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Abstract

This paper introduces a fast approach for automatic
dense large scale 3D urban reconstruction from video. The
presented system uses a novel multi-view depthmap fusion
algorithm where the surface is represented by a heightmap.
Whereas most other systems attempt to produce true 3D sur-
faces, our simplified model can be called a 2.5D represen-
tation. While this model seems to be a more natural fit to
aerial and satellite data, we have found it to also be a pow-
erful representation for ground-level reconstructions. It has
the advantage of producing purely vertical facades, and it
also yields a continuous surface without holes. Compared
to more general 3D reconstruction methods, our algorithm
is more efficient, uses less memory, and produces more com-
pact models at the expense of losing some detail. Our GPU
implementation can compute a 200 x 200 heightmap from
64 depthmaps in just 92 milliseconds. We demonstrate our
system on a variety of challenging ground-level datasets in-
cluding large buildings, residential houses, and store front
facades obtaining clean, complete, compact, and visually
pleasing 3D models.

1. Introduction

Automatic large-scale 3D reconstruction of urban en-
vironments from ground reconnaissance video or active
sensors like LiDAR is a very active research topic on
the intersection of computer vision and computer graph-
ics [2, 3, 7, 15, 13]. The applications of these techniques
are very broad from augmenting maps like in Google Earth
or Microsoft Bing Maps, civil and military planning, to en-
tertainment. In this work, we focus on reconstructions from
ground reconnaissance video since ground reconnaissance
data is easier and cheaper to acquire as well as the video
cameras are significantly less expensive than active sensors
like LIDAR. Additionally, ground-level reconstructions can
be used to compliment existing reconstructions from aerial
and satellite platforms or manually created models for ex-
ample Google Sketchup models, providing greater detail
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from a pedestrian perspective.

One important aspect of most current research efforts is
computational efficiency to enable the modeling of wide-
area urban environments such as entire cities. The data sets
resulting from data collection of these areas are massive.
Even a small town may require millions of frames of video
just to capture the major streets. The reconstruction algo-
rithms deployed must be fast in order to finish processing
in a reasonable amount of time. Additionally, the gener-
ated models need to be compact in order to efficiently store,
transmit, and render them.

To address these needs, we present a novel multi-view
depthmap fusion algorithm deployed as a post processing
step on the outputs of systems like for example [7]. The
processing with our fusion results in a heightmap model
for the scene, i.e. for every point defined over a horizontal
grid, our algorithm estimates a single height value. Whereas
most other systems attempt to produce true 3D surfaces, our
simplified model is a 2.5D representation. This simplified
model leads to an efficient algorithm on one hand and to a
simplified model representation on the other hand meeting
the requirements for simplification and reconstruction effi-
ciency.

Similarly to volumetric reconstruction approaches in our
method a 2D horizontal grid is defined over the region of in-
terest. To avoid the explosion in memory of the volumetric
approaches, we define for every 2D grid cell, a height value
computed to minimize the amount of free space below and
the amount of filled space above the value. Free and filled
space votes are accumulated from the viewing rays of all
depthmaps that intersect the vertical column in space de-
fined by the 2D grid cell and the up-vector. Then a polygo-
nal mesh is generated from the heightmap, and texture maps
are generated from the images. Facades of buildings are of
particular interest in urban modeling. In our heightmap rep-
resentation, facades appear as large depth gradients between
the roof tops and the ground below. These height discon-
tinuities are detected with a threshold and strictly vertical
polygons are generated to connect the ground and roof. See
Figure 1 for an overview.
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Figure 1. Our novel depthmap fusion approach uses a vertical heightmap model to reconstruct a textured 3D mesh. Our simplified model
cannot represent overhanging surfaces, but it is well-suited for vertical facades, and delivers a compact and complete model without holes.

One limitation of our model compared to a general ge-
ometry representation is that it does not accommodate over-
hanging surfaces such as eves, inset windows, and larger
trees. However, it has the advantage of producing purely
vertical facades, and it also yields a continuous surface
without holes. Thus our algorithm presents a trade-off com-
pared to more general 3D reconstruction methods. It is
more efficient, robust, and produces more compact models
at the expense of losing some detail.

By design the proposed method is well-suited for pro-
cessing large amounts of video naturally fusing all votes
within the entire vertical column to support the height value
decision. Hence it obtains robust and visually pleasing re-
sults even without any additional regularization. Thus the
height value at every grid cell can be computed indepen-
dently enabling parallelization. Our GPU implementation
can compute a 200 x 200 heightmap in just 92 milliseconds.

We demonstrate the quality of the modeling of our of our
approach for a variety of challenging ground-level datasets
including large buildings, residential houses, and store front
facades. Even though some details cannot be captured by
our model, the resulting reconstructions are clean, com-
plete, and compact.

2. Related Work

There are two parts to a 3D reconstruction from video
system. The first part is the camera motion estimation from
the video frames commonly called structure from motion or
sparse reconstruction. The second part is the so called dense
reconstruction, which obtains a dense scene geometry using
the known camera poses and the video frames. In some ap-
proaches [7] the robustness and drift of the sparse estima-
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tion is improved through additional sensors such as INS and
GPS, which also remove the ambiguity in scale inherent in
structure from motion, and provide an absolute coordinate
system. The dense subproblem refers to performing stereo
matching, depthmap fusion, or other means to generate a
3D model as for example LiDAR [3]. This paper focuses
on the dense subproblem, and can be viewed as a restricted
depthmap fusion algorithm.

There is a wealth of 3D reconstruction methods that ad-
dress the dense subproblem. A taxonomy of stereo al-
gorithms is given by Sharstein and Szeliski [9]. Seitz et
al. [10] give an overview of multi-view stereo for object-
centered scenes. 3D reconstruction from video has been
addressed in Pollefeys et al. [8]. Pollefeys et al. use uncal-
ibrated hand-held video as input and obtained reconstruc-
tions of hundreds of frames, but could not handle wide-area
scenes. The system presented by Pollefeys ez al. [7] was de-
signed to process wide-area scenes. The resulting 3D mod-
els are general 3D surfaces represented as texture-mapped
polygonal meshes coming with all the problems like holes
in homogneous areas, in windows and slightly inaccurate
geometry on facades deviating from the true planar geome-
try causing visually disturbing artifacts. In contrast, our sys-
tem aims to fit a simple heightmap model to provide greater
efficiency, robustness, compactness and a water tight sur-
face delivering a visually more pleasing model.

There are several recent approaches deploying simplified
geometries [1, 2, 4, 1 1]. Cornelis et al. [ 1] used a simple U-
shaped ruled surface model to efficiently produce compact
street models. To enhance the appearance of cars and pedes-
trians not modeled through the ruled surface model Cor-
nelis et al. extended the approach to detect and replace those



through explicit template models [2]. While our approach
also determines a simplified geometry the heightmap model
is far less restrictive than the ruled surface model and can
model most urban objects and scenes to a large degree. Our
approach naturally models, cars, pedestrians, lamp posts,
and bushes within the heightmap framework. Furukawa et
al. [4] uses a very specific Manhattan-world model, where
all planes must be orthogonal, and Sinha et al. [11] uses a
general piecewise planar model. Non-planar surfaces are
not handled well and are either reconstructed with a stair-
case appearance or are flattened to nearby planes. The ap-
proach proposed in this paper is far less limited than the ap-
proaches [4, | 1] since the heightmap is able to model gen-
eral geometry except for overhanging surfaces.

Our technique operates conceptually over the occupancy
grid of the scene (though this is never explicitly required
during the computation). Other depthmap fusion tech-
niques, such as Zach et al. [14], also use an occupancy
grid for depthmap fusion but require the occupancy grid to
be present leading to limitations on the model resolution.
Whereas these other methods recover a general 3D surface
from the present occupancy grid, our method simplifies the
fusion problem by recovering only a heightmap. This al-
lows our method to be much more efficient in terms of pro-
cessing time and especially memory.

Several methods have been aimed directly at modeling
buildings from street-side imagery. Xiao et al. [13] present
an automatic method that learns the appearance of build-
ings, segments them in the images, and reconstructs them
as flat rectilinear surfaces. The modeling framework of
Xiao et al. does not attempt to geometrically represent other
scene parts like vegetation typically present in many urban
scenes. Our method also targets building facades captured
from street-level video for which the heightmap model is
ideal. The heightmap also other objects typically present in
urban scenes like cars, lamp posts, and mail boxes to the
degree that they have no overhanging structure.

3. Heightmap based Stereo Fusion

Our method aims at the dense 3D urban reconstruction.
The inputs to our method are one or more video sequences,
the estimated camera poses and the intrinsic calibration for
every frame, a depthmap for every frame, and an estimate of
the world’s vertical or gravity direction. Camera parameters
can be recovered with Structure from Motion (SfM) tech-
niques [8] as well as inertial sensor data and GPS measure-
ments [7]. Depthmaps can be computed robustly and effi-
ciently using GPU-accelerated multi-view stereo [5]. The
vertical or gravity direction can be easily obtained from the
inertial sensors or from the vertical vanishing point in each
image [12]. The output of our method is a textured 3D
polygonal mesh.

(a) (b) (c)
Figure 2. (a) Heightmap computed without axis alignment. (b)
Heightmap computed with axes aligned to dominant surface nor-
mal. Dark red indicates complete blocks where a CUDA kernel
can diverge with an early exit. (c) Bright red indicates detected
heightmap discontinuities.

3.1. Single Heightmap fusion

This section describes the proposed method for recon-
structing a local subset of video frames. The fusion of mul-
tiple of these for large-scale reconstruction is described in
Section 3.2.

Step 1: Grid Alignment. The heightmap grid is first de-
fined with respect to one of the input cameras, called the
reference view. According to the desired spatial resolu-
tion of the computed model the size and resolution of the
heightmap are defined by variables Zin, Timaxs Ymins Ymaxs
Az, and Ay. Similarly, the expected height range and
height resolution are defined by zin, Zmax, and Az. Please
note that while %0, Tmaxs Ymins Ymaxs Az, and Ay directly
influence the memory consumption of our computation, the
height range and the height resolution do not increase the
memory consumption of the algorithm (except for tempo-
rary local storage).

Facades and other vertical surfaces will appear as dis-
continuities in our heightmap. To avoid staircase disconti-
nuities, we align the grid’s « and y axes to the dominant
surface normal. This can be done with a surface normal
voting procedure. Normals are computed from the depth
gradients in the reference view. Aligning the x and y axes
requires only a rotation about the vertical direction. Each
normal is projected to the z — y plane, and the angle to the
x axis is computed. Votes are accumulated in a histogram,
and the angle with the most votes is chosen. The grid axes
are then rotated to align with the chosen angle. See Figure
2a-b.

With the heightmap grid defined, all the views in the
video sequence that include the volume [Zuin, Tmax] X
[Ymins Ymax] X [Zmins Zmax] OF parts of it in their viewing frus-
tum are loaded and their estimated scene depths will be used
in the subsequent steps.
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Figure 3. (a) Sample input image. (b) Sample input depthmap. (c)
Computed heightmap. (d) Slice of the occupancy volume corre-
sponding to the vertical red line on the heightmap. Votes for every
voxel indicate full (positve) or empty (negative). The black line
shows the resulting height values for the slice.

Step 2: Heightmap Computation. The next step is to
compute the height value for every cell in the heightmap. To
ensure parallel computability each cell in the height map is
computed independently. The vertical column correspond-
ing to the cell is divided into voxels ranging from z,, to
Zmax at Az intervals. Each voxel v is projected into every
depthmap, and a vote ¢,, for for each depth pixel p is com-
puted as follows:
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where p,, and p, are the depth or range values for the pixel
and the voxel with respect to the depthmap’s camera. Thus
each pixel votes empty if it’s depth value is beyond the
voxel, and full if it’s depth value is in front of the voxel.
Aempry controls the relative weighting between empty and
full votes. In the p, > p,, (full) case, the vote falls off to re-
flect the uncertainty of knowing what is behind an observed
surface. The mean vote ¢, is stored in each voxel and rep-
resents a confidence of being either full (positive) or empty
(negative). The height value z for the column is then chosen

to minimize
ST @
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where v, is the z coordinate of the center of each voxel.
Thus z is chosen so that most of the voxels above it are
emtpy and most voxels below it are full. Figure 3 shows the
accumulated votes and final height values for a slice of the
volume of interest.

Step 3: Mesh Generation. Once a heightmap is com-
puted, the next step is to create a polygonal mesh. This step
is used to enforce the planar representation of facades and
walls in general urban scenes. These structures will repre-
sent height discontinuities in our representation. Hence we
detect these discontinuities between neighboring height val-
ues by thresholding of the absolute height difference with
Adise - To model our domain knowledge of facades and walls
corresponding to these discontinuities we generate planes to
span them. An example of the meshing result is shown in
Figure 2c.

Step 4: Texture Mapping. Each single heightmap repre-
sents the geometry measured by all views that include the
volume [xmin; xmax] X [ymim ymax} X [Zmim Zmax} or parts of
it in their viewing frustum as explained in step 1. Hence
we need to generate a texture as a composite of all images
observing this scene geometry as generally no single image
observes the full geometry. Furthermore the texture gener-
ation needs to be robust to occlusion.

Our method generates initially blank texture maps with
texture coordinates assigned to every vertex in the mesh.
Once the texture map has been layed out on the surface,
the 3D point corresponding to each pixel can be computed.
That point is projected into all the images, and the color of
each point is stored in an array. The texel color is computed
simply as the median value of the array for each color chan-
nel. We experimented with other texture map generation
methods, such as that of [13], but found this method to be
faster and more robust to occlusion.

Steps 1-4 are repeated for every reference view desired
to represent the scene. These are typically chosen in a way
to cover the entire scene with moderate overlap. Hence the
next step is to compute the model combining all the result-
ing separate models.

3.2. Fusion of Multiple Heightmaps

The fusion of multiple heightmaps corresponding to the
different reference views starts with overlaying the meshed
models for all separate heightmaps. Note that the reference
frame is initially used only to determine the location of the
heightmap-—all views contribute equally to the solution. In
order to eliminate redundant computation, we mask out any
cells of the current heightmap that fall within the previously
computed heightmap. The selection of the view for which
a heightmap is computed is dependent on the camera mo-
tion and is performed dynamically. It ensures to compute
heightmaps frequently enough to avoid gaps in the recon-
struction and keeps the heightmaps spaced far enough apart
so that there are a sufficient number of new cells to com-
pute to maximize computational throughput. This is es-
pecially important for the parallel implementation, where
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Figure 4. We use these same parameters for all our experiments.
Note that the scale of our scene is known due to the GPS data.

there needs to be enough new cells to keep the GPU hard-
ware fully utilized.

We have implemented the depthmap fusion (Step 2 in
Section 3.1) and texture map generation (Step 4 in Sec-
tion 3.1) steps on the GPU using NVIDIA’s CUDA plat-
form [6]. While our method can be parallelized using any
technology, we found CUDA to have a number of advan-
tages. First, CUDA provides shared memory which mul-
tiple threads can access. We use this to our advantage by
having a different thread compute the votes for each voxel
in a vertical column, writing the results to an array in shared
memory. After the vote accumulation, one of the threads
is assigned the task of looping over the array to select the
height value, which minimizes equation 2. Second, CUDA
allows for divergent branching at a block level. (Each block
is composed of multiple threads, see [6] for details.) This
allows for greater efficiency when all cells assigned to a
block have been masked out due to overlapping the previous
heightmap. In that case, the block of threads can terminate
quickly, freeing up resources for the next block. Figure 2b
shows the blocks of a heightmap layout that can take advan-
tage of this early exit divergence.

4. Results

In this section we describe the evaluation of our algo-
rithm on video data captured from a vehicle-mounted multi-
camera array. The array consisted of four Point Grey Flea2
color cameras with a resolution of 1024x768 pixels. Three
of the cameras were aimed horizontally at 50, 90, and 130
degrees to the driving direction, and one was aimed at 90
degrees horizontally and 30 degrees vertically to the driving
direction. Each camera had roughly a 40 degree horizontal
and 30 degree vertical field of view, giving the array a com-
bined 120 degree horizontal field of view and 60 degree ver-
tical field of view. The capture system was augmented by an
Applanix POS-LV system, which combines inertia sensors
and GPS.

Stereo depthmaps are computed using the real-time
GPU-accelerated multi-view planesweep method of Kim et
al. [5]. It outputs depth maps for each video frame along
with the camer a poses. Then the images, depthmaps, and

camera poses are fed into our system to produce the 3D
models. We use the same set of parameters, shown in Fig-
ure 4 for all our experiments. Our method was executed
on a commodity PC: Intel Pentium 4 3.2 Ghz CPU, 1.5 GB
RAM, Nvidia GeForce GTX 285 GPU. On this system, our
method takes 92 ms to generate the heightmap, 203 ms to
generate the mesh, and 696 ms to generate the texture map,
for a total of 983 ms per reference view. Since only a subset
of views (roughly every 20th) is used as reference view (see
Section 3.2 for details), our method effectively runs at 20.3
Hz for the test scenes used.

Furthermore, our system, using the parameters in Figure
4, produces highly compact 3D models. For every linear
meter driven by the capture vehicle, our 3D models require
on average only 7500 triangles and 2.3 kilobytes of JPEG
compressed texture maps. (These sizes grow linearly with
the Az and Ay parameters.) Thus our method is ideal for
reconstructing wide-area urban environments, such as entire
cities.

Our system was tested on a variety of different types
of scenes, including streets with large buildings, residen-
tial houses, and store front facades. We have produced tex-
tured polygonal meshes directly from the depthmap data,
and compared them to the models produced by our system
in Figure 5. Our method performs quite well for surfaces
that fit our heightmap model, especially facades, which are
of primary interest for city modeling. The depthmap mod-
els in general have more detail, and better handle overhang-
ing roofs and trees. However, our models have the advan-
tage of a clean and simple geometry providing a visually
more pleasing appearance. Our heightmap model also pro-
duces a continuous surface without holes whereas the holes
in the depthmap reconstruction are due to areas of the scene
which are never observed. In some sense our algorithm may
be hallucinating these surfaces, and indeed the textures for
the surfaces originate from views which don’t actually see
them. Nevertheless the completeness of the surface is an
advantage. The holes of the general geometry model along
with artifacts around windows cause significant visual dis-
turbances when viewing the model. In contrast our algo-
rithm forces the geometry of these artifacts into a planar
scene determined by the surrounding surfaces. This regu-
larizes a lot of the artifacts away.

5. Conclusion

In this paper we introduced an efficient depth map fu-
sion for the large-scale 3D reconstruction of urban scenes.
The novel method fuses multiple depthmaps into a height
map representation ensuring a continuous surface. These
models produce in many occasions visually more pleasing
results than the state of the art methods obtaining general
scene geometry. A limitation of the proposed method is that
our approach cannot model overhanging surfaces. How-
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Figure 5. We have compared our method against the 3D models triangulated from the input depthmaps. These depthmap models generally
have more details but also have large errors, and missing regions due to occlusion or specularity (e.g. windows). Our models cannot capture
the overhanging porch roof for example, but they are clean and complete.

Figure 6. Untextured and textured 3D models produced by our system. This challenging scene features many reflective cars and glass
store-front facades.



Figure 7. Untextured and textured 3D models of a residential scene reconstructed by our algorithm.

ever, our model is more general than previous approaches
that applied simplified geometry [1]. Our approach can for
example represent the vegetation like bushes frequently ob-
served in urban scenes. The heightmap model also leads
to an efficient and scalable algorithm which produces com-
pact, clean, and complete surface geometry.
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