
Fast Robust Large-scale Mapping from Video and

Internet Photo Collections

Jan-Michael Frahma, Marc Pollefeysb,a, Svetlana Lazebnika, David Gallupa,
Brian Clippa, Rahul Ragurama, Changchang Wua, Christopher Zachb, Tim

Johnsona

aUniversity of North Carolina at Chapel Hill, NC, USA
bEidgenössische Technische Hochschule Zürich

Abstract

This paper presents a system approaching fully automatic 3D modeling of

large-scale environments. Our system takes as input either a video stream

or collection of photographs obtained from Internet photo sharing web-sites

such as Flickr. The system achieves high computational performance through

algorithmic optimizations for efficient robust estimation, the use of image-

based recognition for efficient grouping of similar images, and two-stage stereo

estimation for video streams that reduces the computational cost while main-

taining competitive modeling results. In addition to algorithmic advances,

we achieve a major improvement in computational speed through paralleliza-

tion and execution on commodity graphics hardware. These improvements

lead to real-time video processing and to reconstruction from tens of thou-

sands of images within the span of a day on a single commodity computer.

We demonstrate modeling results on a variety of real-world video sequences

and photo collections.

Keywords: 3D modeling from video, 3D registration video, camera

registration photo collections

Preprint submitted to ISPRS August 7, 2010



Figure 1: Left: an overview model of Chapel Hill reconstructed from 1.3 million video

frames on a single PC in 11.5 hours. Right: a model of the Statue of Liberty consisting

of 9025 cameras registered out of 47238 images downloaded from the Internet.

1. Introduction

Fully automatic modeling of large-scale environments has been a long-

standing research goal in photogrammetry and computer vision. Detailed 3D

models automatically acquired from the real world have many uses including

civil and military planning, mapping, virtual tourism, games, and movies.

Recently, mapping systems like Microsoft Bing Maps and Google Earth have

started to use 3D models of cities in their visualizations. These systems

achieve impressive results for modeling large areas with regular updates,

but they still have many limitations. Namely, they require a human in the

loop for delivering models of reasonable quality; the models have a very low

complexity and do not provide enough detail for ground-level viewing; the

availability of the models is restricted to only a small number of cities across

the globe.

In this paper we present a computational framework that points the

2



way towards the next generation of fully automatic 3D urban visualization

systems that will quickly and cheaply produce detailed 3D models of all

the world’s cities from ground-level images. We have developed modeling

pipelines for unorganized photo collections and video sequences that achieve

efficiency through parallel implementation on commodity graphics hardware,

and, more importantly, through algorithmic improvements at every major

stage. For large photo collections, efficient appearance-based clustering al-

lows popular or “iconic” views to be identified, and the dataset to be broken

into small closely related parts. The parts are then processed and merged,

allowing tens of thousands of photos to be registered into a unified 3D model.

Analogously, for videos, loop detection finds intersections in the camera path,

which reduces drift for long sequences and allows multiple videos to be reg-

istered.

In this paper we will review the details of our system and present 3D

models of large areas reconstructed from thousands to millions of images

(see Figure 1 for a model from 1.3 million video frames). These models are

produced with state-of-the-art computational efficiency, and are competitive

with the state of the art in quality.

2. Overview

The processing pipelines for both types of input (video and still images)

share most of the same algorithmic components, although some adaptation

is required to account for different characteristics of the data sources. In this

section we will briefly discuss these characteristics and then introduce the

main system components.

3



Our system for 30 Hz real-time reconstruction from video uses as input

the video streams of multiple cameras mounted on a vehicle. The system ex-

ploits the temporal order of the video, which implies spatial coherence among

adjacent frames, to efficiently perform camera motion tracking and dense ge-

ometry computation. While our system can operate from video alone, to

reduce the accumulated error (drift) it deploys additional sensors, such as

differential GPS and an inertial sensor (INS) to provide absolute registration

to the Earth’s coordinate system with bounded errors. It efficiently fuses the

GPS, INS and camera measurements into an absolute camera position and

orientation.

In contrast to video, Internet photo collections are unordered. More-

over, they contain a high number of “outlier” photos that do not share a

rigid geometry with the images of the scene. These images are often misla-

beled images from the database, artistic renderings, or parodies of famous

landmarks (Figure 2). To quantify the proportion of unrelated images in

Internet photo collections, we labeled a random subset for three downloaded

datasets. Besides the dataset for the Statue of Liberty (47238 images with

approximately 40% outliers) we downloaded two more datasets by search-

ing for “San Marco” (45322 images with approximately 60 % outliers) and

“Notre Dame” (11928 images with approximately 49% outliers). The iconic

clustering employed by our system can efficiently handle such high outlier

ratios, which is essential for modeling from large Internet photo collections.

Note that the systems presented in this paper are purely image-based, in

contrast to approaches combining cameras and active range scanners. For

example, Früh and Zakhor [1] have proposed a mobile system mounted on a

4



Figure 2: Images downloaded form the the Internet by searching for “Statue of Liberty”,

which do not represent the Statue of Liberty in New York.

vehicle to capture large amounts of data while driving in urban environments.

Earlier systems by Stamos and Allen [2] and El-Hakim et al. [3] constrained

the scanning laser to be in a few pre-determined viewpoints. In contrast

to the comparatively expensive active systems, our approach for real-time

reconstruction uses only cameras, leveraging the methodology developed by

the computer vision community within the last two decades [4, 5].

Despite the differences in the input data, the algorithmic structure for

processing is common. Algorithm 1 gives an overview of our workflow, and

each proecessing task is summarized as follows:

• Local correspondence estimation establishes correspondences be-

tween salient feature points in neighboring views. In the case of video,

feature correspondences are determined through KLT-tracking on the

5



GPU with simultaneous estimation of the camera gain factor, or lin-

ear amplification of the measured light intensity (Section 4.1.1). For

photo collections, our system first finds neighboring views for each im-

age through clustering of global image descriptors (Section 4.4.1) and

then uses local SIFT features [6], which are robust to larger viewpoint

changes, for detailed verification (Section 4.1).

• Camera pose/motion estimation from local correspondences is ro-

bustly performed through ARRSAC, an efficient RANSAC technique

(Section 4.1.2). It determines the inlier correspondences and the cam-

era poses with respect to the previous images. In the case when GPS

and INS data is available, our system uses the local correspondences to

perform sensor fusion with the GPS and INS data (Section 4.1.3).

• Global correspondence estimation is performed to enable global

drift correction. This step searches for overlapping viewpoints beyond

the temporal neighbors in video and beyond the appearance-based clus-

ters for photo collections (Section 4.2).

• Bundle adjustment uses the global correspondences to reduce the

accumulated drift of the camera registrations from the local camera

pose estimates (Section 4.3).

• Dense geometry estimation for video streams is performed in real

time to extract the depth of all pixels from the camera (Section 5). Our

system uses a two-stage estimation strategy. First we use efficient GPU-

based multi-view stereo to determine the depth map for every frame.

6



Then we use the temporal redundancy of the stereo estimations to filter

out erroneous depth estimates and fuse the correct depth estimates.

• Model extraction is performed to obtain a triangular mesh repre-

senting the scene from the depth maps (Section 6).

The next section will survey the relevant literature for the above sys-

tem components. Section 4.1 will introduce our algorithm for real-time 3D

reconstruction from video. Section 4.4 will detail the adaptations that are

necessary to improve efficiency in reconstruction from unstructured photo

collections. Finally, Sections 5 and 6 will describe algorithms for creating

dense stereo reconstructions and polygonal models from video streams.

3. Related Work

In the last few years, there has been considerable progress in the area

of large-scale urban reconstruction from video, aerial data, and Internet

photo collections. Systems for urban reconstruction from video were pro-

posed in [7, 8, 9, 10]. Most of these systems have partially relied on a human

in the loop or expensive capture equipment and, except our own previous

work [10], did not achieve fast reconstruction. Vergauwen et al. [11] intro-

duced the first web-based automatic reconstruction system from small image

collections of uncalibrated cameras. To achieve fast processing and efficient

visualization, Cornelis et al. [12] proposed to model facades as ruled surfaces

parallel to the gravity vector. One of the first works to demonstrate 3D recon-

struction of landmarks from Internet photo collections is the Photo Tourism

system [13]. This system achieved high-quality reconstruction results with

7



the help of exhaustive pairwise image matching and global bundle adjustment

after inserting each new view. Unfortunately, this process becomes very com-

putationally expensive for large data sets, and it is particularly inefficient for

heavily contaminated collections. To improve the performance, Snavely et

al. [14] find skeletal sets of images from the collection whose reconstruction

provided a good approximation to a reconstruction involving all the images.

One remaining limitation of this work was that it still required the exhaustive

computation of all two-view relationships in the dataset. Agarwal et al. [15]

parallelized the two-view computations using a computing cluster with up

to 500 cores to reduce the computation time significantly. Similarly to our

system, they used image retrieval techniques like approximate nearest neigh-

bor search [16] and query expansion [17] to reduce the number of candidate

relations.

A number of other image retrieval techniques can potentially be used to

identify spatially related images. Sivic and Zisserman [18] have introduced a

method to find similar images within a video using region-based features and

statistical text retrieval methods. Chum et al. [19] have proposed a method to

deploy local 2D geometric information jointly with region features to obtain a

reliable indexing and retrieval within large image collections. Their method

achieved very low false positive rates for retrieval and high robustness to

occlusions. In contrast to these methods, ours avoids expensive initial local

feature extraction.

The efficiency of our system is made possible by a hierarchical reconstruc-

tion approach starting from a set of canonical or iconic views [20, 21, 22, 23]

representing salient viewpoints and parts of the scene. Simon et al. [22] have

8



observed that community photo collections provide a likelihood distribution

over the viewpoints from which people prefer to take photographs. Hence,

canonical view selection identifies prominent clusters or modes of this dis-

tribution. Simon et al. found these modes by clustering images based on

the output of 3D registration of the data. While this solution is effective, it

is computationally expensive, and it treated scene summarization as a by-

product of 3D reconstruction. By contrast, we view summarization as an

image organization step that precedes 3D reconstruction, and we find iconic

images using relatively simple 2D appearance-based techniques.

After discussing the above modeling systems we now discuss prior work

on the main system components described in the previous section in more

detail.

The first step in our systems is to establish local correspondences be-

tween adjacent video frames or different images in the photo collection. For

video data we use our extended KLT tracker [24] that exploits the inherent

parallelism of the tracking problem on the GPU [25]. In the case of Internet

photo collections, we do not have a natural linear ordering of images imposed

by frame order in a video sequence. Instead, starting with the heavily con-

taminated output of an Internet image search query, we have to extract the

subsets of images that observe common 3D scene structure. Note that this

problem is related to dataset collection [26, 27] for general visual categories

not necessarily characterized by rigid 3D structure. We use 2D appearance

descriptors to initially identify groups of related images, followed by SIFT

matching [6] to establish the local correspondences within each group of re-

lated images.

9



After establishing the local correspondences, our system uses them to

register cameras. In general, there are two classes of methods for determining

the camera pose. The first class leverages the work in multiple view geometry

and typically alternates between robustly estimating camera poses and 3D

point locations directly [28, 29]. Often bundle adjustment [30] is used in the

process to refine the estimate. In [31], a technique for out-of-core bundle-

adjustment is proposed, which locally optimizes tightly connected groups of

images and then combines the local solutions into a global one. The other

class of methods uses an extended Kalman filter to estimate both camera

motion and 3D point locations jointly as the state of the filter [32, 33]. Our

system uses the first class of methods for photo collections and for video-

only reconstructions. If GPS or INS data are available, we use an Extended

Kalman Filter to optimally fuse the data as described in more detail in [10].

In the case of video, for which a dense stream of viewpoints under similar

lighting conditions is available, we perform dense stereo to compute a 3D

mesh representation of the scene. We refer the reader to [34, 35] for surveys

of binocular and multiple-view stereo algorithms. Our system extends the

method of Collins [36] to dense geometry estimation on the GPU as pro-

posed by Yang and Pollefeys [37]. Many approaches that specifically target

urban environments use the fact that they predominantly consist of planar

surfaces [38, 39, 40], or even more strict orthogonality constraints [41]. While

our stereo computation can efficiently leverage the constraints provided by

an urban scene it is in no sense limited to the reconstruction of urban scene as

other systems are [38, 39, 40, 41]. To ensure computational feasibility, large-

scale systems generate partial reconstructions, which are afterwards merged

10



into a common model. Our method identifies and resolves conflicts and er-

rors in the partial reconstructions during the merging process as described in

[42]. Koch et al. [43] have presented a volumetric approach for fusion as part

of an uncalibrated 3D modeling system while most approaches so far target

data produced by range finders, where noise levels and the fraction of outliers

are typically significantly lower than those of passive stereo [44, 45, 46].

Although our system does not currently address dense stereo for photo

collections, we will discuss the related work in this area. This problem is

often termed wide-baseline stereo, since the baseline between photographs

tends to be much larger than the baseline between video frames. Furukawa

and Ponce [47] present a patch-based multi-view stereo method, and Vu et al.

[48] present a tetrahedral graph method followed by variational refinement.

Both these works start with highly confident feature matches and proceed to

fully dense meshes. The multi-view stereo benchmark of Strecha et al. [49]

evaluates these and other wide-baseline multi-view stereo methods and finds

their accuracy to be comparable to laser scanners. The preceding approaches

assume either known intrinsic and radiometric calibration, known extrinsic

calibration, or both. For internet photo collections, these assumptions do not

hold. Images downloaded from the web exhibit variations due to the camera

response function, color processing algorithms, exposure settings, time of

day and season. Goesele et al. [50] showed that multi-view stereo is possible

despite these variations by using the large number of available images to find

views compatible for matching. Wide-baseline multi-view stereo for internet

photo collections is still in its infancy, and existing methods do not approach

real-time performance.

11



Finally, we should note that our work does not address the temporal

aspect of urban modeling, namely, the fact that cities evolve over time. In-

troducing this aspect is a challenging long-term research direction. One of

the preliminary works to this end is the 4D Atlanta project of Schindler et

al. [51, 52].

4. Camera Pose Estimation

In this section we discuss the methods used for camera registration in our

system. First, Section 4.1 will discuss camera registration methods for video

sequences, which take advantage of the known temporal relationships of the

video frames. Second, in Section 4.4 we discuss the extension of camera

registration to unordered Internet photo collections.

4.1. Camera Pose from Video

Reconstructing the structure of a scene from images begins with find-

ing corresponding features between pairs of images. In a video sequence we

can take advantage of the temporal ordering and small camera motion be-

tween frames to speed up correspondence finding. This allows our system

to treat the local correspondence estimation as a tracking problem (Section

4.1.1). Then the local correspondences are used to estimate the camera

motion through our recently proposed efficient adaptive real-time random

sampling consensus method (ARRSAC) [53] (Section 4.1.2). This process

uses the essential matrix of an initial camera pair to bootstrap the camera

pose. For all further frames, the three point method [54] is used to perform

camera pose estimation. Alternatively, if GPS and inertial measurements are

available, the camera motion is estimated through a Kalman filter, efficiently

12



fusing visual correspondences and the six degree-of-freedom (DOF) camera

poses, as discussed in Section 4.1.3.

4.1.1. Local Correspondences

The Kanade-Lucas-Tomasi feature tracking method [24, 55] is a differen-

tial method that first finds strong corner features in a video frame, which

are then tracked using a linearization of the image gradients over a small

window around the feature. To overcome the limitations of requiring sub-

pixel motion, a scale space approach is used based on an image pyramid. If

a feature’s motion is more than a pixel at the finest scale we can still track

it because its motion will be less than one pixel at a coarser image scale.

Building image pyramids and tracking features are both highly parallel

operations and so can be programmed efficiently on the graphics processor

(GPU). Building an image pyramid is simply a series of convolution oper-

ations with Gaussian blur kernels followed by downsampling. Differential

tracking can be implemented in parallel by assigning each feature to track to

a separate processor. By tracking on the order of 1024 features from frame

to frame in a 1024x768 image, we can achieve a high degree of parallelism.

One remaining limitation of standard KLT tracking is that it uses the

absolute difference between the windows of pixels in two images to calculate

the feature track update. When a large change in intensity occurs between

frames, this can cause the tracking to fail. This happens frequently in videos

shot outdoors when the camera moves from light into shadow for example.

Kim et al. in [56] developed a gain adaptive KLT tracker that measures the

change in mean intensity of all the tracked features and compensates for this

change in the KLT update equations. Zach et al. [25] then modified this

13



algorithm to make it amenable to the GPU.

4.1.2. Robust Pose Estimation

A significant proportion of the estimated local correspondences are typi-

cally erroneous. To determine the correct camera position we apply a Ran-

dom Sample Consensus (RANSAC) algorithm [57] to estimate the relative

camera motion through the essential matrix [58]. Note that essential ma-

trix estimation requires the knowledge of the camera calibration, which is

given for our video processing. For the case of photo collections, we com-

pute the camera calibration from the EXIF data of the camera if available.

Alternatively, we initialize the calibration through a typical viewing angle.

While both of these heuristics only roughly approximate the calibration, the

approximation typically ends up well within the error margin allowed for a

successful essential matrix estimation [58]. Later the approximate camera

calibrations are refined in the bundle adjustment step (Section 4.3).

While being highly robust, the RANSAC algorithm can also be compu-

tationally very expensive, with a runtime that is exponential in outlier ratio

and model complexity. Our recently proposed Adaptive Real-Time Random

Sample Consensus (ARRSAC) algorithm [53] is capable of providing accu-

rate real-time estimation over a wide range of inlier ratios. ARRSAC moves

away from the traditional hypothesize-and-verify framework of RANSAC by

adopting a more parallel approach, along the lines of preemptive RANSAC

[59]. However, while preemptive RANSAC makes the limiting assumption

that a good estimate of the inlier ratio is available beforehand, ARRSAC is

capable of efficiently adapting to the contamination level of the data, result-

ing in big computational savings.

14



In real-time scenarios, the goal of a robust estimation algorithm is to de-

liver the best possible solution within a fixed time-budget. While a parallel,

or breadth-first, approach is indeed a natural formulation for real-time appli-

cations, adapting the number of hypotheses to the contamination level of the

data requires an estimate of the inlier ratio, which necessitates the adoption

of a depth-first scan. The ARRSAC framework retains the benefits of both

approaches (i.e., bounded run-time as well as adaptivity) by operating in a

partially depth-first manner.

The performance of ARRSAC was evaluated on synthetic and real data,

over a wide range of inlier ratios and dataset sizes. From the results in [53], it

can be seen that the ARRSAC approach produces significant computational

speedups, while simultaneously providing accurate robust estimation in real

time. For the case of epipolar geometry estimation, for instance, ARRSAC

operates with estimation speeds ranging between 55-350 Hz, which represent

speedups ranging from 11.1 to 305.7 compared to RANSAC.

4.1.3. Camera Pose Estimation through Fusion

In some instances, we may have not only images or video data, but also

geo-location or orientation information. This additional information can be

derived from global positioning system (GPS) sensors as well as inertial nav-

igation systems (INS) containing accelerometers and gyroscopes. We can

combine data from these sensors with image correspondences to get a more

accurate pose than we can get with vision or geo-location/orientation alone.

In order to fuse image correspondences with other types of sensor mea-

surements we must normalize all of the measurements so that they have

comparable units. For example, without doing this normalization one can-

15



not compare pixels of reprojection error with meters of error relative to a

GPS measurement. Our sensor fusion approach, first described in [10], fuses

measurements from a GPS/INS unit with image correspondences using an

extended Kalman filter (EKF). Our EKF maintains a state which is a map

with the current camera pose, velocity and rotation rate as well as 3D features

which correspond to features extracted and tracked from image to image in

a video. The EKF uses a smooth motion model to predict the next camera

pose. Then the system performs an update of the current camera pose and

3D feature measurements based on the difference between the predicted and

measured feature measurements and GPS/INS measurements.

These corrections are weighted both by the EKF’s estimate of its certainty

of the camera pose and 3D points (its covariance matrix) and a measurement

error model for the sensors. For the feature measurements we assume the

presence of additive Gaussian noise. For the GPS/INS measurements we

assume a Gaussian distribution of rotation errors and use a constant bias

model for the position error. The Gaussian distribution of rotation error is

justified by the fact that the GPS/INS we use gives us post processed data

with extremely high accuracy and precision. However, due to multi-path

error (for example), the position error was seen to occasionally grow when

the vehicle was stationary, as shown in Figure 3. Using the constant bias

model for position error, the features could correct the estimate of the vehicle

position to be stationary in the case of GPS/INS erroneously reporting a

vertical motion of 10 cm.

16



Figure 3: Correction of GPS and INS track through fusion with local correspondences.

The top shows a view on compensated 3D camera path (green) and measured GPS and

INS path (blue). Each camera is shown through its 3D coordinate frame located at the

optical center of the camera. Note the camera is not moving between frame 790 (bottom

left) and frame 987 (bottom right) as shown through the two vertical lines. The erroneous

GPS track reports a 10 cm vertical motion.

17



4.2. Global Correspondences

Since our system registers cameras sequentially, in the absence of GPS the

obtained registrations are always subject to drift. Each small inaccuracy in

motion estimation will propagate forward and the absolute positions and mo-

tions will be inaccurate. It is therefore necessary to do a global optimization

step afterwards using constraints that are capable of removing drift. Such

constraints can come from internal consistencies like loops and intersections

of the camera path. In this section we will therefore discuss solutions to the

challenging task of detecting loops and intersections.

Registering the camera with respect to the previously estimated path pro-

vides an estimate of the accumulated drift error. For robustness, the path

self-intersection detection can only rely on the views themselves and not

on the estimated camera motion, which can drift unbounded. Our method

determines the path intersection by evaluating the similarity of SIFT fea-

tures [6] in the current frame to all features in all previous views. We use

our SIFT-GPU implementation1, which can extract SIFT features at 12Hz

from 1024 × 768 images on an NVidia GTX280. To enhance robustness for

video streams, we could also use our view-invariant VIP-features [60].

To avoid exhaustive search within all other frames, we use vocabulary

tree indexing [61] to efficiently find a small set of potentially corresponding

views. The vocabulary tree quantizes feature vectors to discrete visual words

and indexes the visual words with an inverted file. Determining the visual

words for the features extracted from the query image requires traversal of

1Available online: http://cs.unc.edu/∼ccwu/siftgpu/

18



the vocabulary tree for each extracted feature in the current view. At each

tree node, the query feature must be compared to the node descriptors. The

features from the query image are handled independently, hence the tree

traversal can be performed in parallel for each feature.

To achieve a 20 times speedup, we employ a CUDA-based approach exe-

cuted on the GPU. This allows to perform more descriptor comparisons than

in [61], i.e. a deeper tree with a smaller branching factor can be replaced by

a shallower tree with a significantly higher number of branches. As pointed

out in [62], a broader tree yields a more uniform and therefore representative

sampling of the high-dimensional descriptor space. To further increase the

performance of the above described global correspondence search we use our

recently proposed index compression method [63].

Since the vocabulary tree only delivers a list of previous views that po-

tentially overlap with the current view, we perform a geometric verification

of each potential match. First, we generate putative matches on the GPU by

structuring the feature matching process as a matrix multiplication between

large and dense matrices. Our approach thus consists of a call to dense matrix

multiplication in the CUBLAS 2 library with subsequent instructions to ap-

ply the distance ratio test [6]. Afterwards the potential correspondences are

tested for a valid two-view relationship between the views through ARRSAC,

as described in Section 4.1.2.

2http://developer.download.nvidia.com/compute/cuda/1 0/CUBLAS Library 1.0.pdf

19



4.3. Bundle Adjustment

Since the initial sparse model is subject to drift due to the incremental na-

ture of the estimation process, the reprojection error of the global correspon-

dences is typically higher than that of the local correspondences. In order to

obtain results with the highest possible accuracy, an additional refinement

procedure, generally referred to as bundle adjustment, is necessary. It is a

non-linear optimization method that incorporates all available knowledge—

initial camera parameters and poses, image correspondences and optionally

other known applicable constraints — and minimizes a global error criterion

over a large set of adjustable parameters, including the camera poses, the 3D

structure, and optionally the intrinsic calibration parameters. In our system,

bundle adjustment delivers 3D models with sub-pixel accuracy, e.g., an ini-

tial mean reprojection error in the order of pixels is typically reduced to 0.2

or even 0.1 pixels. Thus, the estimated two-view geometry is better aligned

with the actual image features, and dense 3D models show a significantly

higher precision. The major challenges with a bundle adjustment approach

are the huge numbers of variables in the optimization problem and (to a lesser

extent) the non-linearity and non-convexity of the objective function. The

first issue is addressed by sparse representation of matrices and by utilizing

appropriate numerical methods. Sparse techniques are still an active research

topic in the computer vision and photogrammetry community [64, 65]. Our

implementation of sparse bundle adjustment3 largely follows [64] by utilizing

sparse Cholesky decomposition methods in combination with a suitable col-

3available in source at http://cs.unc.edu/∼cmzach/opensource.html

20



umn reordering scheme [66]. For large data sets this is considerably faster

than a bundle adjustment implementation using dense matrix factorization

combined with the Schur complement (e.g. [67]).

Our implementation requires less than 20 minutes to perform full bundle

adjustment on a 1700 image data set, which amounts to 0.7 sec per image.

For video sequences, the bundle adjustment can be performed incrementally,

adjusting only the most recently computed poses (typically in the order of

5 to 20 cameras) with respect to the existing already-adjusted camera path.

This allows bundle adjustment to run in real time, although with slightly

higher error than a full offline bundle adjustment.

This bundle adjustment technique is also used extensively by our system

for processing photo collections as described below.

4.4. Camera Pose from Image Collections

This section introduces the extension of the methods described in Section

4.1 to accommodate Internet photo collections. The main difference from the

case of video, where the temporal order of video frames implies a spatial re-

lationship between the corresponding cameras, photo collections downloaded

from the Internet do not have any intrinsic ordering. Moreover, these col-

lections tend to be highly contaminated with outliers. Hence, in contrast to

video, we first need to establish the spatial relationship between the images.

In principle, we can use feature-based indexing techniques with loose spatial

verification [68, 69] to detect related frames within the photo collection –

or techniques similar to our global correspondence search for loop detection

(Section 4.2). However, we are able to obtain an even more efficient solution

by taking advantage of the redundancy inherent in Internet photo collec-

21



tions, stemming the tendency of people to take pictures from very similar

viewpoints and with very similar compositions. Namely, we cluster images

based on global features prior to indexing based on local features. We then

enforce multi-view geometry constraints on these clusters, which reduces the

complexity by orders of magnitude over exhaustive pairwise image matching.

4.4.1. Efficiently Finding Corresponding Images in Photo Collections

To efficiently identify related images, our system uses the gist feature [70],

which encodes the spatial layout and perceptual properties of the image. The

gist feature was found to be effective for retrieving structurally similar scenes

[71, 72]. To achieve high computational performance, we developed a parallel

gist feature extraction on the GPU. It derives a gist descriptor for each image

as the concatenation of two independently computed sub-vectors. The first

sub-vector is computed by convolving a downsampled to 128× 128 grayscale

version of the image with Gabor filters at 3 different scales (with 8, 8 and

4 orientations for the three scales, respectively). The filter responses are

aggregated to a 4 × 4 spatial resolution, downsampling each convolution to

a 4 × 4 patch, and concatenating the results, yielding a 320-dimensional

vector. In addition, we augment this gist descriptor with color information,

consisting of a subsampled L*a*b image, at 4×4 spatial resolution. We thus

obtain a 368-dimensional vector as a representation of each image in the

dataset. The implementation on the GPU improves the computation time

by a factor of 100 compared to a CPU implementation. For detailed timings

of the gist computation, please see Table 1.

In the next step we use the fact that photos from nearby viewpoints with

similar camera orientation have similar gist descriptors. Hence, to identify

22



viewpoint clusters we use k-means clustering of the gist descriptors. At

this point we aim for an over-segmentation since that will best reduce our

computational complexity. We empirically found that searching for 10% as

many clusters as images yields a sufficient over-segmentation. As shown by

Table 1 the clustering of the gist descriptors can be executed very efficiently.

This is key to the overall efficiency of our system since this early grouping

allows us to limit all further geometric verifications and to avoid an exhaustive

search over the whole dataset.

The clustering step successfully identifies the popular viewpoints in the

dataset, although it is sensitive to image variation such as clutter (people in

front of the camera), lighting conditions, and camera zoom. We found that

large clusters are typically almost outlier-free (Figure 4), while the smaller

clusters have significantly more noise and contamination. The clusters now

define a loose grouping of the dataset, where we expect corresponding im-

ages to lie in the same cluster. The next step will employ this grouping to

efficiently identify images with overlapping viewpoints, as well as the outlier

images on a per-cluster basis using the same techniques as in the case of

video streams (Section 4.1.2).

4.4.2. Iconic Image Registration

While gist clusters define local relationships between images, our method

still needs to establish a global relationship between the clusters. To facilitate

efficient registration, we want to find a representative or iconic image for each

cluster of views. We can then remove irrelevant images by enforcing a valid

two-view geometry with respect to the iconic for each image in the cluster.

Given the large feature motion in photo collections, similarly to the global

23



Figure 4: A large gist cluster for the Statue of Liberty dataset. We show the hundred

images closest to the cluster mean. The effectiveness of the low-dimensional gist represen-

tation can be gauged by noting that even without enforcing geometric consistency, these

clusters display a remarkable degree of structural similarity.

correspondence computation in Section 4.2, we use SIFT features [6], putative

correspondence estimation on the GPU and ARRSAC (Section 4.1.2) for two-

view geometry estimation to determine the local correspondences between

the images. To achieve robustness to degenerate data, we combine ARRSAC

with our robust model selection method, dubbed QDEGSAC [73].

Our method first finds the triplet of views with mutually valid two-view

relationships whose gist descriptors are the closest to the gist cluster center.

The image with the highest number of inliers in this set is then selected as the

iconic image of the cluster. This choice ensures later the highest number of

possible matches to register cluster images to the iconics. Then all remaining

images in the cluster are tested for a valid two-view relationship to the iconic

(images having less than 18 inliers to the iconic are rejected). After this

geometric verification, each cluster only contains images showing the same

scene, and each cluster is visually represented by its iconic image.

Through evaluation, we have found that a lot of images rejected in the

cluster verification stage are still related to the scene of interest. We cluster

24



these left-over images to look for additional iconics, and attempt to match all

unregistered images to the five iconic images nearest to them in gist space.

Quantitative evaluation with hand-labeled images has shown that the re-

clustering step increases the recall of images belonging to the landmark by

about 20%.

4.4.3. Global Registration Using the Iconic Scene Graph

After using the clusters to establish local image relationships and to re-

move unrelated images, the next step is to establish a global relationship of

the images. For efficiency reasons, we use the small number of iconic im-

ages to bootstrap the global registration for all images. We first compute

the exhaustive pairwise two-view relationships for all iconics using ARRSAC

(Section 4.1.2). This defines a graph of pairwise global relationships between

the different iconics, which is called the iconic scene graph. The edges of the

graph have a weight corresponding to the number of mutual matches between

the images.

Next, our system performs an incremental structure from motion process

using the iconic scene graph to obtain a registration for the iconic images.

First an initial image pair is selected, which has sufficiently accurate reg-

istration as defined by the roundness of the uncertainty ellipsoids of the

triangulated 3D points [74]. Then the remaining pairs are added by selecting

the image with the next strongest set of correspondences until no further

iconic can be added to the 3D model. This gives the 3D sub-model for the

component of the iconic scene graph corresponding to the initially selected

pair, which is then refined by bundle adjustment as described in Section 4.3.

Typically the iconic scene graph contains multiple independent or weakly

25



connected components. These components may correspond to parts of the

scene that have no visual connection to the other parts, interior parts of the

model, or other scenes consistently mislabeled (for example, Ellis Island is

often labeled as “Statue of Liberty”, as shown in Figure 8). Hence we repeat

the 3D modeling until all images are registered or none of the remaining

images has any connections to any of the 3D sub-models.

To obtain more complete 3D sub-models than is possible through regis-

tering the iconics, our system searches for non-iconic images that support a

matching for the iconics in two different clusters. Once a sufficient number of

connections is identified between two clusters, our method uses all constraints

provided by the matches to merge the two sub-models to which the clusters

belong. The merging estimates the similarity transformation between the

sub-models until no more additional merges are possible.

4.4.4. Registration of Non-Iconic Images

After the registration of the iconic images, we have a valid global registra-

tion for the images of the iconic scene graph. In the last step we extend the

registration to all images in the clusters corresponding to the registered icon-

ics. This process takes advantage of feature matches between the non-iconic

images and their respective iconics. It uses the 2D matches to the iconic to

determine the 2D-3D correspondences for the image and applies ARRSAC.

Given the incremental nature of this process, drift inherently accumulates.

Hence we periodically apply bundle adjustment to perform a global error

correction. In our current system, bundle adjustment is performed after 25

images have been added to a sub-model saving significant computational

resources while keeping the accumulated error at a reasonable level.

26



5. Dense Geometry

The above described methods for video and for photo collections provide

a registration for the camera poses, or external and internal camera calibra-

tions for every image in the scene. The knowledge of camera parameters can

be used to generate an image-based browsing experience for Internet photo

collections, as shown by the “PhotoTourism” paper [75, 13]. Camera regis-

tration can also be used as input to dense stereo methods. Dense stereo for

Internet photo collections is currently a very difficult research problem due

to the irregular distribution of camera viewpoints, wide variation in lighting

conditions, and the lack of photometric camera calibration [76]. One initial

method is that of [50], and it requires significant computational effort and

can only be applied on a small scale. We have not yet attempted efficient

large-scale estimation of dense geometry from Internet photo collections, but

we have developed a real-time large-scale stereo system for video streams.

We adopt a stereo/fusion approach for dense geometry reconstruction.

For every frame of video, a depth map is generated using a real-time GPU-

based multi-view plane-sweep stereo algorithm. The plane-sweep algorithm,

comprised primarily of image warping operations, is highly efficient on the

GPU [56]. Since it is multi-view, it is quite robust and can handle occlusions,

a major problem in stereo. The stereo depth maps are then fused using a

visibility-based fusion method, which also runs on the GPU [77]. The fusion

method removes outliers from the depth maps, and also combines depth

estimates to enhance their accuracy. Given the redundancy in video (each

surface is imaged multiple times), fused depth maps only need to be produced

for a subset of the video frames. This reduces processing time as well as the

27



3D model size as discussed in Section 6.

The plane-sweep stereo algorithm [36] computes a depth map by testing

a family of plane hypotheses, and for each pixel recording the distance to

the plane with the best photo-consistency score. One view is designated as

reference, and a depth map is computed for that view. The remaining views

are designated as matching views. For each plane, all matching views are

back-projected onto the plane, and then projected into the reference view.

This mapping, known as a plane homography [5], can be performed very

efficiently on the GPU. Once the matching views are warped, the sum of

absolute differences (SAD) is computed to score the photo-consistency for

each pixel using a small evaluation window around the pixel. To handle

occlusions, the matching views are divided into a left and right subset, and

the best matching score of the subsets is kept [78]. Before the difference

is computed, the image intensities are multiplied by the relative exposure

(gain) computed during KLT tracking (Section 4.1.1). The stereo algorithm

can produce a 512×384 depth map from 11 images (10 matching, 1 reference)

and 48 plane hypotheses at a rate of 42 Hz on an Nvidia GTX 280.

After depth maps have been computed, a fused map is computed for a

reference view using the surrounding stereo depth maps [42]. All points from

the depth maps are projected into the reference view, and for each pixel

the point with the highest stereo confidence is chosen. Stereo confidence is

computed based on the matching scores from the plane sweep:

C(x) =
∑
π 6=π0

e−(SAD(x,π)−SAD(x,π0))2 (1)

where x is the pixel in question, π is a plane from the plane sweep, and π0 is

the best plane chosen by the plane sweep. This confidence measure prefers

28



Figure 5: Our depth map fusion method combines multiple stereo depth maps (middle

image shows an example depth map) to produce a single fused depth map (shown on the

right) with greater accuracy and less redundancy.

depth estimates with low uncertainty, where the matching score is much lower

than scores for all other planes. For each pixel, after the most confident point

is chosen, it is scored according to mutual support, free-space violations, and

occlusions. Supporting points are those that fall within 5% of the chosen

point’s depth value. Occlusions are caused by points that would make the

chosen point invisible in the reference view, and free-space violations are

points that are made invisible in some other view by the chosen point. If

the number of occlusions and free-space violations exceeds the number of

support points, the chosen point is discarded and the depth value is marked

as invalid. Valid points, are replaced with a new point computed as the

average of the chosen point and support points. See Figure 5.

Currently our dense geometry method is used only for video. The tem-

poral sequence of the video makes it easy to select nearby views for stereo

matching and depth map fusion. For photo collections, a view selection

strategy would be needed that identifies views with similar content and com-

patible appearance (day, night, summer, winter, etc.). This is left as future

work.

29



6. Model Extraction

Once a fused depth map has been computed, the next step is to convert it

to a texture-mapped 3D polygonal mesh. This can be done by overlaying the

depth map image with a quadrilateral mesh, and assigning the 3D coordinate

of each vertex to the 3D position given by the depth map. The mesh can also

be texture-mapped with the color image for the corresponding depth map.

However, a number of improvements can be made.

First, depth discontinuities must be detected to prevent the mesh from

joining discontinuous foreground and background objects. We simply use a

threshold on the magnitude of the depth gradient to determine if a mesh edge

can be created between two vertices. Afterwards, connected components with

a small number of vertices are discarded.

Second, we discard surfaces that have already been reconstructed in pre-

vious fused depth maps. The surface reconstructed from the previous fused

depth map in the video sequence is projected into the current depth map.

Any vertices that fall within threshold of the previous surface are marked

as invalid. Their neighboring vertices are then adjusted to coincide with the

edge of the previous surface to prevent any cracks.

Third, the mesh is simplified by hierarchically merging neighboring quadri-

laterals that are nearly co-planar. Actually, we use a top-down approach. We

start with a single quadrilateral spanning the whole depth map. If the dis-

tance to the quadrilaters of any of its contained points is greater than a

threshold, the quadrilateral is split. This is repeated recursively, until ev-

ery quadrilateral faithfully represents its underlying points. The splitting is

performed along the longest direction or at random if the quadrilateral is

30



Original Mesh Simplified Mesh Textured Mesh

Figure 6: Models are extracted from the fused depthmaps.

square. This method represents planar and quasi-planar surfaces with fewer

polygons and greatly reduces the size of the output models (Figure 6).

7. Results

This section summarizes the results of our system for the two different in-

put sources. Figure 7 shows several examples of dense modeling from videos.

The typical surface modeling errors of the dense 3D geometry are in the order

of 3 cm to 6 cm with completeness rates of 66% to 83%. A more detailed

evaluation of the performance can be found in [79].

Example reconstructions for the three photo collections introduced in

Section 2 are shown in Figures 8-9. Additionally, in Figure 8 we show a

separate site model of a the nearby museum on Ellis Island. This model is

the result of consistent mislabeling by the users.

Figure 10 shows a quantitative evaluation of the performance of each of

the successive modeling stages of our approach for the San Marco scene. The

other two scenes have a comparable behavior. Performance is measured in

31



Figure 7: Several 3D models reconstructed from video sequences.

32



terms of recall (i.e., out of all the “positive” landmark images in the dataset,

how many are incorporated into the iconic representation at the given stage)

and precision (out of all the images currently incorporated, what proportion

are “positive” landmark images). Stage 1 in this Figure 10 corresponds to

ranking images based on the size of their gist clusters. Precision starts off

very high for the few largest clusters, but drops off rapidly for the smaller

clusters. The geometric verification step (Section 4.4.2),improves the preci-

sion due to the removal of inconsistent clusters (Stage 2a), as does registering

all images to the iconic of their gist cluster (Stage 2b). However, geometric

verification decreases recall due to rejecting positive images not consistent

with the iconic of their cluster. The reclustering and registration stage al-

lows us to incorporate such images into additional iconic clusters, leading to

improved recall (Stage 3). Finally, we also evaluate the results of the tag

filtering proposed in [80] removal of geometrically consistent, but semanti-

cally irrelevant clusters, leading to an additional increase in precision (Stage

4). Thus, every step of our modeling framework is well justified in terms of

increasing either the precision or the recall of the iconic representation. In

the end, we get over 90% precision and 47-64% recall on all datasets. The im-

perfect precision is due to images being registered to semantically irrelevant

iconics.

8. Conclusions

In this paper we have presented methods for real-time reconstruction from

video and for fast reconstruction from Internet photo collections on a single

PC. We demonstrated the computational performance of the methods on a

33



Figure 8: Left: view of the 3D model and the 9025 registered cameras. Right: model from

the interior of “Ellis Island” erroneously labeled as “Statue of Liberty”.

Figure 9: Left: 3D reconstruction of the San Marco Dataset with 10338 cameras. Right:

Reconstruction from the Notre Dame dataset with 1300 registered cameras.

34



Figure 10: Recall/precision curves for the modeling of San Marco. The different stages

correspond to the different stages of our method. Stage 1: Clustering using gist and

ranking each image by the size of its gist cluster (Section 4.4.1). Stage 2a: Geometric

verication of iconics and ranking each image by the inlier number of its iconic (Section

4.4.2). The recall is lower because inconsistent clusters are rejected. Stage 2b: Registering

each image to its iconic and ranking the image by the number of inliers of the two-

view transformation to the iconic (Section 4.4.2). Unlike in the first two stages, images

are no longer arranged by cluster, but ranked individually by this score. The recall is

lower because images with not enough inliers to estimate a two-view transformation are

rejected. Stage 3: Images discarded in the previous stages are subject to a second round

of re-clustering and geometric verifcation (Section 4.4.2). This results in an increase in

recall due to the discovery of additional iconic clusters. Stage 4: Tag information is used

to discard semantically unrelated clusters (described in more detail in [80]). Note the

increase in precision due to the removal of spurious iconics.

35



Dataset G
is

t

G
is

t
cl

u
st

er
in

g

G
eo

m
et

ri
c

R
e-

cl
u
st

er
in

g

re
gi

st
er

ed
v
ie

w
s

to
ta

l
ti

m
e

Liberty 4 min 21 min 3 hr 8 min 3 hr 21 min 13888 6 hr 53 min

SM 4 min 19 min 3 hr 42 min 2. hr 47 min 12253 6 hr 52 min

ND 1 min 3 min 1 hr 19 min 1 hr 2 min 3058 2 hr 25 min

Table 1: Computation times for the photo collection reconstruction for the Statue of Lib-

erty dataset, the San Marco dataset (SM) and the Notre Dame dataset (ND). The Gist

given the computation time for the gist features on GPU from Section 4.4.1, Gist clus-

tering refers to the k-means clustering in Section 4.4.1, Geometric refers to the geometric

verification from Section 4.4.2, and re-clustering measures the time for the re-clustering of

the geometrically inconsistent images..

variety of large-scale datasets. Efficiency was achieved through paralleliza-

tion of many computations involved, enabling an execution on the graphics

card as a highly parallel processor. Additionally, for modeling from Internet

photo collections we combine constraints from recognition with geometric

constraints, leading to image registration that is orders of magnitude more

efficient than that of any existing system.

Acknowledgements:. We would like to acknowledge the DARPA UrbanScape

project, Department of Energy, Navy SPAWAR and NSF Grant IIS-0916829,

as well as our collaborators David Nister, Amir Akbarzadeh, Philippos Mor-

dohai, Paul Merrell, Chris Engels, Henrik Stewenius, Brad Talton, Liang

Wang, Qingxiong Yang, Ruigang Yang, Greg Welch, Herman Towles, Xi-

36



aowei Li.

References

[1] C. Früh, A. Zakhor, An automated method for large-scale, ground-based city

model acquisition, International Journal of Computer Vision 60 (1) (2004)

5–24.

[2] I. Stamos, P. Allen, Geometry and texture recovery of scenes of large scale,

Computer Vision and Image Understanding 88 (2) (2002) 94–118.

[3] S. El-Hakim, J.-A. Beraldin, M. Picard, A. Vettore, Effective 3d modeling of

heritage sites, in: 4th International Conference of 3D Imaging and Modeling,

2003, pp. 302–309.

[4] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint,

MIT Press, 1993.

[5] R. I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,

2nd Edition, Cambridge University Press, 2004.

[6] D. Lowe, Distinctive image features from scale-invariant keypoints, Interna-

tional Journal of Computer Vision 60 (2) (2004) 91–110.

[7] A. Fischer, T. Kolbe, F. Lang, A. Cremers, W. Förstner, L. Plümer, V. Stein-

hage, Extracting buildings from aerial images using hierarchical aggregation

in 2D and 3D, Computer Vision and Image Understanding 72 (2) (1998) 185–

203.

[8] A. Gruen, X. Wang, Cc-modeler: A topology generator for 3-D city models,

ISPRS Journal of Photogrammetry & Remote Sensing 53 (5) (1998) 286–295.

37



[9] Z. Zhu, A. Hanson, E. Riseman, Generalized parallel-perspective stereo mo-

saics from airborne video, IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 26 (2) (2004) 226–237.

[10] M. Pollefeys, D. Nister, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp,

C. Engels, D. Gallup, S.-J. Kim, P. Merrell, C. Salmi, S. Sinha, B. Talton,

L. Wang, Q. Yang, H. Stewenius, R. Yang, G. Welch, H. Towles, Detailed real-

time urban 3D reconstruction from video, International Journal of Computer

Vision 78 (2-3) (2008) 143–167.

[11] M. Vergauwen, L. Van Gool, Web-based 3D reconstruction service, Machine

Vision and Applications 17 (6) (2006) 411–426.

[12] N. Cornelis, K. Cornelis, L. Van Gool, Fast compact city modeling for naviga-

tion pre-visualization, in: IEEE Conference on Computer Vision and Pattern

Recognition, 2006, pp. 1339–1344.

[13] N. Snavely, S. M. Seitz, R. Szeliski, Modeling the world from Internet photo

collections, International Journal of Computer Vision 80 (2) (2008) 189–210.

[14] N. Snavely, S. M. Seitz, R. Szeliski, Skeletal sets for efficient structure from

motion, in: IEEE Conference on Computer Vision and Pattern Recognition,

Electronic Proceedings, 2008.

[15] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, R. Szeliski, Building Rome in

a day, in: International Conference on Computer Vision, Electronic Proceed-

ings, 2009.

[16] S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, An optimal algo-

rithm for approximate nearest neighbor searching fixed dimensions, Journal

of the ACM 45 (6) (1998) 891–923.

38



[17] O. Chum, J. Philbin, J. Sivic, M. Isard, A. Zisserman, Total recall: Auto-

matic query expansion with a generative feature model for object retrieval,

in: International Conference on Computer Vision, 2007, pp. 1–8.

[18] J. Sivic, A. Zisserman, Video google: Efficient visual search of videos, in:

Toward Category-Level Object Recognition, 2006, pp. 127–144.

[19] O. Chum, M. Perdoch, J. Matas, Geometric min-hashing: Finding a (thick)

needle in a haystack, in: IEEE Conference on Computer Vision and Pattern

Recognition, Electronic Proceedings, 2009.

[20] S. Palmer, E. Rosch, P. Chase, Canonical perspective and the perception of

objects, Attention and Performance IX (1981) 135–151.

[21] Y. Jing, S. Baluja, H. Rowley, Canonical image selection from the web, in:

Proceedings of the 6th ACM international Conference on Image and Video

Retrieval, 2007, pp. 280–287.

[22] I. Simon, N. Snavely, S. M. Seitz, Scene summarization for online image col-

lections, in: International Conference on Computer Vision, Electronic Pro-

ceedings, 2007.

[23] T. L. Berg, A. C. Berg, Finding iconic images, in: The 2nd Internet Vision

Workshop at IEEE Conference on Computer Vision and Pattern Recognition,

Electronic Proceedings, 2009.

[24] B. Lucas, T. Kanade, An iterative image registration technique with an ap-

plication to stereo vision, in: International Joint Conference on Artificial

Intelligence, 1981, pp. 674–679.

39



[25] C. Zach, D. Gallup, J. Frahm, Fast gain-adaptive KLT tracking on the GPU,

in: Workshop on Visual Computer Vision on GPUs at IEEE Conference on

Computer Vision and Pattern Recognition, Electronic Proceedings, 2008.

[26] T. L. Berg, D. Forsyth, Automatic ranking of iconic images, Tech. Rep.

UCB/EECS-2007-13, EECS Department, University of California, Berkeley

(Jan 2007).

[27] F. Schroff, A. Criminisi, A. Zisserman, Harvesting image databases from the

web, in: International Conference on Computer Vision, Electronic Proceed-

ings, 2007.

[28] P. Beardsley, A. Zisserman, D. Murray, Sequential updating of projective and

affine structure from motion, International Journal of Computer Vision 23 (3)

(1997) 235–259.

[29] D. Nistér, O. Naroditsky, J. Bergen, Visual odometry for ground vehicle ap-

plications, Journal of Field Robotics 23 (1).

[30] American Society of Photogrammetry, Manual of Photogrammetry (5th edi-

tion), Asprs Pubns, 2004.

[31] K. Ni, D. Steedly, F. Dellaert, Out-of-core bundle adjustment for large-scale

3d reconstruction, in: International Conference on Computer Vision, Elec-

tronic Proceedings, 2007.

[32] A. Azarbayejani, A. Pentland, Recursive estimation of motion, structure, and

focal length, IEEE Transactions on Pattern Analysis and Machine Intelligence

17 (6) (1995) 562–575.

40



[33] S. Soatto, P. Perona, R. Frezza, G. Picci, Recursive motion and structure es-

timation with complete error characterization, in: IEEE Conference on Com-

puter Vision and Pattern Recognition, 1993, pp. 428–433.

[34] D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms, International Journal of Computer Vision

47 (1-3) (2002) 7–42.

[35] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, A comparison

and evaluation of multi-view stereo reconstruction algorithms, in: IEEE Con-

ference on Computer Vision and Pattern Recognition, 2006, pp. 519–528.

[36] R. Collins, A space-sweep approach to true multi-image matching, in: IEEE

Conference on Computer Vision and Pattern Recognition, 1996, pp. 358–363.

[37] R. Yang, M. Pollefeys, Multi-resolution real-time stereo on commodity graph-

ics hardware, in: IEEE Conference on Computer Vision and Pattern Recog-

nition, 2003, pp. 211–217.

[38] T. Werner, A. Zisserman, New techniques for automated architectural recon-

struction from photographs, in: European Conference on Computer Vision,

2002, pp. 541–555.

[39] P. Burt, L. Wixson, G. Salgian, Electronically directed “focal” stereo, in:

International Conference on Computer Vision, 1995, pp. 94–101.

[40] S. N. Sinha, D. Steedly, R. Szeliski, Piecewise planar stereo for image-based

rendering, in: International Conference on Computer Vision, Electronic Pro-

ceedings, 2009.

41



[41] Y. Furukawa, B. Curless, S. M. Seitz, , R. Szeliski, Manhattan-world stereo,

in: IEEE Conference on Computer Vision and Pattern Recognition, Electronic

Proceedings, 2009.

[42] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, R. Yang,

D. Nister, M. Pollefeys, Real-Time Visibility-Based Fusion of Depth Maps,

in: International Conference on Computer Vision, Electronic Proceedings,

2007.

[43] R. Koch, M. Pollefeys, L. Van Gool, Robust calibration and 3d geometric

modeling from large collections of uncalibrated images, in: Pattern Recogni-

tion - DAGM, 1999, pp. 413–420.

[44] G. Turk, M. Levoy, Zippered polygon meshes from range images., in: SIG-

GRAPH, 1994, pp. 311–318.

[45] M. Soucy, D. Laurendeau, A general surface approach to the integration of

a set of range views, IEEE Transactions on Pattern Analysis and Machine

Intelligence 17 (4) (1995) 344–358.

[46] B. Curless, M. Levoy, A volumetric method for building complex models from

range images, SIGGRAPH 30 (1996) 303–312.

[47] Y. Furukawa, J. Ponce, Accurate, dense, and robust multi-view stereopsis, in:

IEEE Conference on Computer Vision and Pattern Recognition, Electronic

Proceedings, 2007.

[48] H.-H. Vu, R. Keriven, P. Labatut, J.-P. Pons, Towards high-resolution large-

scale multi-view stereo, in: IEEE Conference on Computer Vision and Pattern

Recognition, Electronic Proceedings, 2009.

42



[49] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, U. Thoennessen, On bench-

marking camera calibration and multi-view stereo for high resolution imagery,

in: IEEE Conference on Computer Vision and Pattern Recognition, Electronic

Proceedings, 2008.

[50] M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. M. Seitz, Multi-view stereo

for community photo collections, in: International Conference on Computer

Vision, Electronic Proceedings, 2007.

[51] G. Schindler, P. Krishnamurthy, F. Dellaert, Line-based structure from mo-

tion for urban environments, in: 3DPVT, 2006, pp. 846–853.

[52] G. Schindler, F. Dellaert, S. Kang, Inferring temporal order of images from 3d

structure, in: IEEE Conference on Computer Vision and Pattern Recognition,

Electronic Proceedings, 2007.

[53] R. Raguram, J.-M. Frahm, M. Pollefeys, A comparative analysis of RANSAC

techniques leading to adaptive real-time random sample consensus, in: Euro-

pean Conference on Computer Vision, Electronic Proceedings, 2008.

[54] R. Haralick, C. Lee, K. Ottenberg, M. Nollei, Review and analysis of solutions

of the three point perspective pose estimation problem, International Journal

of Computer Vision 13 (1994) 331–356.

[55] J. Shi, C. Tomasi, Good Features to Track, in: IEEE Conference on Computer

Vision and Pattern Recognition, 1994, pp. 593–600.

[56] S. Kim, D. Gallup, J.-M. Frahm, A. Akbarzadeh, Q. Yang, R. Yang, D. Nistér,

M. Pollefeys, Gain adaptive real-time stereo streaming, in: International Con-

ference on Vision Systems, Electronic Proceedings, 2007.

43



[57] M. Fischler, R. Bolles, Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography, Com-

munications of the ACM 24 (6) (1981) 381–395.

[58] D. Nistér, An efficient solution to the five-point relative pose problem, IEEE

Transactions on Pattern Analysis and Machine Intelligence 26 (6) (2004) 756–

777.

[59] D. Nister, Preemptive RANSAC for live structure and motion estimation, in:

International Conference Computer Vision, 2003, p. 199.

[60] C. Wu, F. Fraundorfer, J.-M. Frahm, M. Pollefeys, 3d model search and pose

estimation from single images using vip features, in: Search in 3D Workshop

at IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp.

1–8.

[61] D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in: IEEE

Conference on Computer Vision and Pattern Recognition, 2006, pp. 2161–

2168.

[62] G. Schindler, M. Brown, R. Szeliski, City-scale location recognition, in: IEEE

Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–7.

[63] A. Irschara, C. Zach, J.-M. Frahm, H. Bischof, From structure-from-motion

point clouds to fast location recognition, in: IEEE Conference on Computer

Vision and Pattern Recognition, 2009, pp. 2599–2606.

[64] F. Dellaert, M. Kaess, Square root SAM: Simultaneous location and mapping

via square root information smoothing, International Journal of Robotics Re-

search 25 (12) (2006) 1181–1203.

44



[65] M. Kaess, A. Ranganathan, F. Dellaert, iSAM: Incremental smoothing and

mapping, IEEE Transactions on Robotics 24 (6) (2008) 1365–1378.

[66] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, A column approximate min-

imum degree ordering algorithm, ACM Transactions on Mathematical Soft-

ware 30 (3) (2004) 353–376.

[67] M. Lourakis, A. Argyros, SBA: A software package for generic sparse bundle

adjustment, ACM Transactions on Mathematical Software 36 (1) (2009) 1–30.

[68] J. Philbin, A. Zisserman, Object mining using a matching graph on very large

image collections, in: Proceedings of the Indian Conference on Computer

Vision, Graphics and Image Processing, 2008, pp. 738–745.

[69] Y.-T. Zheng, M. Zhao, Y. Song, H. Adam, U. Buddemeier, A. Bissacco,

F. Brucher, T.-S. Chua, H. Neven, Tour the world: Building a web-scale

landmark recognition engine, in: IEEE Conference on Computer Vision and

Pattern Recognition, Electronic Proceedings, 2009.

[70] A. Oliva, A. Torralba, Modeling the shape of the scene: a holistic representa-

tion of the spatial envelope, International Journal of Computer Vision 42 (3)

(2001) 145–175.

[71] J. Hays, A. A. Efros, Scene completion using millions of photographs, ACM

Transactions on Graphics 26 (1) (2007) 87–94.

[72] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, C. Schmid, Evaluation of

gist descriptors for web-scale image search, in: International Conference on

Image and Video Retrieval, 2009, pp. 1–8.

45



[73] J.-M. Frahm, M. Pollefeys, RANSAC for (quasi-) degenerate data

(QDEGSAC), in: IEEE Conference on Computer Vision and Pattern Recog-

nition, Vol. 1, 2006, pp. 453–460.

[74] C. Beder, R. Steffen, Determining an initial image pair for fixing the scale of a

3d reconstruction from an image sequence, in: Pattern Recognition - DAGM,

2006, pp. 657–666.

[75] N. Snavely, S. M. Seitz, R. Szeliski, Photo tourism: Exploring photo collec-

tions in 3d, in: SIGGRAPH, 2006, pp. 835–846.

[76] S. J. Kim, J.-M. Frahm, M. Pollefeys, Joint feature tracking and radiometric

calibration from auto-exposure video, in: International Conference Computer

Vision, Electronic Proceedings, 2007.

[77] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, R. Yang,

D. Nister, M. Pollefeys, Real-time visibility-based fusion of depth maps, in:

International Conference on Computer Vision, 2007, pp. 1–8.

[78] S. Kang, R. Szeliski, J. Chai, Handling occlusions in dense multi-view stereo,

in: IEEE Conference on Computer Vision and Pattern Recognition, 2001, pp.

103–110.

[79] P. Merrell, P. Mordohai, J.-M. Frahm, M. Pollefeys, Evaluation of large scale

scene reconstruction, in: VRML Workshop at International Conference Com-

puter Vision, 2007, pp. 1–8.

[80] X. Li, C. Wu, C. Zach, S. Lazebnik, J.-M. Frahm, Modeling and recogni-

tion of landmark image collections using iconic scene graphs, in: European

Conference on Computer Vision, 2008, pp. 427–440.

46



Algorithm 1 Reconstruction Scheme

if images then

Compute global image descriptor for all images

Cluster global image descriptors to obtain appearance clusters (representing

viewpoints) defining the spatial neighbors

end if

for all images/frames do

Local correspondence estimation based on salient image features with

immediate spatial neighbors

Camera pose/motion estimation from local feature correspondences

end for

for all registered images/frames do

Global Correspondence estimation based on salient image features to

non-neighbors to identify path intersections and overlaps not initially found

Bundle Adjustment for global error mitigation using the global and local

correspondences

end for

for all frames in video do

Dense geometry estimation using stereo and depth map fusion

Model extraction

end for

47


