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2ETH Zürich, Department of Computer Science7 7

Abstract. This paper introduces an approach for dense 3D reconstruc-8 8

tion from unregistered Internet-scale photo collections with about 3 mil-9 9

lion of images within the span of a day on a single PC (“cloudless”). Our10 10

method advances image clustering, stereo, stereo fusion and structure11 11

from motion to achieve high computational performance. We leverage12 12

geometric and appearance constraints to obtain a highly parallel imple-13 13

mentation on modern graphics processors and multi-core architectures.14 14

This leads to two orders of magnitude higher performance on an order15 15

of magnitude larger dataset than competing state-of-the-art approaches.16 16

1 Introduction17 17

Fig. 1. Example models of our method from Rome (left) and Berlin (right) computed
in less than 24 hrs from subsets of photo collections of 2.9 million and 2.8 million
images respectively.

Recent years have seen an explosion in consumer digital photography and a18 18

phenomenal growth of community photo-sharing websites. More than 80 million19 19

photos are uploaded to the web every day,1 and this number shows no signs of20 20

1 http://royal.pingdom.com/2010/01/22/internet-2009-in-numbers
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slowing down. More and more of the Earth’s cities and sights are photographed21 21

each day from a variety of cameras, viewing positions, and angles. This has cre-22 22

ated a growing need for computer vision techniques that can provide intuitive23 23

and compelling visual representations of landmarks and geographic locations. In24 24

response to this challenge, the field has progressed quite impressively. Snavely et25 25

al. [1] were the first to demonstrate successful structure from motion (SfM) from26 26

Internet photo collections. Agarwal et al. [2] have performed camera registration27 27

and sparse 3D reconstruction starting with 150,000 images in a day on 62 cloud28 28

computers with 500 cores. Li et al. [3] have presented a system that combines29 29

appearance and multi-view geometry constraints to process tens of thousands30 30

of images in little more than a day on a single computer. There also exist tech-31 31

niques for accurate reconstruction of dense 3D models from community photo32 32

collections [4, 5], but they are currently much slower and more computationally33 33

intensive than the SfM approaches. Overall, existing systems do not measure up34 34

to the needs for reconstruction at city scale as, for example, a query for “Rome”35 35

on Flickr.com returns about 3 million images. This paper proposes a highly effi-36 36

cient system for camera registration combined with dense geometry estimation37 37

for city-scale reconstruction from millions of images on a single PC (no cloud38 38

computers = “cloudless”). The proposed system brings the computation of mod-39 39

els from Internet photo collections on par with state-of-the-art performance for40 40

reconstruction from video [6] by extending the capabilities of each step of the41 41

reconstruction pipeline to efficiently handle the variability and complexity of42 42

large-scale, unorganized, heavily contaminated datasets.43 43

Our method efficiently combines 2D appearance and color constraints with44 44

3D multi-view geometry constraints to estimate the geometric relationships be-45 45

tween millions of images. The resulting registration serves as a basis for dense46 46

geometry computation using fast plane sweeping stereo [7] and a new method47 47

for robust and efficient depth map fusion. We take advantage of the appearance48 48

and geometry constraints to achieve parallelization on graphics processors and49 49

multi-core architectures. All timings in the paper are obtained on a PC with50 50

dual Intel quadcore Xeon 3.33 Ghz processors, four NVidia 295GTX commodity51 51

graphics cards,2 48 GB RAM and a 1 TB solid state hard drive for data storage.52 52

The major steps of our method are:53 53

1) Appearance-based clustering with small codes (Sec. 3.1): Similarily to54 54

Li et al. [3] we use the gist feature [8] to capture global image appearance. The55 55

complexity of the subsequent geometric registration is reduced by clustering the56 56

gist features to obtain a set of canonical or iconic views [3]. In order to be able to57 57

fit several million gist features in GPU-memory, we compress them to compact58 58

binary strings using a locality sensitive scheme [9–11]. We then cluster them59 59

based on Hamming distance with the k-medoids algorithm [12] implemented60 60

on the GPU. To our knowledge, this is the first application of small codes in61 61

the style of [11] outside of proof-of-concept recognition settings, and the first62 62

demonstration of their effectiveness for large-scale clustering problems.63 63

2 By the time of ECCV this will correspond to two graphics cards of the next gener-
ation that will then be available, making this a state-of-the-art gaming computer.
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2) Geometric cluster verification (Sec. 3.2) is used to identify in each cluster64 64

a “core” set images with mutually consistent epipolar geometry using a fast65 65

RANSAC method [13]. All other cluster images are verified to match to either of66 66

the “core” images, and the ones found to be inconsistent are removed. Finally,67 67

we select a single iconic view as the best representative of the cluster. Given that68 68

geo-location is available for many images in the Internet photo collection, we are69 69

typically able to geo-locate a large fraction of our clusters (> 50%).70 70

3) Local iconic scene graph reconstruction (Sec. 3.3) establishes the skele-71 71

ton registration of the iconic images in the different locations. We use vocabulary72 72

tree search [14] and clustering based on geo-location and image appearance to73 73

identify neighboring iconics. Both of these strategies typically lead to sets of lo-74 74

cally connected images corresponding to the different geographically separated75 75

sites of the city. We dub these sets local iconic scene graphs. These graphs are76 76

extended by registering additional views from the iconic clusters. Our registra-77 77

tion method uses incremental SfM combined with periodic bundle adjustment78 78

to mitigate errors.79 79

5) Dense model computation (Sec. 3.4) uses all registered views in the local80 80

iconic scene graphs to obtain dense scene geometry for the captured sites. Tak-81 81

ing advantage of the initial appearance-based image grouping, we deploy fast82 82

plane sweeping stereo to obtain depth maps from each iconic cluster. To mini-83 83

mize the computational load we perform visibility-based view selection for the84 84

dense depth map computation. Then we apply a novel extension to a depthmap85 85

fusion method to obtain a watertight scene representation from the noisy but86 86

redundant depth maps.87 87

88 88

2 Previous Work89 89

Our method is the first system performing dense modeling from Internet photo90 90

collections consisting of millions of images. Systems for urban reconstruction91 91

from video have been proposed in [15, 6], with [6] achieving real-time dense 3D92 92

reconstruction. However, modeling from video is inherently much more efficient93 93

as it takes advantage of spatial proximity between the camera positions of suc-94 94

cessive frames, whereas the spatial relationships between images in a community95 95

photo collection are unknown a priori, and in fact, 40% to 60% of images in such96 96

collections turn out to be irrelevant clutter [3].97 97

The first approach for organizing unordered image collections was proposed98 98

by Schaffalitzky and Zisserman [16]. Sparse 3D reconstruction of landmarks from99 99

Internet photo collections was first addressed by the Photo Tourism system [17],100 100

which achieves high-quality results through exhaustive pairwise image matching101 101

and frequent global bundle adjustment. Neither one of these steps is very scal-102 102

able, so in practice, the Photo Tourism system can be applied to a few thousand103 103

images at most. Aiming at scalability, Snavely et al. [18] construct skeletal sets of104 104

images whose reconstruction approximates the full reconstruction of the whole105 105



4 ECCV-10 submission ID 342

dataset. However, computing these sets still requires initial exhaustive pairwise106 106

image matching. Agarwal et al. [2] parallelize the matching process and use ap-107 107

proximate nearest neighbor search and query expansion [19] on a cluster of 62108 108

machines each one comparable to our single PC. With that single PC, we tackle109 109

an order of magnitude more data in the same amount of time.110 110

The speed of our approach is a result of efficient early application of 2D111 111

appearance-based constraints, similarly to the approach of Li et al. [3]. But112 112

our system extends [3] to successfully process two orders of magnitude more113 113

data by parallelizing the computation on graphics processors and multi-core114 114

architectures. We summarize the dataset and select iconic images using 2D image115 115

appearance as a prerequisite for efficient camera registration. This is the opposite116 116

of the approach of Simon et al. [20], who treat scene summarization as a by-117 117

product of 3D reconstruction and select canonical views through clustering the118 118

3D camera poses. While our method of image organization is initially looser than119 119

that of [20], it provides a powerful pre-selection mechanism for advancing the120 120

reconstruction efficiency significantly.121 121

After selecting the iconic images, the next step of our system is to discover the122 122

geometric relationships between them and register them together through SfM.123 123

Li et al. [3] deployed a vocabulary tree [14] to rapidly find related iconics. Our124 124

system can use a vocabulary tree in the absence of geo-location information for125 125

the iconics. If this information is available, we use it to help identify possible links126 126

between iconics. The latter approach is more efficient since it avoids building127 127

the vocabulary tree. Note that the methods of [21, 22] are also applicable to128 128

discovering spatial relationships in large collections of data.129 129

To perform SfM on the set of iconic images, Li et al. [3] partitioned the130 130

iconic scene graph into multiple connected components and performed SfM on131 131

each component. In contrast, we do not cut the iconic scene graph, as such132 132

an approach is prone to excessive fragmentation of scene models. Instead, we133 133

use a growing strategy combined with efficient merging and periodic bundle134 134

adjustment to obtain higher-quality, more complete models. Our method is open135 135

to use techniques for out-of-core bundle-adjustment [23], which take advantage136 136

of the uneven viewpoint distribution in photo collections.137 137

Given the registered viewpoints recovered by SfM, we next perform multi-138 138

view stereo to get dense 3D models. The first approach demonstrating dense139 139

modeling from photo collections was proposed by Goesele et al. [4]. It uses per-140 140

pixel view selection and patch growing to obtain a set of surface elements, which141 141

are then regularized into a Poisson surface model. However, this approach does142 142

not make it easy to provide textures for the resulting models. Recently, Furukawa143 143

et al. [24] proposed a dense reconstruction method from large-scale photo collec-144 144

tions using view clustering to initialize the PMVS approach [25]. This method145 145

computes a dense model from approximately 13,000 images in about two days on146 146

a single computer assuming known camera registration. Our proposed method147 147

uses an extended version of Yang and Pollefeys stereo [7] combined with novel148 148

multi-layer depth map fusion [26]. While achieving comparable quality, it com-149 149
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putationally outperforms [4, 24] by achieving modeling on a single PC within150 150

less than an hour instead of multiple days.151 151

3 The Approach152 152

In this section we will describe our proposed method. Section 3.1 discusses the153 153

initial appearance-based clustering, and Section 3.2 discusses our method for effi-154 154

cient geometric verification of the resulting clusters. Section 3.3 explains our SfM155 155

scheme, and Section 3.4 explains our stereo fusion that leverages the appearance-156 156

based clustering for dense 3D model generation.157 157

3.1 Appearance-Based Clustering with Small Codes158 158

Similarily to Li et al. [3], we begin by computing a global appearance descriptor159 159

for every image in the dataset. We generate a gist feature [8] for each image by160 160

computing oriented edge responses at three scales (with 8, 8 and 4 orientations,161 161

respectively), aggregated to a 4×4 spatial resolution. To ensure better grouping162 162

of views for our dense reconstruction method, we concatenate the gist with a163 163

subsampled RGB image at 4× 4 spatial resolution. Both the gist and the color164 164

parts of the descriptor are rescaled to have unit norm. The combined descriptor165 165

has 368 dimensions, and it is computed on the 8 GPU cores at a rate of 781Hz3.166 166

The next step is to cluster the gist descriptors to obtain groups of images167 167

consistent in appearance. For efficiency in the clustering we aim at a GPU-based168 168

implementation, given the inherent parallelism in the distance computation of169 169

clustering algorithms like k-means and k-medoids. Since it is impossible to cluster170 170

up to 2.8 million 368-dimensional double-precision vectors in the GPU memory171 171

of 768 MB, we have chosen to compress the descriptors to much shorter binary172 172

strings, such that the Hamming distances between the compressed strings ap-173 173

proximate the distances between the original descriptors. To this end, we have174 174

implemented on the GPU the locality sensitive binary code (LSBC) scheme of175 175

Raginsky and Lazebnik [10], in which the ith bit of the code for a descriptor176 176

vector x is given by ϕi(x) = sgn[cos(x · ri + bi) + ti], where r ∼ Normal(0, γI),177 177

bi ∼ Unif[0, 2π], and ti ∼ Unif[−1, 1] are randomly chosen code parameters.178 178

As shown in [10], as the number of bits in the code increases, the normal-179 179

ized Hamming distance (i.e., Hamming distance divided by code length) be-180 180

tween two binary strings ϕ(x) and ϕ(y) approximates (1 − K(x,y))/2, where181 181

K(x,y) = e−γ‖x−y‖2/2 is a Gaussian kernel between x and y. We have compared182 182

the LSBC scheme with a simple locality sensitive hashing (LSH) scheme for unit183 183

norm vectors where the ith bit of the code is given by sgn(x · ri) [9]. As shown184 184

in the recall-precision plots in Figure 2, LSBC does a better job of preserving185 185

the distance relationships of our descriptors.186 186

We have found that γ = 4.0 works well for our data, and that the code length187 187

of 512 offers the best tradeoff between approximation accuracy and memory188 188

3 code in preparation for release
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Fig. 2. Comparison of LSH coding scheme [9] and LSBC [10] scheme with different set-
tings for γ and code size on Rome data (left) and Berlin data (right). These phots show
the recall and precision of nearest-neighbor search with Hamming distance on binary
codes for retrieving the “true” k nearest neighbors according to Euclidean distance on
the original gist features (k is our average cluster size, 28 for Rome and 26 for Berlin).
For our chosen code size of 512, the LSBC scheme with γ = 4 outperforms LSH.

Fig. 3. Images closest to the center of one cluster from Rome.

usage. To give an idea of the memory savings afforded by this scheme, at 32189 189

bytes per dimension, each original descriptor takes up 11,776 bytes, while the190 190

corresponding binary vector takes up only 64 bytes, thus achieving a compression191 191

factor of 184. With this amount of compression, we can cluster up to about192 192

4 million images on our memory budget of 768 MB, vs. only a few hundred193 193

thousand images in the original GIST representation. An example of a gist cluster194 194

is shown in Figure 3.195 195

For clustering the binary codevectors with the Hamming distance, we have196 196

implemented the k-medoids algorithm [12] on the GPU. Like k-means, k-medoids197 197

alternates between updating cluster centers and cluster assignments, but unlike198 198

k-means, it forces each cluster center to be an element of the dataset. For every199 199

iteration, we compute the Hamming distance matrix between the binary codes200 200

of all images and those that correspond to the medoids. Due to the size of the201 201
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dataset and number of cluster centers, this distance matrix must be computed202 202

piecewise, as it would require roughly 1050 GB to store on the GPU.203 203

A generally open problem for clustering in general is how to initialize the204 204

cluster centers, as the initialization can have a big effect on the end results. We205 205

found that images with available geo-location information (typically 10 − 15%206 206

of our city-scale datasets) provide a good sampling of the points of interest (see207 207

Figure 4). Thus, we first cluster the codevectors of images with available geo-208 208

location into kgeo clusters initialized randomly. Then we use the resulting centers209 209

together with additional krand random centers to initialize the clustering of the210 210

complete dataset (in all our experiments kgeo = krand). From Table 2 it can211 211

be seen that we gain about 20% more geometrically consistent images by this212 212

initialization strategy.213 213

Fig. 4. Geo-tag density map for Rome (left) and Berlin (right).

3.2 Geometric Verification214 214

The clusters obtained in the previous step consist of images that are visually215 215

similar but may be geometrically and semantically inconsistent. Since our goal216 216

is to reconstruct scenes with stable 3D structure, we next enforce geometric217 217

consistency for images within a cluster. A cluster is deemed to be consistent if it218 218

has at least n images with a valid pairwise epipolar geometry. This is determined219 219

by selecting an initial subset of n images (those closest to the cluster medoid) and220 220

estimating the two-view geometry of all the pairs in this subset while requiring221 221

at least m inliers (in all our experiments we use n = 4, m = 18). Inconsistent222 222

images within the subset are replaced by others until n valid images are found,223 223

or all cluster images are exhausted and the cluster is rejected.224 224

The computation of two-view epipolar geometry is performed as follows. We225 225

extract SIFT features [27] using an efficient GPU implementation,4 processing226 226

1024 × 768 images at up to 16.8 Hz on a single GPU. In the interest of com-227 227

putational efficiency and memory bandwidth, we limit the number of features228 228

4 http://www.cs.unc.edu/ ccwu/siftgpu
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Fig. 5. The geometrically verified cluster showing the Coliseum in Rome.

extracted to 4000 per image. Next, we calculate the putative SIFT matches for229 229

each image pair. This computationally demanding process (which could take a230 230

few seconds per pair on the CPU) is cast as a matrix multiplication problem231 231

on multiple GPUs (with a speedup of three orders of magnitude to 740 Hz),232 232

followed a subsequent distance ratio test [27] to identify likely correspondences.233 233

The putative matches are verified by estimation of the fundamental matrix234 234

with the 7-point algorithm [28] and ARRSAC [13], which is a robust estimation235 235

framework designed for efficient real-time operation. For small inlier ratios, even236 236

ARRSAC significantly degrades in performance. However, we have observed that237 237

of all registered images in the three datasets a significant fraction had inlier238 238

ratios above 50% (e.g., for San Marco, this fraction is 72%). We use this to239 239

our advantage by limiting the maximum number of tested hypotheses to 400 in240 240

ARRSAC, which corresponds to inlier ratio of approximately 50%. To improve241 241

registration performance, we take the best solution deemed promising by the242 242

SPRT test of ARRSAC, and perform a post hoc refinement procedure. The latter243 243

enables us to recover a significant fraction of solutions with less than 50% inlier244 244

ratio. Comparing the number of registered images by the standard ARRSAC and245 245

the number of images registered by our modified procedure shows a loss of less246 246

than 3% for Rome and less than 5% for Berlin of registered images while having247 247

an approximately two- to five-fold gain in speed. This result makes intuitive248 248

sense: it has been observed [18, 3] that community photo collections contain a249 249

tremendous amount of viewpoint overlap and redundancy, which is particularly250 250

pronounced at the scale at which we operate.251 251

We choose a representative or “iconic” image for each verified cluster as the252 252

image with the most inliers to the other n− 1 top images. Afterwards all other253 253

cluster images are only verified with respect to the iconic image. Our system254 254

processes all the appearance-based clusters independently using 16 threads on 8255 255

CPU cores and 8 GPU cores. In particular, the process of putative matching is256 256

distributed over multiple GPUs, while the robust estimation of the fundamental257 257

matrix utilizes the CPU cores. This enables effective utilization of all available258 258

computing resources and gives a significant speedup to about 480 Hz verification259 259

rate an example is shown in Figure 5260 260

If user provided geo-tags are available (all our city datasets have between10%261 261

and 15% geo-tagged images) we use them to geo-locate the clusters. Our geo-262 262

location evaluates the pairwise distances of all geo-tagged image in the iconic263 263

cluster. Then it performs a weighted voting on the locations of all images within a264 264
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spatial proximity of the most central image as defined by the pairwise distances.265 265

This typically provides a geo-location for about two thirds of the iconic clusters.266 266

3.3 Local Iconic Scene Graph Reconstruction267 267

After identifying the geometrically consistent clusters, we need to establish pair-268 268

wise relationships between the iconics. Li et al. [3] introduced the iconic scene269 269

graph to encode these relationships. We use the same concept but identify mul-270 270

tiple local iconic scene graphs corresponding to the multiple geographic sites271 271

within each dataset. This keeps the complexity low despite the fact that our sets272 272

of iconics are comparable in size to the entire datasets of [3].273 273

We experimented with two different schemes for efficiently obtaining can-274 274

didate iconic pairs for geometric verification. The first scheme is applicable in275 275

the absence of any geo-location. It is based on building a vocabulary tree index276 276

for the SIFT features of the iconics, and using each iconic to query for related277 277

images. The drawback of this scheme is that the mapping of the vocabulary278 278

tree has to be rebuilt specifically for each set of iconics, imposing a significant279 279

overhead on the computation. The second scheme avoids this overhead by using280 280

geo-location of iconic clusters. In this scheme, the candidate pairs are defined281 281

as all pairs within a certain distance s of each other (in all our experiments set282 282

to s = 150 m). As for the iconics lacking geo-location, they are linked to their283 283

l-nearest neighbors (l = 10 in all experiments) in the binarized gist descriptor284 284

space (the distance computation uses GPU-based nearest-neighbor searh as in285 285

the k-medoids clustering). We have found this second scheme to be more effi-286 286

cient whenever geo-location is available for a sufficient fraction of the iconics (as287 287

in our Rome and Berlin datasets). For both schemes, all the candidate iconic288 288

pairs are geometrically verified as described in Section 3.2, and the pairs with a289 289

valid epipolar geometry are connected by an edge. Each connected set of iconics290 290

obtained in this way is a local iconic scene graph, usually corresponding to a291 291

distinct geographic site in a city.292 292

Next, each local iconic scene graph is processed independently to obtain a293 293

camera registration and a sparse 3D point cloud using an incremental approach.294 294

The algorithm picks the pair of iconic images whose epipolar geometry given by295 295

the essential matrix (computed as similarly to Section 3.2) has the highest inlier296 296

number and delivers a sufficiently low reconstruction uncertainty, as computed297 297

by the criterion of [29]. Obtaining a metric two-view reconstruction requires a298 298

known camera calibration, which we either obtain from the EXIF-data of the299 299

iconics (there are 34% EXIF based calibrations for the Berlin dataset and 40%300 300

for Rome),or alternatively we approximate the calibration by assuming a popular301 301

viewing angle for the camera model. The latter estimate typically approximates302 302

the true focal length within the error bounds of successfully executing the five-303 303

point method [30]. To limit drift after inserting i new iconics, the 3D sub-model304 304

and camera parameters are optimized by a sparse bundle adjustment [31]. The305 305

particular choice of i is not critical and in all our experiments we use i = 50. If306 306

no new images can be registered into the current sub-model, the process starts307 307
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afresh by picking the next best pair of iconics not yet registered to any sub-308 308

model. Note that we intentionally construct multiple sub-models that may share309 309

some images. We use these images to merge newly completed sub-models with310 310

existing ones whenever sufficient 3D matches exist. The merging step again uses311 311

ARRSAC [32] to robustly estimate a similarity transformation based on the312 312

identified 3D matches.313 313

In the last stage of the incremental reconstruction algorithm, we complete the314 314

model by incorporating non-iconic images from iconic clusters of the registered315 315

iconics. This process takes advantage of the feature matches between the non-316 316

iconic images and their respective iconics known from the geometric verification317 317

(Section 3.2). The 2D matches between the image and its iconic determine 2D-318 318

3D correspondences between the image and the 3D model into which the iconic319 319

is registered, and ARRSAC is once again used to determine the camera pose.320 320

Detailed results of our 3D reconstruction algorithm are shown in Figure 6, and321 321

timings in Table 1.322 322

3.4 Dense geometry estimation323 323

Once the camera poses have been recovered, the next step is to recover the324 324

surface of the scene, represented as a polygonal mesh, and to reconstruct the325 325

surface color represented as a texture map. We use a two-phase approach for326 326

surface reconstruction: first, recover depthmaps for a select number of images,327 327

and second, fuse the depthmaps into a final surface model.328 328

One of the major challenges of stereo from Internet photo collections is ap-329 329

pearance variation. Previous approaches [4, 33] take great care to select compat-330 330

ible views for stereo matching. We use the clustering approach from Section 3.1331 331

to cluster all images registered in the local iconic scene graph. Since our gist332 332

descriptor encodes color, the resulting clusters are color-consistent. The avail-333 333

ability of color-consistent images within a spatially confined area enables us to334 334

use traditional stereo methods and makes dense reconstruction a simpler task335 335

than might othewise be thought. We use a GPU-accelerated plane sweep stereo336 336

[34] with a 3×3 normalized cross-correlation matching kernel. Our stereo deploys337 337

20 matching views, and handles occlusions (and other outliers) through taking338 338

the best 50% of views per pixel as suggested in [35]. We have found that within339 339

a set of 20 views, non-identical views provide a sufficient baseline for accurate340 340

depth computation.341 341

We adapted the vertical heightmap approach of [36] for depthmap fusion to342 342

handle geometrically more complex scenes. This method is intended to compute343 343

a watertight approximate surface model. The approach assumes that the verti-344 344

cal direction of the scene is known beforehand. For community photo collections,345 345

this direction can be easily obtained using the approach of [37] based on the as-346 346

sumption that most photographers will keep the camera’s x-axis perpendicular347 347

the vertical direction. The heightmap is computed by constructing an occupancy348 348

grid over a volume of interest. All points below the heightmap surface are con-349 349

sidered full and all points above are considered empty. Each vertical column of350 350

the grid is computed independently. For each vertical column, occupancy votes351 351
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Gist & SIFT & Local iconic
Dataset Clustering Geom. verification scene graph Dense total time

Rome & geo 1:35 hrs 11:36 hrs 8:35 hrs 1:58 hrs 23:53 hrs
Berlin & geo 1:30 hrs 11:46 hrs 7:03 hrs 0:58 hrs 21:58 hrs
San Marco 0:03 hrs 0:24 hrs 0:32 hrs 0:07 hrs 1:06 hrs

Table 1. Computation times (hh:mm hrs) for the photo collection reconstruction for
the Rome dataset using geo-tags, the Berlin dataset with geo-tags, and the San Marco
dataset without geo-tags.

LSBC #images
Dataset total clusters iconics verified 3D models largest model

Rome & geo 2,884,653 100, 000 21,651 306788 63905 5671
Rome 2,884,653 100, 000 17874 249689 - -
Berlin & geo 2,771,966 100, 000 14664 124317 31190 3158
San Marco 44, 229 4,429 890 13604 1488 721

Table 2. Image sizes for the the Rome dataset, the Berlin dataset, and the San Marco
dataset.

are accumulated from the depthmaps. Points between the camera center and the352 352

depth value receive empty votes, and points beyond the depth value receive a353 353

full vote with a weight that falls off with distance. Then a height value is deter-354 354

mined that minimizes the number of empty votes above and the number of full355 355

votes below. Our extension is to allow the approach to have multiple connected356 356

“segments” within the column, which provides higher quality mesh models while357 357

maintaining the regularization properties of the original approach. A polygonal358 358

mesh is then extracted from the heightmap and texture maps are generated from359 359

the color images. The heightmap model is highly robust to noise and it can be360 360

computed very efficiently on the GPU.361 361

The resolution of the height map is determined by the median camera-to-362 362

point distance which is representative of the scale of the scene and the accuracy363 363

of the depth measurements. The texture of the mesh models is then computed as364 364

the mean of all images observing the geometry. Runtimes are provided in Table365 365

1.366 366

4 Conclusions367 367

This paper demonstrated the first system able to deliver dense geometry for368 368

Internet scale photo collections with millions of images of an entire city within369 369

the span of a day on a single PC. Our novel methods extend to the scale of370 370

millions of images state-of-the-art methods for appearance-based clustering [3],371 371

robust estimation [32], and stereo fusion [36]. To successfully handle reconstruc-372 372

tion problems of this magnitude, we have incorporated novel system components373 373

for clustering of small codes, geo-location of iconic images through their clus-374 374

ters, efficient incremental model merging, and enhanced stereo view selection375 375
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through appearance-based clustering. Beyond making algorithmic changes, we376 376

significantly improve performance by leveraging the constraints from appearance377 377

clustering and location independence to parallelize the processing on modern378 378

multi-core CPUs and commodity graphics cards.379 379
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Fig. 6. Original images, local iconic scene graph and 3D model.


