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Abstract—This paper describes an approach for mobile robot
localization using a visual word based place recognition approach.
In our approach we exploit the benefits of a stereo camera system
for place recognition. Visual words computed from SIFT features
are combined with VIP (viewpoint invariant patches) features
that use depth information from the stereo setup. The approach
was evaluated under the ImageCLEF@ICPR 2010 competition'.
The results achieved on the competition datasets are published
in this paper.

I. INTRODUCTION

The ImageCLEF@ICPR 2010 competition was established
to provided a common testbed for vision based mobile robot
localization, to be able to evaluate different approaches against
each other. For the competition image datasets of a realistic
indoor scenario were created and manually labeled to get
ground truth data. The mobile robot was equipped with a
stereo vision system, that generates an image pair for each
location instead of a single image only. This availability of
image pairs from a stereo vision system allowed us to design
an approach that combines monocular and stereo vision cues.
The approach we designed is based on a place recognition
system using visual words [1], [2]. For one part visual words
are computed from SIFT features [3] as the monocular cue. As
the other cue we use visual words computed from viewpoint
invariant patches (VIP) [4]. For the extraction of VIP features
the local geometry of the scene needs to be known. In our
case we compute dense stereo from the stereo system and
use the depthmap for VIP feature extraction. Both sets of
features are combined and used as visual description of the
location. The approach has already been evaluated and the
scores achieved in the competition are given in this paper.
Additionally, recognition rates on the validation competition
datasets (which was used to prepare for the competition) are
given, which demonstrate the excellent performance of our
method by achieving 98% correct localization.

II. RELATED WORK
Our visual word based place recognition system is related
to [1], [2] where a similar technique was used for image
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competition.

1051-4651/10 $26.00 © 2010 IEEE
DOI 10.1109/ICPR.2010.955

3927

retrieval. It is also related to FABMAP [5], a visual word based
approach to robot localization. However, FABMAP focuses
on a probabilistic framework to identify matching locations,
whereas we do a two-stage approach of visual ranking and
geometric verification. The proposed geometric verification
takes the planar motion constraints of a mobile robot into
account. It is also related to [6], however they use a different
technique of quantizing local features into visual words.

VIP features were firstly described in [4] and used for
registration of 3D models. The local geometry was computed
using a monocular structure-from-motion algorithm. In our
approach we compute VIP features from a stereo system and
use them for mobile robot localization the first time.

III. SIFT AND VIP FEATURES FOR PLACE RECOGNITION

The availability of depthmaps for every image pair of a
stereo video sequence makes it possible to use viewpoint in-
variant patches (VIP). VIP’s are image features extracted from
images that are rectified with respect to the local geometry
of the scene. The rectified texture can be seen as an ortho-
texture of the 3D model which is viewpoint independent. This
ortho-texture is computed using the depthmap from the stereo
system. This rectification step, which is the essential part of
this concept delivers robustness to changes of viewpoint. We
then determine the salient feature points of the ortho-textures
and extract the feature description. For this the well known
SIFT-features and their associated descriptor [3] is used. The
SIFT-features are then transformed to a set of VIPs, made up
of the features 3D position, patch scale, surface normal, local
gradient orientation in the patch plane, in addition to the SIFT
descriptor. Fig. 1 illustrates this concept. The original feature
patches are the lower left and right patches, as seen from the
gray and green camera. Rectification is performed by changing
the viewpoints to the red cameras, so that the camera’s image
plane is parallel to the features scene plane. This results in the
rectified VIP patches which are the center patches. It can be
seen, that because of the rectification the VIP patches overlap
perfectly.

Because of their viewpoint invariance, VIP features are a
perfect choice for place recognition. For place recognition VIP
features can be used instead of SIFT features from the original
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Fig. 1. Two corresponding viewpoint invariant patches (VIPs). The lower
left and right patches are the original feature patches, while the center patches
are the rectified VIP patches (see text for details).

images or in addition to SIFT features (this is beneficial if the
local geometry cannot be computed for the whole sequence).
With view point invariant features place recognition will be
possible with even large view point changes.

A. Extraction of VIP features

The first step of VIP feature extraction is the computation of
a dense depth map from an image pair. This is done by scanline
based stereo using dynamic programming [7]. As similarity
measure the sum-of-absolute-differences (SAD) within a 9 x 9
pixel window is used. The next step is the detection of scene
planes in the 3D point data from the depthmap. The final step
is to transform the detected scene planes into an orthographic
view, extract SIFT features from the rectified planes and
transform them to VIP’s by adding additional information
about the 3D scene.

I'V. PLACE RECOGNITION AND VERIFICATION

Robot localization can be phrased as a place recognition
problem as described in [8]. The camera path is split up into
distinct locations and the visual appearance of each location is
described by visual features. A database of the environment is
created holding the visual appearance of each location together
with the actual coordinates of the location, and a label is
assigned to each location. On performing global localization
the current view of the robot is compared to all views in the
database. The location with the most similar appearance is
returned and the robot now knows its location up to the accu-
racy of the stored locations. For an efficient database search a
visual word based approach is used. The approach quantizes
a high-dimensional feature vector (in our case SIFT and VIP)
by means of hierarchical k-means clustering, resulting in a so
called hierarchical vocabulary tree. The quantization assigns
a single integer value, called a visual word, to the originally
high-dimensional feature vector. This results in a very compact
image representation, where each location is represented by
a list of visual words, each only of integer size. The list
of visual words from one location forms a document vector
which is a v-dimensional vector where v is the number of
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Fig. 2. TIllustration of the visual place recognition system. A query image
is represented by a query document vector (a set of visual words). A query
works by computing the Lo-distance between the query document vector and
all the document vectors in a database which represent the stored images,
i.e. places. The Lo-distance is used as similarity score and is in the range of
[0,2]. A similarity score close to zero stands for a very similar image, while
a similarity score close to 2 stands for a different image. The computation of
the similarity score is using an inverted file structure for efficiency.

possible visual words (a typical choice would be v = 10). The
document vector is a histogram of visual words normalized to
1. To compute the similarity matrix the Lo distance between
all document vectors is calculated. The document vectors are
naturally very sparse and the organization of the database as
an inverted file structure makes this very efficient. This scheme
is illustrated in Fig. 2.

In our case robot localization is a 2-stage approach. First
a similarity ranking is performed using the visual words,
afterwards a geometric verification step tests the top-n results.
Geometric verification is a very powerful cue. For each
visual word the 2D image coordinates are stored, too. This
makes it possible to compute the epipolar geometry between
each database image and the query image. Only results that
fulfill this epipolar constraint are considered. The geometric
verification is passed if the number of inliers that fulfill the
epipolar geometry is higher than a threshold ¢. To compute
the epipolar geometry we use the planar 3-pt algorithm [9].
This algorithm assumes that the robot is moving in a plane
and is therefore more efficient than an unconstrained motion
estimation algorithm.

V. EVALUATION

The evaluation of the algorithm was done within the frame-
work of the ImageCLEF@ICPR 2010 Robotvision competi-
tion. The Robotvision competition consisted of two indepen-
dent tasks for place recognition, taskl and rask2. Taskl was
conducted in a large office environment, which was divided
into 13 distinct areas, which got different labels assigned. The
goal for the robot was, to answer the question in which area
it is given an input image, by assigning the correct label to



the input image. For the competition, labeled image data was
provided for training and validation and an unlabeled data set
(testing) on which the competition was carried out. After the
competition the ground truth labels for the festing set were
released to the participants. The data sets were acquired with
a stereo set consisting of two Prosilica GC1380C cameras
mounted on a MobileRobots PowerBot robot platform. For
the two training sets training_easy and training_hard the
robot was driven through the environment and the captured
images were labeled with the area code. The training_easy
set consists of more images and more viewpoints than the
training_hard set. The validation set comes from a run through
the environment at a different time and was also labeled. Both
training sets and also the validation set include only 9 of the 13
areas. With the use of a stereo system an image pair is available
for each location which allows the use of depth information.
However this was not required in the competition. The goal of
taskl was to label each image pair of the festing set with the
correct area code. The festing set consists of 2551 image pairs
taken at a different time and includes all 13 areas. This means
that the 4 areas not included in the training sets needed to be
labeled as "Unknown area”. For taskl each image pair had
to be labeled independently without using knowledge from
the labeling of the previous image pair. Task2, an optional
task, was very similar to faskl, however here it was possible
to include sequential information into the labeling. Thus this
task2 is considerably easier than faskl.

In the following we will present and discuss the recognition
rates on the validation set and compare it to the ground
truth and give the score achieved on the festing set in the
competition. Table I shows the results on the validation set
(2392 images) where ground truth data as labels is available.
We measured recognition scores using standard scoring and
standard scoring with geometric verification on both training
sets. For the recognition score we compare the label of the top-
ranked image (denoted as standard scoring) with the ground
truth label and compute the number of correctly labeled
images. For geometric verification the top-50 images from
standard scoring get re-ranked according to the number of
inliers to the epipolar constraint. Using the training_easy set
the recognition rate with standard scoring was 96% and this
number increased to 98% with geometric scoring. For the
training_hard set the recognition rate with standard scoring
was 87%. This number increased to 92% with subsequent
geometric verification. Interestingly the recognition rates with
standard scoring are already very high, geometric verification
seems to give only a small improvement. However, only after
geometric verification can one be sure that the database image
really matches the query image. Standard scoring provides a
ranking but the similarity measure does not guarantee that the
top ranked image is really the matching one, e.g. if the query
image is not in the database at all.

Table II shows the competition scores achieved on the
testing set. The score is computed as follows:

o +1.0 points for a correctly classified image (includes the

correct detection of an unknown location).

Elevator

Corridor

SmallOffice2

LargeOfficel LargeOffice2

i
StudentOffice Lab
Fig. 3.

PrinterArea

Example images of the 9 classes in the training sets.

e -0.5 points for a misclassified image
¢ 0 points for an image that was not classified

The maximal achievable score would be 5102 points as
the sum of the two 2551 points for each of the individual
training sets. The top-10 ranked images are used for geometric
verification. Image matches with less than 50 inlier matches
were classified as "Unknown” location. We denote this param-
eterization as the ”Competition method”. Every image of the
database was classified to either an area or the “Unknown”
class, the option of refraining from a decision was not used.
Table III shows the recognition rates for each individual class
of the testing set. The table shows that some classes seem to
be easier (100% recognition rate for the "Lab” class) while
others seem to be harder. The table also confirms that the
”Unknown” class is troublesome for our method, which has
low recognition rates.

Finally we would like to give some runtime measurements
from a 2.4GHz Intel Quadcore. An individual localization
using standard scoring will take 26.4ms (including feature
quantization into visual words). "Competition scoring” with
geometric verification is currently taking 1.5s. Here the feature
matching is not optimized and takes most of the time. Exclud-
ing the runtime for feature matching leaves 53.5ms for local-
ization with epipolar geometry verification. Feature matching
can easily be speeded up by using proper datastructures, e.g.
a kd-tree [3], so that realtime speed can be achieved with this
approach.

Method training_easy  training_hard

standard scoring 0.96 0.87

geometric verification 0.98 0.92
TABLE I

RECOGNITION SCORES FOR THE VALIDATION SET WITH THE DIFFERENT
TRAINING SETS AND METHODS.
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training_easy  training_hard ~ combined score
task1 2047 1777 3824

TABLE II
COMPETITION SCORES (WITH "COMPETITION METHOD”) FOR TASK1.

Class training_easy  training_hard
Full set 0.80 0.70
Elevator 0.97 0.98
Corridor 0.96 0.86
Kitchen 0.99 0.96
LargeOfficel 0.93 0.63
LargeOffice2 0.96 0.83
SmallOffice2 0.99 0.94
StudentOffice 0.73 0.62
Lab 1.00 1.00
PrinterArea 0.99 0.64
Unknown 0.56 0.65
TABLE IIT

RECOGNITION SCORES (WITH "COMPETITION METHOD”’) FOR THE
INDIVIDUAL CLASSES AND THE FULL SET ON THE TESTING SET.

VI. CONCLUSION

The ImageCLEF@ICPR 2010 competition provides a chal-
lenging dataset to evaluate different methods for robot local-
ization. The use of a stereo camera as imaging system for the
robot allowed us to combine monocular and stereo cues for
robot localization.

Our approach achieves high recognition rates (e.g. 98% on
the validation), which signals that the proposed approach is
reliable enough to be used in practice. To foster the use of
this approach we made the code for the visual word based
similarity ranking publicly available?.
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