail-
able. Fast and efficient camera retrieval algorithms using
affine representations have been implemented successfully

*Kurt Cornelis is a research assistant of the Fund for Scien-
tific Research - Flanders (Belgium)(F.W.O. - Vlaanderen)

JrMa*rc Pollefeys is a postdoctoral fellow of the Fund for Sci-
entific Research - Flanders (Belgium)(F.W.O. - Vlaanderen)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VRST’ 01, November 15-17, 2001, Banff, Alberta, Canada.

Copyright 2001 ACM 1-58113-427-4/01/0011 ...$5.00.

Marc PoIIefestr
K. U. Leuven, ESAT-PSI
Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee,
Belgium

marc.pollefeys@
esat.kuleuven.ac.be

Luc Van Gool
K. U. Leuven, ESAT-PSI
Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee,
Belgium

luc.vangool@
esat.kuleuven.ac.be

[16], however these fail to model completely a real perspec-
tive camera. Camera state retrieval obeying the full per-
spective model has been proven possible on sparse image
sequences [3, 19], but these require some baseline between
2 consecutive images for corner matching which often lacks
between videoframes. A simple extension of [19] for video
is explained in [10]. It consists of selecting a sparse image
sequence from the video and applying [19]. All other frames
are interpolated for their camera state, therefore the time-
continuity and abundance of videoframes is not exploited.
Other algorithms are based on the small interframe camera
motion of a video [9, 31]. They solve approximately for the
camera motion between 2 consecutive frames based solely on
the image motion of features. The fact that features origi-
nate from a single 3D point is not or weakly exploited while
this could reduce drift. This fact, however, is exploited by
some recursive techniques [1, 5, 8] that use Kalman Filter
theory. Kalman Filtering requires a system model which is
often not adequate for real camera motions, e.g. the as-
sumption of constant velocity or random walk camera mo-
tion, and therefore slightly biases the output to follow the
system model. This paper describes an AR-System that ex-
ploits the time-continuity of the input video to extend [10]
by using feature tracking, exploits the fact that a feature
originates from a single 3D point to reduce drift and uses no
other model than the perspective camera model.

1.2 Overview

The paper outlines the process from input video towards
Augmented Video. First the most fundamental element,
feature tracking, is discussed. The resulting tracks are used
by an iterative Structure and Motion Recovery (SMR) algo-
rithm, as explained in a following section. The framework
needs initialization and final error minimization, both cov-
ered in separate sections. The merging of virtual entities
and results on real-life footage will be demonstrated in the
final sections along with experimental determination of error
buildup. We will finish with a short summary and discuss
future research topics.

2. TRACKING FEATURES
2.1 Point Feature Tracking

SMR is made possible by correspondences between im-

ages. These correspondences constitute the framework’s cor-
ner stone. They exist in all forms: points, lines [15, 32]
and even regions [29]. Points are the most elementary and
present in almost any footage of real environments. As we
want to process the most diverse videos, we opt to track
points. A reliable point feature tracker, the ‘ KLT-tracker’, is
discussed in [24, 25]. As the tracked points are proven to be
the ones that are tracked best, it supplies a solid theoretical
basis. Free source code at http://vision.stanford.edu/ birch/
klt/ makes this is a readily implementable building block.

2.2 Improving Feature Tracking

After experimentation with the original tracker code some
shortcomings surfaced. First, it attempts to track a con-
stant number of features. It can happen that features pile
up in one part of the image. However, having uniformly dis-
tributed features across the image increases accuracy and
robustness of SMR algorithms. Consequently, we divide the
image into sections of uniform size in which a minimum of
features are tracked. Six sections along the smallest image
side proved satisfactory.

Another problem popped up while processing a turntable
sequence. Figure 1 shows how the turntable motion doesn’t
alter the silhouette of the vase. This static silhouette is re-
ferred to as ‘an apparent contour’. Features can get stuck on
them, leading to a feature pile-up. Detection of feature colli-
sions is an effective remedy as feature points initially distant
that become too close to each other, e.g. 3 pixels, can indi-
cate such a pile-up. The tracking of colliding features can
be terminated, making room for new features. This is also
advantageous because 2 colliding features become visually
indistinguishable, leading to redundancy as two 3D points
projecting onto the same 2D point yield as much information
for camera recovery as a single 3D point.

2.3 Erroneous Feature Tracks

Structure and Motion Recovery is based on the static part
of the scene. Therefore, tracks are associated preferably
with static 3D points. However, different scenarios can yield
tracks corresponding to moving 3D points. For instance, a
feature track with associated static point can suddenly lock
onto another static 3D point. This can be interpreted as
a 3D point remaining static for a while and then jumping
abruptly to another static position. Also T-junctions span-
ning depth discontinuities, see Figure 1, don’t correspond
to static 3D points as the feature is formed by an intersec-
tion in the image, not by a real intersection in the scene. It
is the tracked position of a 3D point moving on either one
of the scene parts giving rise to the T-junction. Also fea-
tures stuck on ‘apparent contours’ can be seen as 3D points
moving on the object’s surface such that their projection is
always on the silhouette. Feature collision detection reduced
their number. Naturally, tracked features corresponding to
moving real objects also violate the static 3D point assump-
tion.

The fore-mentioned scenarios could be detected by corre-
lation - based matching with a local window at the frame
of feature instantiation [24]. Instead we shift the problem
to the stage of the SMR algorithm where a moving point
can be detected through geometric reasoning. When a 3D
point’s projection starts to deviate from the expected pro-
jection observed by the feature track, this probably indicates
a moving 3D point and it can therefore be eliminated.

Figure 1: Top: 3 frames from a turntable sequence.
On rotating the turntable the silhouette (white) of
the vase remains practically the same. However,
this silhouette doesn’t correspond to any static 3D
geometry entity, and is therefore called an ‘apparent
contour’

Bottom: The intersection of high-gradient edges at
different depths yield a perfect feature to track.
However, it doesn’t correspond to any physical point
as the intersection only takes place in the image.
This is called a ‘T-junction’

3. STRUCTURE AND MOTION RECOVERY
(SMR)

3.1 Iterative Core Algorithm

Tracked features yield correspondences between frames
that can be used to recover structure and motion. Struc-
ture and motion go hand in hand as the availability of one
allows to solve for the other, leading to an iterative scheme.
We're left with a ‘chicken-egg’ problem which will be solved
in section 4. Figure 2 describes the iterative nature: know-
ing some camera states, corresponding 2D points can be
reconstructed. Knowing these 3D points and their 2D posi-
tions in other frames, we can compute the camera state of
these frames. In turn these allow reconstruction of new 3D
points, completing the cycle.

Keeping future real-time implementation in mind, cam-
era states of consecutive frames are recovered from 3D-2D
correspondences as time advances. New 3D points are recon-
structed when there are insufficient 3D-2D correspondences
for reliable camera state estimation. Only earlier frames are
used to reconstruct new 3D points to respect causality.

3.2 Accuracy Considerations

SMR accuracy is achieved by minimizing image reprojec-
tion errors. These are the errors visible to human observers
and therefore form the natural goal for minimization. A
single camera state recovery consists of 2 steps. First, a
RANSAC algorithm [13] determines the sample, a minimum
number of 3D-2D correspondences needed to compute the
camera state, whose corresponding camera state yields the

\ z ¢
\
X |
A \ L » .
y e p
P\>// / /'.4
& T.\ A\ ” w)
. s ’ . /
Cc1 . o o

Figure 2: left to right, top to bottom: knowing some
cameras allows to reconstruct 3D points. Together
with tracked 2D positions in other frames these al-
low to solve for new cameras. The latter can then
be used to reconstruct new points, etc. (This figure
is reproduced in color on page 000.)

largest number of 3D points that project close enough to the
2D positions observed by the feature tracks. These 3D-2D
correspondences are the inliers of the camera state. Next, an
iteratively re-weighted least squares optimization [14] adapts
the found camera state to minimize the total reprojection
error of all inliers.

In the same way accurate 3D point reconstruction asso-
ciated with a feature track is achieved. First, a RANSAC
algorithm determines the sample, the 3D point reconstruc-
tion using back-projection from only 2 views, which yields
the largest number of frames in which the reprojection lies
close enough to the 2D position observed by the feature
track. These frames form the inliers. Next, an iteratively
re-weighted least squares algorithm adapts the reconstruc-
tion to minimize the total reprojection error in all inlier
frames.

RANSAC stands for RANdom SAmpling Consensus, but
by taking advantage of the video’s time-continuity we can
get rid off the ‘random’ part. After recovery of the previ-
ous frame’s camera state, the 3D-2D correspondences are
ordered according to reprojection error. 3D-2D correspon-
dences which yield the smallest reprojection error in the
previous frame will be good inliers for the current frame
and therefore can be used as a good sample to estimate the
current camera state. This speeds up the search for good
samples.

3.3 Removing Erroneous Tracks

SMR is based on the static scene part and therefore the de-
tection of moving scene points is important. This detection
is accomplished using multiple reprojection inlier thresh-
olds. 3D points which project within the inlier threshold
distance of the 2D tracker position are called inliers. For
camera state estimation a very strict inlier threshold is used
to exclude wrong 3D-2D correspondences from the itera-
tively re-weighted least squares minimization. This is cru-

cial as least squares solutions are very sensitive to outliers.
Because of the very strict inlier threshold correct 3D-2D
correspondences can be outliers due to noise, radial distor-
tions, etc. So we incorporate a second, more flexible inlier
threshold which, when violated, signals moving 3D points.

The ability to detect/reject moving points makes this frame-
work resilient to erroneous tracks resulting from T-junctions
and apparent contours, which can even appear in static
scenes. Also moving real objects can be handled as long as
the static scene part outweighs them in each frame. This fol-
lows from RANSAC selecting the camera state which yields
the largest number of 3D-2D inliers, namely the static scene
part.

3.4 Recovering Feature Tracks

Some scene parts can return further along the input video.
Recognizing corresponding feature tracks in different video
parts as resulting from a single 3D point can reduce drift.
Often feature tracks are lost shortly due to noise or blur,
but a new feature track is re-instantiated at the same place
as the lost feature, therefore actually representing the same
3D point. On one hand, without recovery of corresponding
tracks different 3D reconstructions would be made at the
same location leading to a storage overhead. On the other
hand, and more importantly, the drift during iterative SMR,
can be diminished by locking back onto already instantiated
3D points.

The recovery is accomplished by reprojecting already cre-
ated 3D points onto the current image. When a reprojection
lies close to a feature track that not yet has an associated 3D
point, the reprojected 3D point is assigned as its reconstruc-
tion. A single 3D point cannot be recovered by 2 different
feature tracks in the same frame as these tracks would have
to lie too close and are therefore eliminated beforehand by
the feature collision detection. As it is physically impossi-
ble for a 3D point to have 2 projections in the same frame
the infeasibility of this situation is mandatory. However, it
is possible for several 3D points to project onto the same
2D coordinates and therefore assigned to the same feature
track. To solve this ambiguity the texture environment of
the feature track can be compared with that expected by the
different 3D points. However, comparing textures through
normalized cross correlation is not always effective. A sim-
ple, and more robust, solution relies solely on geometric in-
formation and the ability to remove 3D-2D correspondences
belonging to moving 3D points. If several 3D points are
assigned to a single feature track, only one will be correct.
The correct correspondence will project close to the 2D posi-
tion observed by the feature track in all images. The wrong
correspondences most probably will not as demonstrated in
Figure 3. The camera motion reveals the correct correspon-
dence.

4. INITIALIZATION OF STRUCTURE AND
MOTION RECOVERY

4.1 Initial Motion Recovery

Either known structure or motion can initialize the itera-
tive SMR process. Sometimes scene knowledge is available
through measured landmark positions or calibration grids.
As we want to handle the most general videos, we need
to cope with a lack of scene information. The remaining

O = Tnlier Threshold

Feature Track

Figure 3: Although in the left image multiple 3D-2D
correspondences can be assigned, the camera motion
revealed the correct correspondence

option is to find some initial camera states using only the
feature tracks that depict correspondences between frames.
The correspondences between 2 frames are also governed by
epipolar geometry expressed by a fundamental matrix F.
Robust and accurate methods to solve for fundamental ma-
trices are explained in [17]. F depends on the camera states
of both frames and therefore these are in some form present
within F. We are left with the problem of extracting them.
F can be expressed in terms of internal and external camera
calibration parameters:

) fi s w
F = [32]mK2R'relK1_ with K; = 0 mfi v
0 0 1

in which f; denotes the focal length, r; the pixel aspect ra-
tio, s; the skew and (u;,v;) the principal point of camera 3.
R, is the relative rotation between both cameras and [e2],
is the vector product with the epipole in image 2 expressed
as a matrix multiplication. The 9 elements of F give 7 con-
straints as F' can only be determined up to a scale factor and
is rank deficient. The variables are focal length, aspect ratio,
skew and principal point in twofold and the relative orien-
tation and translation between both frames. Due to scale
ambiguity the translation’s magnitude is undetermined, and
so it has only 2 degrees of freedom.

Because the variables outnumber the constraints we fix
some variables on realistic values. For realistic cameras skew
can be assumed zero, aspect ratio constant and the principal
point will lie close to the image center. Fixing these variables
allows to solve for the other variables [6]. Depending on the
values we attribute to the fixed variables we end up with
different camera state variables. We opt to look for the
decomposition of F into 2 camera states with almost equal
focal length because in any video there are parts where the
focal length doesn’t change.

4.2 Automatic self-calibration

Structure and motion from uncalibrated video can only
be recovered up to an unknown projective transformation if
no further scene or camera geometry assumptions are made.
Up to a similarity transformation only one reconstruction
corresponds to the real Euclidean environment. In AR we

want to incorporate Euclidean virtual entities on which we
can perform only similarity transformations so it is impor-
tant to recover Euclidean structure and motion.

This has different implications for offline and real-time
AR. In real-time AR, Euclidean structure has to be recov-
ered from the beginning. This is done at the moment of
virtual object insertion. The virtual objects are Euclidean
and therefore their 3D model vertices have Euclidean co-
ordinates. By imposing the projection of some vertices in
several frames, the Euclidean camera state of these frames
can be recovered as one disposes of Euclidean 3D-2D corre-
spondences. Given the original and corresponding Euclidean
camera states one can find the projective transformation
that updates the framework to Euclidean space. For offline
AR the whole SMR can be done in any projective framework
and upgraded at the end to Euclidean using self-calibration
techniques [6, 12, 18, 26]. But working in Euclidean space
from the start can be interesting. Scene points in the far
range are less important to the viewer and reconstructed
with poor accuracy because the lines of sight by which they
are reconstructed intersect at a very small angle. When
working in Euclidean space, reconstructions in the far range
can be detected and avoided. Also a human observer can
easily spot when the SMR is failing as he/she has some ex-
pectations of the Euclidean outcome.

As more frames are processed we can determine whether
or not the current framework is really Euclidean. If recent
recovered camera states have large skews, unrealistic aspect
ratios, focal lengths or principal points we know the frame-
work is probably not Euclidean. We can compute a trans-
formation which brings it closer to the Euclidean space by
applying a simple self-calibration technique: from all avail-
able camera states we can take a representative sample con-
taining some that already are realistic and others that are
not. Between each pair the fundamental matrix can be re-
composed and decomposed into 2 camera states which are
realistic in a Euclidean world. The projective transforma-
tion that brings the original camera pair to the new realistic
camera pair can be determined. This is done for every sam-
ple pair after which a RANSAC and least squares algorithm
determines the transformation that leads to the largest num-
ber of realistic cameras.

5. REDUCINGJITTERANDDRIFT OF VIR-
TUAL ENTITIES

Several sources contribute to image reprojection errors:
errors on recovered structure, camera states, etc. Bundle
adjustment procedures [27] put together both structure and
motion in one large optimization that minimizes the total
reprojection error. This will render the remaining jitter and
drift of the virtual entities negligible/invisible. The moment
of bundle adjustment application depends on the use of the
AR-System. For offline AR the bundle adjustment can be
postponed until all structure and motion is recovered by
the iterative SMR scheme. For real-time AR 2 stages exist.
First, an initial video is used to reconstruct and bundle-
adjust the scene offline. Next, the bundled 3D points are
tracked during real-time operation. No new feature points
are instantiated because they lack the accuracy of the bun-
dled 3D points and are liable to error buildup. Recovering
feature tracks corresponding to the same bundled 3D point
is still desirable.

Figure 4: The AR Video Production interface : In
the top right view the virtual objects can be roughly
placed within the reconstructed 3D environment.
The result of this placement can be viewed instan-
taneously on some selected frames. The pose of the
virtual entities can then be fine-tuned to meet ex-
pectations in the viewed images. (This figure is re-
produced in color on page 000.)

6. CREATIONOFTHE AUGMENTED VIDEO

Having obtained the bundled structure and motion these
allow to incorporate virtual entities into the video using a
typical computer graphics package, e.g. the freeware code
of VTK [23], The Visualization Toolkit. Merging is achieved
by assigning the original frame as a background environment
map and rendering the virtual objects on top. In this way
anti-aliasing between the virtual objects and the real world
is obtained automatically. For the moment virtual objects
can occlude real ones but not vice versa. The virtual objects
can be positioned in 3D by using similarity transformations
and using recovered scene structure to guide the placement,
see Figure 4. The result for some selected frames can be
viewed interactively. One can then fine-tune the state of the
virtual entities by using all visual available information in
those frames, that may not have been reconstructed in 3D
by the SMR algorithm.

7. EXPERIMENTAL RESULTS

This section runs through the whole production cycle of
an AR Video. The input video shows an ancient fountain
at the archaeological site of Sagalassos in Turkey. The pil-
lars and roof have not yet been restored by the archaeol-
ogists. Using the AR software we are able to incorporate
them to get an idea of the final restoration beforehand.
Figure 5 shows several frames, resolution 720x576, of the
input video. Tracked features, around 800 per frame, are
displayed in Figure 6. Next, 2 initial frames are selected to
obtain their camera states by decomposition of their funda-
mental matrix. Subsequently, the iterative SMR algorithm

is triggered, ending up with scene structure and camera
states. These suffer from error buildup as the walls bend
backwards, see Figure 7. A bundle adjustment minimizes
reprojection errors and straightens the walls as shown in
the same figure. After satisfactory placement of the vir-
tual entities the recovered camera states are used to pro-
duce the Augmented ‘restoration’ of the ancient fountain,
Figure 8. The resulting video can be downloaded from
hitp://www.esat.kuleuven.ac.be/ “kcorneli/ARVideos. Jitter
and drift are negligible/invisible. Therefore this framework
is able to comply with the primary requirement of AR-
Systems: accurate registration of virtual objects within a
real environment.

We also performed some experiments to visualize the er-
ror buildup during the iterative SMR algorithm. The final
bundle adjustment, section 5, should minimize this buildup.
However since the buildup of errors jeopardizes the recovery
of feature tracks in the SMR algorithm, we determined the
error buildup before bundling to get a better idea. We gener-
ated an artificial turntable sequence in which one round-trip
consists of 100 equally spaced frames of 720x576 pixels. We
made 11 consecutive round-trips so the sequence has 1100
frames in total. As the sequence is periodic with period
100 we know that all cameras and images with frame num-
bers separated by a multiple of 100 should be the same, e.g.
frame 25, frame 125, frame 225, etc. .

The reprojection error is the error visible to human ob-
servers and therefore we like to express error buildup in
terms of reprojection error. Because we know that images
separated by a multiple of 100 should have the same cam-
era/reprojections the error buildup can be determined as
follows: we take a set of cameras which are all separated
by a multiple of 100 frames. Subsequently we take the re-
constructed scene points and project them into these images
using their corresponding estimated cameras. The mean dis-
tance between reprojection positions can then be considered
as a measure for the error buildup between round-trips. The
mean reprojection error is averaged over all possible camera
sets to be statistically relevant. This mean reprojection er-
ror is calculated for cameras which are separated by a single
round-trip, see Table 1, and also between the first and all
other round-trips yielding the total error buildup starting
from the beginning of the sequence, see Table 2. The mean
reprojection errors are expressed in pixels.

We calculated these error buildups for different scenar-
ios. Each scenario consists of using the whole framework
except a single improvement. In one scenario we left out the
fact that we covered the image plane with sections/tiles to
yield uniformly distributed features. In another we left out
the collision detection of features to avoid feature pile-up.
Removing the refinement of 3D point reconstructions and
camera estimation, recovery of already reconstructed tracks,
removal of moving 3D points and auto-calibration are also
considered as different scenarios. The results when the com-
plete framework is used are given at the bottom of each table
for benchmarking. From these results we immediately no-
tice the importance of recovering already reconstructed 3D
points for the reduction of drift due to error buildup. When
we didn’t remove the moving 3D points the error buildup
increased rapidly despite of the recovery of feature tracks.
Because no feature tracks were being removed anymore we
had problems of getting passed the sixth round-trip as the
memory usage became too large.

Table 1: relative error buildup: frame 100x(i-1) - frame 100xi

Scenario \ i 1 2 3 4 5 6 7 8 9 10

tiling 1.121 | 0.070 | 0.068 | 0.066 | 0.046 | 0.051 | 0.040 | 0.044 | 0.058 | 0.045
collision 0.285 | 0.049 | 0.045 | 0.048 | 0.050 | 0.038 | 0.037 | 0.046 | 0.047 | 0.048
refine scene points | 0.448 | 0.100 | 0.079 | 0.073 | 0.089 | 0.068 | 0.061 | 0.065 | 0.063 | 0.063
refine cameras 3.0561 | 0.585 | 0.865 | 0.711 | 0.626 | 0.691 | 0.532 | 0.467 | 0.423 | 0.383
recover tracks 1.108 | 1.173 | 1.181 | 1.139 | 1.141 | 1.189 | 1.361 | 1.222 | 1.212 | 1.427
moving 3D points 1.604 | 1.394 | 1.295 | 1.511 | 1.490 - - - - -

auto-calibration 0.532 | 0.0520 | 0.039 | 0.035 | 0.040 | 0.039 | 0.040 | 0.036 | 0.036 | 0.042
complete 0.193 | 0.040 | 0.027 | 0.031 | 0.030 | 0.036 | 0.039 | 0.036 | 0.032 | 0.034

Table 2: total error buildup: frame 0 - frame 100xi

Scenario \ i 1 2 3 4 5 6 7 8 9 10

tiling 1.121 | 1.117 | 1.116 | 1.113 | 1.115 | 1.113 | 1.112 | 1.112 | 1.115 | 1.112
collision 0.285 | 0.267 | 0.266 | 0.267 | 0.263 | 0.262 | 0.268 | 0.268 | 0.260 | 0.273
refine scene points | 0.448 | 0.481 | 0.469 | 0.463 | 0.465 | 0.475 | 0.470 | 0.475 | 0.464 | 0.478
refine cameras 3.061 | 3.215 | 3.234 | 3.236 | 3.405 | 3.192 | 3.205 | 3.261 | 3.212 | 3.205
recover tracks 1.108 | 2.177 | 3.281 | 4.296 | 5.362 | 6.432 | 7.720 | 8.883 | 9.963 | 11.264
moving 3D points 1.604 | 2.871 | 4.082 | 5.516 | 6.622 - - - - -

auto-calibration 0.532 | 0.534 | 0.526 | 0.519 | 0.526 | 0.524 | 0.526 | 0.522 | 0.525 | 0.520
complete 0.193 | 0.180 | 0.177 | 0.178 | 0.177 | 0.179 | 0.175 | 0.179 | 0.177 | 0.177

8. CONCLUSION

This paper described the development of a complete Struc-
ture and Motion Recovery (SMR) algorithm based on point
feature tracking for Augmented Video production.

In a first section we discussed the basic building blocks of
the framework, tracked point features. It was shown how
free available tracker code could be tuned to meet expec-
tations. A following section explained how these tracked
features are used by an iterative SMR algorithm. Accu-
racy considerations were mentioned, the recovery of feature
tracks arising from the same 3D point was discussed and its
importance to reduction of error build up emphasized. The
initialization of the iterative SMR algorithm was the topic
of a next section. We demonstrated how using the tracked
features and epipolar geometry between 2 frames, the cor-
responding fundamental matrix could be calculated and de-
composed into 2 realistic camera states. Subsequently auto-
matic self-calibration was described. From the moment cam-
era states showed lack of Euclidean properties, the frame-
work was brought closer to the real Euclidean framework.
Working in Euclidean frameworks was exploited by discard-
ing the inaccurate reconstruction of 3D points in the far
range. The following section showed how a bundle adjust-
ment procedure could minimize the image reprojection error
after all structure and motion had been solved for. This ren-
dered the jitter of virtual entities invisible in the final Aug-
mented Video. An experimental run through the complete
framework on real-life footage showed that the performance
meets the primary requirement of AR-Systems: accurate
registration of virtual entities within the real environment.
If this requirement was not met, the illusion of virtual ob-
jects belonging to our real world would be lost.

9. FUTURE WORK

The AR framework described in this paper is mainly fo-
cussed on offline Augmented Video production. However,

at each step the future real-time extension was taken into
account. This extension will form the subject of future re-
search. For offline production a huge number of features
can be tracked to improve accuracy and robustness. How-
ever, in real-time implementations the number of features
has to be reduced to meet computational requirements. It
becomes important to figure out which are the best features
to track. A trade-off has to be made between time-efficiency
and accuracy.

The use of texture correlation to remove erroneous tracks
and recover already reconstructed 3D points was replaced
by a pure geometric reasoning about removing moving 3D
points. However, these correlation-based techniques can be
added to make the system more robust in future versions.

10. ACKNOWLEDGMENTS

We wish to gratefully acknowledge the financial support
of the LW.T.(Institute for the Promotion of Innovation by
Science and Technology in Flanders) ITEA99002 BEYOND
project, 3D Murale project and the F.W.O.(Fund for Scien-
tific Research - Flanders) G.0223.01 project.

11. ADDITIONAL AUTHORS

Additional authors: Maarten Vergauwen and Frank Ver-
biest (email:vergauwe@esat.kuleuven.ac.be and
verbiest@esat.kuleuven.ac.be).

12. REFERENCES

[1] A. Azarbayejani and A. Pentland. Recursive
estimation of motion, structure, and focal length.
PAMI, 17(6):562-575, June 1995.

[2] R. Azuma. A survey of augmented reality. ACM
SIGGRAPH ’95 Course Notes No. 9 - Developing
Advanced Virtual Reality Applications, August 1995.

[3] P. Beardsley, P. Torr, and A. Zisserman. 3d model
acquisition from extended image sequences. Computer

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[14]

[15]

[16]

[17]

18]

Vision - ECCV’96, Lecture Notes in Computer
Science, 1065:683—695, 1996.

M.-O. Berger. Resolving occlusion in augmented
reality: a contour based approach without 3d
reconstruction. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR
’97), IEEE, IEEE Computer Society Press, pages
91-96, 1997.

J.-Y. Bouget and P. Perona. Visual navigation using a
single camera. ICCV5, Los Alamitos, CA, IEEE
Computer Society Press, pages 645—652, 1995.

S. Bougnoux. From projective to euclidean space
under any practical situation, a criticism of
self-calibration. Sizth International Conference on
Computer Vision, pages 790-796, January 1998.

D. E. Breen, R. T. Whitaker, and E. Rose. Interactive
occlusion and collision of real and virtual objects in
augmented reality. Technical Report ECRC-95-02,
ECRC, Munich, Germany, 1995.

T. Broida, S. Chandrashekhar, and R. Chellappa.
Recursive 3-d motion estimation from a monocular
image sequence. IEEE Trans. Aerospace and
Electronic Systems, 26:639-656, 1990.

M. J. Brooks, L. Baumela, and W. Chojnacki. An
analytical approach to determining the egomotion of a
camera having free intrinsic parameters. Tech. Rep.
96-04, Dept. Computer Science, University of
Adelaide, January 1996.

K. Cornelis, M. Pollefeys, M. Vergauwen, and L. V.
Gool. Augmented reality from uncalibrated video
sequences. 8D Structure from Images - SMILE 2000,
Lecture Notes in Computer Science, 2018:144-160,
2001.

P. Debevec. Rendering synthetic objects into real
scenes: Bridging traditional and image-based graphics
with global illumination and high dynamic range
photography. Proceedings SIGGRAPH 98, pages
189-198, July 1998.

O. Faugeras, Q.-T. Luong, and S. Maybank. Camera
self-calibration: Theory and experiments. Computer
Vision - ECCV’92, Lecture Notes in Computer
Science, 588:321-334, 1992.

M. Fischler and R. Bolles. Random sampling
consensus: a paradigm for model fitting with
application to image analysis and automated
cartography. Commun. Assoc. Comp. Mach.,
24:381-395, 1981.

R. Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya,
and M. Kim. Pose estimation from corresponding
point data. IEEE Trans. SMC, 19(6):1426-1446,
November/December 1989.

C. Harris and M. Stephens. A combined corner and
edge detector. Fourth Alvey Vision Conference, pages
147-151, 1988.

K. N. Kutulakos and J. Vallino. Affine object
representations for calibration-free augmented reality.
IEEE Virtual Reality Annual International
Symposium (VRAIS), pages 25-36, 1996.

Q.-T. Luong and O. Faugeras. The fundamental
matrix: theory, algorithms, and stability analysis. Intl.
Journal of Computer Vision, 17(1):43-76, 1996.

M. Pollefeys, R. Koch, and L. V. Gool. Self-calibration

[19]

[20]

21]

(22]

(23]

[24]

25]

[26]

27]

28]

[29]

(30]

[31]

32]

[33]

and metric reconstruction in spite of varying and
unknown internal camera parameters. International
Journal of Computer Vision, 32(1):7-25, 1999.

M. Pollefeys, R. Koch, M. Vergauwen, and L. V. Gool.
Hand-held acquisition of 3d models with a video
camera. Proceedings Second International Conference
on 3-D Imaging and Modeling (3DIM’99), IEEE
Computer Society Press, Los Alamitos, pages 14-23,
1999.

I. Sato, Y. Sato, and K. Ikeuchi. Acquiring a radiance
distribution to superimpose virtual objects onto a real
scene. IEEE Transactions on Visualization and
Computer Graphics, 5(1), January-March 1999.

I. Sato, Y. Sato, and K. Ikeuchi. Illumination
distribution from brightness in shadows: Adaptive
estimation of illumination distribution with unknown
reflectance properties in shadow regions. Proceedings
of IEEE International Conference on Computer
Vision (ICCV’99), pages 875-882, September 1999.
C. Schiitz and H. Hiigli. Augmented reality using
range images. SPIE Photonics West, The Engineering
Reality of Virtual Reality 1997, San Jose, 1997.

W. Schroeder, K. Martin, and B. Lorensen. The
visualization toolkit 2nd edition. Prentice Hall, New
Jersey, 1998.

J. Shi and C. Tomasi. Good features to track. IEEE
Conference on Computer Vision and Pattern
Recognition, pages 593-600, 1994.

C. Tomasi and T. Kanade. Detection and tracking of
point features. Carnegie Mellon University Technical
Report CMU-CS-91-182, April 1991.

B. Triggs. The absolute quadric. Proc. 1997
Conference on Computer Vision and Pattern
Recognition, IEEE Computer Soc. Press, pages
609-614, 1997.

B. Triggs, P. McLauchlan, R. Hartley, and

A. Fitzgibbon. Bundle adjustment - a modern
synthesis. Vision Algorithms: Theory and Practice,
pages 298-372, 1999.

M. Tuceryan, D. S. Greer, R. T. Whitaker, D. Breen,
C. Crampton, E. Rose, and K. H. Ahlers. Calibration
requirements and procedures for augmented reality.
IEEE Transactions on Visualization and Computer
Graphics, pages 255-273, September 1995.

T. Tuytelaars and L. V. Gool. Content-based image
retrieval based on local affinely invariant regions.
Third International Conference on Visual Information
Systems, Visual99, pages 493-500, June 1999.

M. Uenohara and T. Kanade. Vision-based object
registration for real-time image overlay. Proceedings
CVRMED’95, pages 14-22, 1995.

T. Viéville and O. Faugeras. The first order expansion
of motion equations in the uncalibrated case.
Computer Vision and Image Understanding,
64(1):128-146, July 1996.

T. Viéville, Q. Luong, and O. Faugeras. Motion of
points and lines in the uncalibrated case. International
Journal of Computer Vision, 17(1):7-42, 1996.

M. Wloka and B. Anderson. Resolving occlusion in
augmented reality. ACM Symposium on Interactive
3D Graphics Proceedings, pages 5—12, April 1995.

Figure 6: Some features tracked throughout consecutive frames

Figure 7: left: the recovered scene structure (top view of fountain) and camera path before applying a bundle
adjustment. right: scene structure and camera path after applying a bundle adjustment

Figure 8: Some frames from the resulting Augmented Video (This figure is reproduced in color on page 000.)

