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Abstract

Motivated by a Bayesian vision of the 3D multi-view
reconstruction from images problem, we propose a dense
3D reconstruction technique that jointly refines the shape
and the camera parameters of a scene by minimizing the
photometric reprojection error between a generated model
and the observed images, hence considering all pixels in
the original images. The minimization is performed using
a gradient descent scheme coherent with the shape repre-
sentation (here a triangular mesh), where we derive evolu-
tion equations in order to optimize both the shape and the
camera parameters. This can be used at a last refinement
step in 3D reconstruction pipelines and helps improving the
3D reconstruction’s quality by estimating the 3D shape and
camera calibration more accurately. Examples are shown
for multi-view stereo where the texture is also jointly opti-
mized and improved, but could be used for any generative
approaches dealing with multi-view reconstruction settings
(i.e. depth map fusion, multi-view photometric stereo).

1. Introduction

Reconstructing the 3D shape from multiple images has
been one of the main challenges in computer vision and
has been widely studied. A Bayesian way of addressing
the multi-view reconstruction problem is to see it as the in-
verse problem of the image formation process. This process
of image generation implies being able to derive a model
of such a scene, denoted by €2. This typically contains the
scene geometry (i.e. the surface §), a camera model (i.e. the
pinhole camera model II), the surface properties (i.e. the re-
flectance), the lighting conditions, etc. If, given those pa-
rameters of €2, we are able to generate an image R, we can
compare it to the observed images I = {Iy,I5,..., I }.
The best scene €2 can be found by maximizing the joint
probability of a scene given the images:

@ = arg max {p(@D)} = argmax {p(119) p(V)}. (1)
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The terms p()is the prior term on the scene (which may
typically correspond to surface smoothing criteria, con-
strains on the surface texture or the camera parameters, or
simply an initial guess for the model). p(I|Q?) corresponds
to the likelihood of a generated image for a given shape, ap-
pearance and cameras. It measures the similarity between
the generated images and the observed images.

A simplification of the generative model is to consider
as observation previously detected 2D features in images,
along with their corresponding matches in other images.
Finding the camera parameters from such information is
known as structure-from-motion [4, 15]. Such a model
could be estimated by finding the calibration II and a set
of 3D points x whose projections in the images are as close
as possible from the original observations. If we consider
a Gaussian noise model in the observation, maximizing this
likelihood naturally leads to minimizing the geometric er-
ror between the projection of the 3D points and their corre-
sponding 2D measurements (e.g. , 2D feature positions) to
refine both the camera parameters and a sparse reconstruc-
tion in a single framework. This is known as Geometric
Bundle Adjustment (BA) [21, 13], and has been success-
fully applied to various sparse 3D reconstruction scenari,
mostly minimizing a Geometric Reprojection Error:

E(x,1I) = Zﬁ:(X,H)Q,

where f; is the geometric error between observation ¢ and
the projection of the 3D point into the image.

In contrast, an alternative way is to directly consider the
maximum likelihood of the generative model described in
Equation (1), by finding a model that best explains the ob-
served images. In this case, the observed data no longer
consists of extracted features like in the case of GBA, but
directly comes from the image measurements. In computer
vision, this typically corresponds to intensity values of a
color image, but the concept naturally generalizes to any 2-
dimensional signals coming from vision sensors. p(I|Q2)
is typically derived from an image noise model, and is
often represented as a Normal (or Gaussian) distribution
function, e.g. p(T|Q) o [T, [1,, e~ (i(P)=Rs.m;(P)* where
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Rs1,(p) is the intensity pixel value induced by the gen-
erative model for image . The reconstruction problem can
naturally be formulated as minimizing the following “pho-
tometric” energy functional [2, 3, 7, 19]:

B =Y [ 3(00) = Rae) dp. @

where dp is the area measure on the image ¢. In the rest of
the paper, we omit the dependency on ¢ since this is just a
sum over all available images. Note that, in contrast with
GBA, the error measure between the predicted pixel values
and the observed ones is carried out over all pixels of all
input images. Instead of the geometric information only
(i.e. extracted image feature positions), this paper aims at
accounting for the photometric information, referred to as
photometric bundle adjustment (PBA).

1.1. Related Work

In recent decades, dense geometry recovery has lead to
a large number of efficient techniques in order to obtain
dense and accurate 3D models, e.g. see [18, 20] for a com-
parison of recent approaches in the context of multi-view
stereo. While some algorithms are based on dense fea-
tures or patches [5] others are based on energy minimiza-
tion techniques. Among those techniques, variational meth-
ods have become popular. They differ from the kind of en-
ergy they minimize, the way they minimize it or the sur-
face representation they choose. For example [17] uses the
Level Set framework using a global image score, [10] uses
a convex formulation minimizing a photometric error de-
fined over a discretized grid. In [2] and [23], a mesh re-
finement technique is proposed, minimizing a photometric
cost measure. While all those methods return good results
in recovering the 3D shape, only a few of them address the
problem of camera calibration from dense data. In the fol-
lowing, we describe related work regarding efforts in joint
calibration/geometry estimation focusing on the resolution
of reprojection error functionals, i.e. Equation (2).

Calibration and Dense Geometry Estimation
Itis well established that 3D reconstruction and camera esti-
mation are tightly linked together, bundle adjustment prob-
lems being a good example of how calibration can be im-
proved by jointly estimating the 3D structure and the cam-
era parameters. Surprisingly, until recently, dense surface
reconstruction was only considered as a next and/or inde-
pendent step from the calibration problem. It would be more
elegant if one could directly minimize the photometric re-
projection error to estimate both shape and camera parame-
ters (and eventually the scene radiance) at the same time.
Georgel et al. [8] propose a unified framework to com-
bine both the geometric and photometric information. As

both terms are not homogeneous, it is not clear how to com-
bine and weight them efficiently. In this work, we propose
to use the photometric information only, assuming an initial
calibration is already provided. It is also worth mentioning
the work of [5], which estimates 3D oriented patches, and
then minimizes the reprojection error to refine both patches
and camera parameters. They show substantial improve-
ments in accuracy for 3D reconstruction, hence showing
a photometric-based refinement of the calibration is nec-
essary for high quality multi-view stereo. Both [8] and
[5] assume the surface can be represented by planar local
patches. Here, we represent the surface as an arbitrary tri-
angular mesh. Real-time structure-from-motion is also pos-
sible by using dense tracking and mapping [[4]. In [14], the
authors use a dense photometric cost to refine the camera
poses. Our model extends naturally to intrinsic calibration.

Recently, several authors have been interested in ad-
dressing the problem of improving both the calibration and
the dense reconstruction in the context of minimizing an
energy functional of the type (2). The work in this paper is
closely related to the ones described in [22, 25]. In these pa-
pers, the authors propose to refine the calibration in the con-
text of multi-view modeling using a variational approach. In
[22], only the calibration is optimized, and the equations are
derived in the context of uniformly colored shapes. There-
fore, it is not possible to refine the camera parameters if a
segmentation of the object or the visual hull is not available
and does not fall into "’binary” images. Similarly, [25] also
only works for uniformly colored objects. Instead, we pro-
pose a generalization of [22] and [25] to deal with textured
and more complex objects.

Aubry et al. [1, 9] proposes a different approach. With-
out solving the problem in a direct way, they relax the prob-
lem between correspondence estimation and camera cali-
bration. They decouple the minimization by first estimat-
ing the optical flow between a generated image and the ob-
served one, and then refine the camera poses. The process
is iterated using a fixed geometry. While this alternate pro-
cess allows faster convergence and reduce local minima, un-
like [1, 9], we directly solve for both the calibration and the
3D reconstruction in a single framework by directly mini-
mizing the reprojection error. While the underlying energy
functional is similar, the proposed optimization is funda-
mentally different as the parameters (Mesh, Cameras and
Texture) are optimized jointly in a single framework, and
do not use separate independent steps.

Visibility

One of 3D reconstruction’s (and more generally computer
vision) most challenging problems is the visibility informa-
tion. While most techniques deal with visibility more or
less explicitly (usually as fixed function updates between it-
erations), very few of them consider the visibility variation
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in their formulation. Some consider additional terms such
as ballooning terms or silhouette constraints. However, the
correct minimization of Equation (2) already contain terms
that avoid the empty set to be the optimal solution.

Yezzi and Soatto [24] use the concept of oriented visibil-
ity, which implicitly constrains the minimization to make it
consistent with the image silhouettes. However their work
is limited to convex shapes, and while there is no need for
additional constraints during the evolution of the surface, it
does not handle self occlusions. Gargallo et al. [7, 6] gen-
eralized this idea to non-convex surfaces in the framework
of Level-Sets. Delaunoy and Prados [2] extend this con-
cept to discrete polyhedral surfaces, allowing to constrain
mesh-based evolution. However, none of the above tech-
niques deal with camera calibration and focus on 3D recon-
struction only. In this work, we build on [2] to account for
visibility when cameras parameters are optimized as well.

The visibility issue while refining the calibration is par-
tially solved in [22]. However, similarly as in [24], the ad-
ditional constraint only accounts for silhouette points, and
is only valid for convex shapes. We extend this work to
arbitrary shapes and derive a similar strategy as in [2].

1.2. Contribution

In this paper we focus on the last stage of the 3D mod-
eling pipeline, i.e. the dense reconstruction using a similar
model as [2, 9]. We propose to jointly refine the dense ge-
ometry and the camera parameters using the photometric er-
ror. This error is simply the reprojection error between im-
ages of a generative model and the observed images which
is directly minimized in the image domain (Equation 2). In
order to achieve that goal, we derive equations of the gra-
dient of the energy functional we minimize, accounting for
visibility changes [2, 7, 24]. The shape is represented as a
triangular mesh, allowing an easier handling of the texture
which is also jointly optimized.

In this work, we propose a direct pixel-based bundle ad-
justment minimization of the photometric reprojection error
in order to jointly optimize the full and dense 3D shape as
well as the camera parameters and the scene radiance (the
texture) by exploiting an image-based reprojection error.

2. Full BA: Problem Formulation

We propose to refine the scene (S, IT) from some ini-
tial scene §2°, parametrized by its surface S and calibration
II. While this section describes a variational formulation
that is valid for general generative scene models (includ-
ing depth map integration, shape-from-shading, photomet-
ric stereo, etc), Section 3 focuses on the case of a Lamber-
tian scene reconstructed with a generative model including
texture, shape and camera parameters.

2.1. Functionals Defined on Visible Surfaces

Equation (2) is minimized on the whole image. However,
in order to generate RQJ‘, one needs to consider the back-
ground B, in order to explain parts of the images where the
surface of interest to be modeled does not project into the
images. Equation (2) becomes (see [2]):

E(S,1I) :/H(S)(I—Rs,n) +/zin($)(I_B)
Joo [0 Tom)® == ny] + [ )"
3

Figure 1. 3D surface S seen from a camera showing visible and
occluded volumes. Only the visibility interface Ovs can be ex-
plained the images.

Minimizing the data fidelity term of Equation (3) is
rather difficult and similarly to previous works we use a gra-
dient descent strategy [7, 19, 24]. This is due to the fact that
the generative model (mostly the projection and occlusions
created by the surface) implicitly accounts for visibility. It
is then important to know how the updates on the scene pa-
rameters affect the changes in visibility. This function is
illustrated in Figure 1. Let vg 11(x) be the visibility func-
tion vs 11 : R? +— [0, 1] such that:

“)

(%) 1 if x is visible from the camera 7,
Vs, (X) = .
’ 0 otherwise.

In order to minimize Equation (3), let us first rewrite the
equation over the (visible) surface. Note that the second
term is constant and can be left out in the minimization.
Denoting the part in brackets by fq, this gives, by a simple
change of variables [19, 24]:

ESI) = [  faxnx)a-nvs(x)ds, (5

SuB

d.
where we have dp = f, f, d—gn vs(x) ds for a pinhole

camera model, e.g. see [19]. f, and fy are the focal param-
eters in z and y respectively, n is the surface normal at point
x and d is the vector pointing from the camera center to x.
B is the background surface (either a previously estimated
surface or a plane behind the object of interest). This gener-
alizes to other parametric camera models. In the following

we denote o = f fy FER
z
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2.2. Variational Refinement of the Surface

The choice of the surface representation is rather impor-
tant and conditions the rest of the minimization. We choose
a triangular mesh as it was recently proven to give accu-
rate and impressive results [23]. It also has the advantage to
move vertices at their correct location as the final gradient
flow is allowed to have tangential components in the evo-
lution of the vertices, and to provide a manifold watertight
mesh, suitable for further processing or applications.

Similarly as in [2, 23], we follow a discretize then min-
imize strategy by discretizing the energy functional over a
polyhedral representation X of the surface S. Let X =
{x1...x,} be a piecewise planar triangular mesh, x;, be-
ing the k' vertex of X, and let S; be the j™ triangle of X.
The energy functional (2) we finally minimize is:

BT = 3 4, /T Fa(x(u) a(u) - n; vs(x(w) du,
’ ©)

where n; is the normal of the triangle S; parametrized by
u of surface area A; and where the sum is over all the
triangles of the mesh X. Over each triangle, points are
parametrized using barycentric coordinates u = (u,v) €
T = {(w,v)|lu € [0,1]]andv € [0,1 — u]}. The term
du = 2 A; ds corresponds to the surface area element on
the triangle. In the following, in order to simplify notations,
we omit the dependency in u.

In order to compute the gradient of Equation (6), we con-
sider the evolution of the energy under a small evolution of
the surface X[t] = X" + ¢V, where V is a vector field de-
fined on all the vertices x of the mesh X. The directional
derivative of F(X), i.e. £ E(S[t]) . is used to compute

the final gradient of the energy F(X). The mesh evolution
equation is given by the following L? gradient descent flow:

X[0] = X°,
OF (M

X[t 4 1] = X[t] — dt M—la—X(X[t]) ,

where X is an initial mesh and M is the mass matrix con-
taining the area around a particular vertex. This means that
the velocity of one particular vertex depends on the inte-
grated cost on neighboring facets, hence allowing consis-
tent vertex displacements. This gradient descent scheme
contains typically two elements: one corresponding to oc-
cluding contours, and one for the vertices that do not make
strong changes in the visibility. This second part of the gra-
dient typically describes the gradient of vertices on the oc-
cluding contours (called the horizon term). The way visi-
bility changes at occluding contours is illustrated in Figure
2 and we follow the gradient computations detailed in [2].

A

Figure 2. Left: Original discrete mesh and its visibility interface;
Middle: Change of the visibility interface when moving a vertex
of the mesh X [2, 7]; Right: Influence of camera center update on
the horizon. Moving points on occluding contours or moving the
camera center drastically changes the visibility function.

2.3. Camera Refinement

We now consider the same energy functional as a func-
tion of the camera parameters II. We consider a standard
pinhole camera model, and parametrize 7 using a set of
parameters (g;), accounting for the intrinsics (focal, skew
parameter and principal point) and extrinsics of the camera.

The extrinsics are the rotation R(w) and translation in
SE(3) that are parametrized using an angle-axis representa-
tion for the rotation w, and the optical center of the camera
C. It is worth to mention that among the calibration param-
eters, only the camera center induces changes in the visi-
bility function vs . Figure 2 gives a geometric intuition
of what is happening to the visibility interface during the
optimization. For a rotation update, the gradient of the vis-
ibility function is zero. The camera updates are computed
using the following partial differential equations:

% :Zj:Aj/ngi(fﬂ(x)a.nj vs(x)) du.

®)
The resolution of Eq. (8) implies classical derivations
and standard chain rules and follows similar strategies as
described in [9, 22]. For the visibility gradient on the cam-
era center, we first rewrite Eq. (8) as an energy over the vol-
ume. We derive how the energy changes when moving the
camera similar as for the horizon term in the mesh optimiza-
tion [2]. The difference is on the volume parametrization
which in this case follows the shape in Fig. 2. In practice,
this term has less influence as it is computed over the whole
image and most points are not on occluding contours.
While we focus on classical pinhole camera intrinsics
and extrinsics, we could add more complete calibration
models by adapting ¢ and its associated derivatives.

3. Multi-view Stereo Application

In multi-view stereo, the generative model of a scene {2
depends not only on the surface shape and camera param-
eters, but also on the scene radiance, i.e. the texture of the
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surface. Let T : R? — R? be the texture map to optimize.
Let the mesh X be the mesh representation of the surface
S(X,T). The associated generative model can be defined
as Ro.i(p) = T(H;é(p)), where 7' is the Lambertian tex-
ture of the surface. Hgl (p) is the back-projection of pixel p
onto the surface if it exists, or onto the background B other-
wise. The energy we minimize in this context is very similar
to reprojection errors used in other related works [2, 7, 9]:

1 _ 2
PR =Y [ 5 (1) - Tk @) dp.
)
3.1. Geometry, Calibration and Texture Recovery

Similarly as in the previous section, we minimize the fol-
lowing energy defined over the surface:

BT = 3045 [ (L (x(w) = 7))

a-n; vs(x(u)) du, (10)

which is minimized as previously described. The only dif-
ference is that the sampling of the residuals (the numerical
integration over the triangles) is performed on the texture
space rather than the triangles directly. This allows us to
control the sampling and make sure it is coherent with the
image resolution (details in the experimental section).

A natural shape prior is to penalize non-smooth surfaces.
Instead of minimizing the surface area which introduces
bias towards minimal surfaces, one may add a smoothness
term to penalize variations on the surface normals. This can
be achieved by minimizing the following energy functional:

Erg(X) = As > _ A, /T\nj_hjﬁ du, (11)
J

where h; is an unit vector. Typically h; is the average nor-
mal on a local neighborhood around the facet j. Ag is a
smoothing parameter. Similarly as in [23], we weight the
data term by the squared ratio between the average image
depth and the focal length in order to get the energy homo-
geneous in squared world units, hence having a smoothness
parameter stable across different datasets.

Texture Estimation

As mentioned above, T : S — R? is the estimated radiance
on the surface. An obvious choice for the texture 7'(x) is
the closed form solution of Equation (10):

_ 22 LilLi(x)) wi(x)
2 wi(x) '

T'(x) corresponds to the weighted mean color at point x
of the images where x is visible. We have w;(x) = « -

T(x) (12)

n; vs(x(u)). Since we want to minimize X, T, II at the
same time, we use the following texture evolution:

Ty () = Ty(w) + dt S (L(IL (x(w))) = T1) wi(x) -

l (13)
While one could plug Equation (13) directly in Equation (9)
and get rid of the texture, handling the texture separately
offers significant advantages. For example, it becomes nec-
essary if one wants to optimize more complete reflectance
models (albedo, specular coefficient, etc), or want to add
more realistic image formation models.

4. Experiments and Results

The proposed photometric bundle adjustment approach
is evaluated on several publicly available datasets. We show
improvements not only on the dense 3D geometry, but also
in the estimated texture of the surface.

The algorithm has been implemented in C++ and is run-
ning on a standard 3GHz Linux machine. We use the GPU
(using OpenGL Shading Language) for computing visibil-
ity by rendering depth maps and for computing parts of the
gradient. In the following, the rendering of the shape is dis-
played with flat shading on the facets.

Initialization  The initial calibration IT is assumed to be
given, either by a pre-calibrated multi-view setup, or after
classical structure-from-motion. For the geometry estima-
tion, we first apply the same algorithm described in this pa-
per without the camera parameters updates. Then the PBA
is performed by optimizing all parameters, X, IT and T.

Texture mapping and super-resolution In order to effi-
ciently handle the texture, a texture atlas is generated. This
allows easier access to neighboring texture values of a given
point in order to easily compute gradients over the texture.

First, a labeling of each facet based on camera visibility
information is computed, by finding the best frontal cam-
era. In order to favor larger texture segments, a graph cut is
performed on the mesh using alpha expansion. This gives a
facet to camera mapping. The visible facets are projected on
the corresponding images, and those coordinates are used
for the texture mapping. This allows us to obtain a texture
sampling coherent with the image resolution. Texture inten-
sity values are computed by using Equation (13).

During the optimization, a coarse to fine strategy is also
used in order to avoid local minima. This includes deal-
ing with the resolution of the images, the resolution of the
mesh and the resolution of the estimated texture. We make
sure that the resolution of the texture is higher than the sam-
pling over each triangle so that we have at least a few resid-
ual samples per triangle (the texture sampling is consistent
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with the input image resolution by construction of the tex-
ture map). By choosing a higher texture resolution, we can
improve the texture estimation. This actually corresponds in
performing super-resolution with a simple bilinear convolu-
tion kernel which is naturally handled in our case. We could
straight-forwardly extend this concept to arbitrary convolu-
tion kernels [9] without changing our approach.

Remeshing In order to avoid self-intersections during the
mesh optimization, we use the topology-adaptive meshes
described in [16]. Keeping track of the texture optimiza-
tion while remeshing is rather difficult. To simplify the al-
gorithm, the texture is reinitialized after remeshing using
Equation (13). In practice we remesh every 20 iterations.

4.1. Pose and Shape Estimation

Figure 3. Evolution of the minimization at different iterations on a
synthetic data (24 images of 640 x 480). From top to bottom: 5 of
the input images; 3D triangular mesh X; Photometric reprojection
error; Textured mesh using the estimated texture T

We first evaluate our approach on synthetic data. It con-
sists of 24 images of an imbricated cube and ball with Lam-
bertian texture. We add Gaussian noise on the camera poses.
We first run the baseline method without the camera updates
(standard multi-view stereo) from the noisy data (starting
from a simple sphere), and then we run the PBA. See Figure
3 for results. In this experiment, the algorithm converges in
300 iterations in about 30 minutes. Note that minimizing a
discrete energy over a triangular mesh with a coherent gra-
dient descent flow allows vertices to move in their correct
location, and allows to preserve sharp edges which most
previous methods are not able to achieve.

We evaluated on the classical Middlebury Temple and
Dino datasets (See Figure 4). The accuracy is improved in
both datasets, showing the advantage of jointly estimating
the geometry and the calibration. Our approach is compara-

Figure 4. Results on the Middlebury stereo benchmark [18]. for
DinoRing and TempleRing data (47 images) before (Left) and af-
ter (Right) the refinement with the proposed PBA method.

ble to the state-of-the-art, and visually looks more appeal-
ing than some of the best methods as some details are nicely
visible. For example holes in the columns are correctly re-
constructed where many methods tend to oversmooth the
surface. Similarly as described in [1, 5], we observe an im-
provement in both accuracy and completeness due to the
camera refinement (See results Table 1). Fig 5 shows an ad-
ditional results of a statue in the Rietberg Museum, Zurich,
where we initialize the camera calibration with structure-
from-motion [27, 26] and compute an initial mesh via [12].
Then we use the PBA approach described in this paper.

Figure 5. ”Seated Bodhisattva” (50 images). Textured (mid.) and
shaded (right) reconstructed surface with the proposed refinement.
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Temple Sparse Ring (16 images) Temple Ring (47 images) Dino Ring (48 images)
accu.(mm) compl.(%) photo.err. | accu.mm) compl.(%) photo.err. | accu.mm) compl.(%) photo.err.
Baseline 0.78 96.2 5.3238 0.59 99.0 5.8669 0.51 97.2 1.7154
Proposed PBA 0.7 96.6 3.6024 0.51 99.1 3.7566 0.51 98.7 1.0863

Table 1. Numerical evaluation of the proposed method for Middlebury Dino and Temple data sets [18] (Baseline: Multi-view stereo
without calibration; Proposed: Same as before with calibration - Photometric Bundle Adjustment)). The table shows accuracy at 90% and
completeness at 1.25mm, and err, the mean photometric reprojection error (in term of intensity values).

> ) /~1,5.
YE%7

Figure 6. Results on PBA with both intrinsics and extrinsics re-
finement (estimated mesh, reprojection error and estimated tex-
ture, respectively). Left: Initial shape estimated without calibra-
tion refinement; Right: result of our PBA method.

4.2. Intrinsics Estimation

Similarly as before, we used the same simulated data and
added a Gaussian noise to all camera parameters, this time
including the intrinsics as well (focal length and principal
point). Results are shown in Figure 6.

Figure 7 shows results on a publicly available dataset
[11], were we tested our PBA using all parameters. While
the intrinsic calibration does not change for most of the im-
ages, two views (namely #9 and #20) have a particularly
wrong focal length. For the bird data, before the camera
refinement with the baseline method (see Figure 8), the re-
projection error is 3.2707 (average error per point on the
surface in term of intensity values). After the photometric
bundle adjustment, the reprojection error drops to 2.1359.

Figure 7. Bird shape (21 images) from [ I]. Top: reconstructed
surface and texture map. Bottom: details (3D geometry, color
coded surface normals, textured mesh, reprojection error).

Perspectives

Even though the minimized error is rather simple (per
pixel squared error), we are able to achieve high quality
reconstructions comparable to previous techniques using

more robust cost measures. While some parts of the sur-
face contain flaws, we believe those problems come from
the presence of local minima mostly due to non-Lambertian
surfaces or matching ambiguities. A robust image similar-
ity measure ([23]), or taking more parameters in the cam-
era calibration (geometric distortions, radiometric models)
would probably improve the reconstruction. However it is
clear that the reprojection error is reduced showing signifi-
cant improvements on the reconstructed surface and texture.

5. Conclusion

A dense image-based photometric bundle adjustment is
presented, minimizing the reprojection error between a gen-
erated image and an observed image. The error is a simple
image error motivated by a Bayesian vision of the multi-
view reconstruction problem. It jointly refines the geome-
try (mesh) and calibration, leading to notable improvements
both in the reconstructed geometry and the estimated tex-
ture on several datasets. The discrete gradient descent flow
allows vertices to be moved at their correct location and to
preserve surface edges (as in [2, 23]). This paper is a first
and necessary step towards full dense multi-view bundle ad-
justment problems dealing with more complete generative
models such as convolution or radiometry (reflectance, il-
lumination), and can straight-forwardly be applied to any
generative approaches dealing with multi-view reconstruc-
tion settings minimizing reprojection errors (i.e. multi-view
range maps integration, multi-view photometric stereo).
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