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Abstract— We present a method to reconstruct indoor envi-
ronments from stereo image pairs, suitable for the navigation
of robots. To enable a robot to navigate solely using visual
cues it receives from a stereo camera, the depth information
needs to be extracted from the image pairs and combined
into a common representation. The initially determined raw
depthmaps are fused into a two level heightmap representation
which contains a floor and a ceiling height level. To reduce the
noise in the height maps we employ a total variation regularized
energy functional. With this 2.5D representation of the scene the
computational complexity of the energy optimization is reduced
by one dimension in contrast to other fusion techniques that
work on the full 3D space such as volumetric fusion. While we
show only results for indoor environments the approach can be
extended to generate heightmaps for outdoor environments.

I. INTRODUCTION

To enable a robot to navigate with visual data captured
from a stereo camera it needs to be able to have some
kind of representation of the observed world that is suitable
for this task. There is a large literature on visual simul-
taneous localization and mapping (VSLAM) generating a
sparse representation of the environment and the respective
camera/robot poses. However such a sparse representation
generally only includes points that are salient enough in the
considered images and thus lie in well textured regions. For
instance, uniformely painted walls and homogeneous regions
in general are not covered by the model obtained from
VSLAM and therefore problematic for robot navigation.

The representation of the robot’s surroundings needs to
be appropriate for higher-level tasks such as path planning
and collision avoidance. Although one could use the re-
constructed sparse feature points from a VSLAM pipeline
directly for collision avoidance, this can potentially miss
whole objects that lack some feature points. In such a case
the possible obstacle would just be invisible for the robot. In
indoor environments such objects are quite common e.g. a
uniformly colored wall. Thus a denser representation of the
scene is favorable.

Many local and global stereo methods are available to
determine depth from images, but the returned depth maps
are generally still contaminated by inaccurate and erroneous
depth estimates. This problems emerge especially in texture-
less parts of images, which are quite common in indoor
environments. Although global stereo methods optimize an
energy functional over the whole image domain in order to
hypothesize reasonable depth values in ambiguous regions,
the resulting depth maps may still contain errors.

In order to overcome this problem we combine several
depth maps calculated from multiple stereo images into
a common representation. Thus, inconsistencies between
several acquired depth maps can be discovered and removed.
We propose to use a height map based representation of the
environment for the globally combined representation of the
scene. For indoor environments the height map is composed
of two levels, a floor and a ceiling level.

Our target setting is a humanoid robot that is equipped
with a stereo camera, which enables it to observe its sur-
roundings. The two cameras are mounted on a stereo rig
with fixed relative position. It is further assumed that the
intrinsic calibration of the two cameras are known. For the
fusion procedure the camera poses are needed as well. For
this we use the output of existing VSLAM pipelines.

The remainder of the paper is structured as follows. In
section II prior work related to this paper is presented. Our
height map based reconstruction approach is explained in
section III. In section IV we show the results we obtained
for indoor environments and compare them to a full 3D re-
construction of the scene. Finally we draw some conclusions
in section V.

II. RELATED WORK

There exists a vast literature on computational stereo,
fusion of range data, and general 3D modeling from images.
We focus on approaches suitable for efficient implementation
or explicitly addressing reconstruction of indoor environ-
ments. Merell et al. [1] propose a visibility-based approach
capable of real-time operation to fuse a sequence of nearby
depthmaps to a single depthmap with a higher confidence.
This is done by projecting the depthmaps to a reference view
and then choose one of the depths projecting to the same
position that reduces the number of visibility conflicts. A
visibility conflict is the situation where a measurement lies
in the free space of some other measurement. While this
gives more accurate depthmaps, which could be certainly
used for collision avoidance there is no direct way to generate
a globally consistent representation of the complete observed
space. Because there is no regularization used in this fusion
the resulting depthmaps also still contain some noise.

In order to obtain globally consistent 3D models from
a set of range images Zach et al. [2], [3] use an implicit
representation of the space. The input depthmaps are con-
verted to signed distance fields. A total variation energy
functional with a L1 distance data fidelity term, is defined



on a regularized signed distance field that simultaneously ap-
proximates all the input fields. This convex energy functional
is minimized to get the final reconstructed scene.

In [4] Furukawa et al. use the Manhattan world assump-
tion, which means that all the surfaces are oriented according
to the coordinate axes, to formulate a stereo algorithm that is
able to handle flat textureless surfaces. From the directions
obtained by the patch-based multi view stereo (PMVS)
software [5], which extracts a semi-dense oriented point
cloud from a set of input images with known camera ori-
entations, the three orthogonal main directions are extracted.
Afterwards the problem of assigning a plane to each of the
pixels is formulated as a Markov random field (MRF) and
solved using the graph cut method. This finally leads to a
depthmap that contains flat surfaces oriented according to
the three main directions. In [6] they use this depthmaps
to reconstruct building interiors. In a similar way as in [2],
[3] they integrate the depth maps to a volumetric structure.
Here the voxels have a binary label interior or exterior. To
get a full labeling of the space that best approximates all
the given input depthmaps a MRF is formulated and solved
using graph cuts. This leads to complete polygonal meshes
of building interiors but comes with a high computational
cost: reported run-times range from a few hours to multiple
days.

Gallup et al. [7], [8] use a height map representation
to reconstruct urban environments. They integrate the raw
depth maps to a three dimensional occupancy grid, which is
aligned such that the z-axis points to the upright direction.
For each voxel a number is stored, free space gets a negative
weight and occupied space a positive weight. The space in
front of the measured depth is assumed to be free and the
space behind the measurement is expected to be occupied
with an exponential drop of the weight. One or multiple
height levels are then extracted by getting the minimum
of an energy functional for each z-column. Because each
column is optimized independently, this can be calculated
very efficiently by GPUs, but has the drawback that there is
no regularization between the columns.

In this work we focus on representing indoor environments
by two level height maps. But in contrast to [7], [8] we use a
total variation energy functional to obtain regularized results.
This leads to reconstructions where most of of the noise is
removed. It has the benefit over full 3D reconstructions like
the one in [2], [3] that it can be computed faster due to the
reduced representation, which is still able to represent the
scene accurately enough to be used for robot navigation.

III. TWO LEVEL HEIGHT MAPS

As a prerequisite for a humanoid robot to do path planning
tasks it needs to know the ground where it is able to move
around. By knowing the height profile of the floor, the area
where it is regular enough for the movement capabilities of
the robot can be determined. The additional knowledge of the
ceiling position enables a path planning software to decide
if the robot would fit into the free space. This informations
combined define the area where the robot is able to pass.

Fig. 1. Two level height map, the floor and the ceiling are approximated
by a height level.

According to this considerations it makes sense to constrain
the final reconstruction to be represented by a floor and
ceiling height level (Fig. 1).

A. Depth Integration

As first step the raw depthmaps are integrated into a vol-
umetric representation of the space. This is done by creating
an occupancy grid that stores a negative number for free
space and a positive one for occupied space. With increasing
absolute value the decision for free or occupied space gets
more certain. This is similar to the probabilistic formulation
of occupancy grids e.g. [9]. The z-axis is aligned with the
upright direction of the scene such that the discontinuities
in the height map are vertical walls. We detect the upright
direction in the input images by detecting the associated
vanishing point.

In order to integrate a new depthmap to the common
volumetric representation, each voxel is projected onto the
new depthmap. For every voxel v the weight that it adds to
the grid is calculated. It is dependent on the depth zv that
the voxel v has according to the new view and on the depth
measurement zp of the depthpixel p to which v projects. Due
to the constant disparity resolution in the stereo image the
depth resolution is decreasing with increasing depth [10].
To include this into our cost function a band around the
measurement whose width is dependent on the measured
depth zp is defined. The width of the band is given by,

lp(zp) = max

{
z2
p

bf
δd, ε

}
. (1)

The first operand approximates the depth uncertainty [10],
where δd is the disparity resolution, b the stereo rig base
line length and f the focal length in image pixels. To ensure
a minimal width of the band the constant ε is used as a
lower bound. This guarantees that the weight is spread to
at least some voxels. Having all the weight accumulated in
too few voxels could result in very noisy reconstructions.
The actual weight added to the grid inside this band has
the same absolute value for each voxel with the appropriate
sign for free and occupied space. The region outside this
band is weighted differently. Being further away from the
camera center than the band around zp means that we are
already behind the surface seen in the image, which means
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Fig. 2. Weight that a depth pixel p adds to the occupancy grid.

that nothing is known about the space being free or occupied
and thus no weight is added to the grid. Being nearer to
the camera center means that the space should be free, but
adding the same weight to the voxels lying on this viewing
ray would result in adding much more weight for free space
than occluded space to the grid for one depth measurement.
This gets problematic if a depth measurement is erroneously
too far away. To account for this, the weight entered into this
part is reduced by a factor η < 1. The final weight that is
added to the voxel v projected onto a depth pixel p is the
following:

wv(p) =


ε

lp(zp) if zv ≥ zp ∧ (zv − zp) ≤ lp(zp)
− ε
lp(zp) if zv < zp ∧ (zp − zv) ≤ lp(zp)
−η ε

lp(zp) if zv < zp ∧ (zp − zv) > lp(zp)

0 else.

(2)

The absolute value of the weight is dependent on the band
width lp(zp), but is at most one for a single voxel. Inside
the band the individual weights are normalized such that the
sum of all the weights that are entered for one measurement
stays constant. By using this weight function a measurement
that is less certain adds the same total weight to the grid than
a more certain one. The weight is just spread further around
the measurement into the grid.

Multiple weights for the same voxel are accumulated by
summing them up. A visualization of the weight function is
shown in Fig. 2. An example of a slice of the occupancy
grid is given in Fig. 3.

B. Minimal Cost Height Levels

The aim of this paper is to get regularized height values
of a floor and a ceiling level for an indoor environment.
In the following sections we will define appropriate energy
functionals that can be minimized efficiently in order to
extract the final regularized height levels. However they
depend on minimal cost height levels that are extracted
for each z-column of the voxel grid independently. The
procedure to extract them is introduced in the remainder of
this section.

For each point (x, y) in the height map the two height
values h and h for floor and ceiling need to be determined.

Fig. 3. Horizontal and vertical slice through the occupancy grid. The blue
colors denote negative and the red colors positive values. The absolute value
of the weights is visualized by the saturation of the colors. (best viewed in
color)

This is done by minimizing the cost

Cx,y(h, h) =−
∑
z<h

wx,y(z) +
∑

h≤z<h

wx,y(z)

−
∑
z≥h

wx,y(z),
(3)

where w denotes the accumulated weight of a voxel. In order
to calculate the minimum of the data cost function it is
expressed in a recursive formulation. This is done in the
same way as in [8], there a similar function is used for an n
layer configuration. The minimum can then be calculate by
dynamic programming. After having the table filled in, the
height values that minimize the cost function are extracted
by backtracking.

At positions where no floor or ceiling is observed it
happens that the whole z-column has only negative entries.
They are lying in the middle of the z-column and the bottom
and top part are unobserved and thus filled with zeros. An
example of such a situation can be taken from the left
junction area of the vertical slice in Fig. 3. In such cases
the minimal cost height levels are not unique. All floor
positions below the negatively weighted part and all ceiling
positions above it would result in a global minimum for
the regarded z-column. Section III-D introduces a convex
approximation to the datacost function Cx,y(h, h), which is
used to get regularized height levels. The chosen approxima-
tion only considers the cost function around a neighborhood
of extracted minimum. Therefore for non unique minima
the specific choice is not done arbitrarily. Because only the
region around the minimum is approximated it is beneficial
to have non zero weight values inside it. This is achieved by
choosing the minimum that has the smallest floor to ceiling
distance. For the mentioned case with only negative entries
this aligns the floor and ceiling level around the negative
weights. If there are still multiple minima with the same
floor to ceiling distance one of them is taken arbitrarily.

C. Regularized Labeling

The regularized height levels are extracted in two stages.
The final height values for the floor and ceiling are calculated



by two consecutive minimizations of appropriate energy
functionals. In a first step the space is partitioned into a
region where the whole space is occupied, and into a region
where there was some free space observed. Thus in a second
step a height for the floor and ceiling needs to be calculated
for this area. The remainder of this section explains how the
regularized labeling is calculated. Eventually the next section
introduces the regularization functionals for the actual height
levels, which lead to the final reconstruction.

There are regions in the heightmap, where it makes no
sense to have a floor and a ceiling because it is unobserved or
just completely occupied e.g. a wall spans the whole height
of the grid. At such positions the floor and ceiling would
only fit to noise. To prevent this it is ensured that there is
enough evidence that there really is a floor and a ceiling in
the regions where the height levels are calculated. This can
be done by minimizing an appropriate total variation energy
functional.

ELabeling =

∫
Ω

|∇l|+

+ λl(l(Cx,ymin
+ γ) + (1− l)Cx,yocc)dx

(4)

Cx,ymin
and Cx,yocc describe the data cost Cx,y for the two

possible labelings l = 1, for regions with height levels and
l = 0 for completely occupied areas. Cx,ymin

is the minimal
data cost from section III-B, which is used to represent the
cost for having a floor and a ceiling. In the other case the
floor and ceiling collapse, which means that the space is
completely occupied in that column. The position of the two
height levels does not affect the cost Cx,y in this case, which
leads to Cx,yocc = Cx,y(h, h). We relax the domain of l
to the set [0, 1] to get a convex energy functional, which
means that in between the two cases the cost function is
linearly interpolated. The parameter γ is used as a penalty
for choosing the more complex model with a floor and a
ceiling. The total variation part of the energy controls the
smoothness of the labeling and λl is used to weight the data
fidelity.

To apply the same optimization technique as proposed
in [2] for similar energy functionals, we further relax the
already convex energy functional to

ELabeling
θ =

∫
Ω

|∇lu|+
1

2θ
(lu − lv)2

+ λl(lv(Cx,ymin
+ γ) + (1− lv)Cx,yocc)dx.

(5)

The regularization and the data fidelity cost are now defined
on two separate scalar fields lu and lv ∈ [0, 1]. The quadratic
term 1

2θ (lu − lv)2 ensures that lu and lv are similar enough
to get reasonable results for the minimizer. This relaxation
allows to minimize the functional by alternating between
minimizing according to lu and lv .

• Letting lv fixed and minimize for the first two terms the
functional to minimize becomes to,∫

Ω

|∇lu|+
1

2θ
(lu − lv)2dx. (6)

This energy functional is known as ROF energy and
can be minimized efficiently by the gradient de-
scent/reprojection algorithm from [11].

• Letting lu fixed the minimization can be calculated
analytically. This can be done point-wise as the lv in
the remaining functional∫

Ω

1

2θ
(lu − lv)2

+ λl(lv(Cx,ymin
+ γ) + (1− lv)Cx,yocc)dx,

(7)

is not dependent on its spatial context.
The algorithm used to minimize the regularization part of

the energy functional was proposed in [11]. It is an important
part of our method thus we briefly mention the main result.
By standard duality arguments it is shown that the minimizer
of Eq. (6) is given by

l̂u = lv + θdivp. (8)

p ∈ R2 is the dual vector field. It can be computed by the
following gradient descent/reprojection scheme:

pn+1 =
pn + τ∇(lv/θ + divpn)

max{1, |pn + τ∇(lv/θ + divpn)|} , (9)

with τ ≤ 1/4.
For minimizing ELabeling

θ according to Eq. (7) the deriva-
tive with respect to lv is calculated. By setting the derivative
to zero the following update rule is deduced.

l̂v = clamp[0,1](θλl(Cmin − Cocc + γ)) (10)

The clamping to the interval [0, 1] is necessary because
otherwise lv would increase arbitrarily for positions where
the space is labeled to have floor and ceiling and decrease
arbitrarily otherwise. In this case the minimal energy would
no longer be bounded.

The minimization strongly pushes the labelings lu and lv
to be binary although they are not constrained to be binary.
In order to get a final binary labeling a value of lu > 0.5 is
defined to be a position with floor and ceiling, which leads
to a new domain Ωinside.

D. Regularized Height Levels

The height values h and h for floor and ceiling are only
calculated in the reduced domain Ωinside. Again a total
variation energy functional is employed to get regularized
height levels. It is chosen as

EHeight =

∫
Ωinside

|∇h|+ |∇h|+ λhCx,y(h, h)dx (11)

This energy functional is not convex because of the non
convex data fidelity term. To overcome this problem we
use a convex approximation to the data fidelity term as a
relaxation. This guarantees that a global optimum can always
be found. The approximation is defined as:

Cconv
x,y (h, h) =α1[H − h]+ + α2[h−H]++

α3[H − h]+ + α4[h−H]++

Cx,y(H,H),

(12)
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Fig. 4. Subset of the cost function used for the convex approximation

with H and H being the ceiling and floor position that
minimize Cx,y determined according to section III-B. The
operator [·]+ has the meaning

[a]+ =

{
a if a > 0

0 else.
(13)

The αs are parameters of the cost function that need to be
defined for each position in the heightmap. This is done by
using a least squares approximation to the original datacost
function. By using only a subset of the values for the
approximation each α can be approximated independently.
For the approximation of α1 and α2 only the position of
the ceiling h is varied, the position of the floor is fixed
at h = H . Analogously for the approximation of α3 and
α4 only the position of the floor is varied. Normally the
optimal height levels of the floor and ceiling are near an
observed surface. This means that only the measurements
around that height are important for its position. To account
for this observation the approximation of the cost function
regards only the weight of the voxels that are at most ε
away from the optimal floor and ceiling position. In Fig. 4
the values used for the approximation are visualized. Using
this subset of the original function for the approximation, the
αs can be determined independent of each other. In Fig. 5
a comparison between the original non convex cost function
and the convex approximation of two positions one with a
very clear and one with a very vague optimum are shown.

By substituting the data cost by its convex approxima-
tion the energy functional can also be optimized with the
same alternating approach used for the regularization of
the labeling. Again the regularization is separated from the
data fidelity by introducing two separate height fields hu,
hu and hv , hv that are coupled by the quadratic term
1
2θ (hu − hv)2 + 1

2θ (hu − hv)2.

EHeight
θ =

∫
Ωinside

|∇hu|+ |∇hu|+
1

2θ
(hu − hv)2

+
1

2θ
(hu − hv)2 + λhC

conv
x,y (hv, hv)dx

(14)

The optimization is done by alternating the following two
steps that update hu, hu and hv , hv:
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Fig. 5. Top row original data cost functions for a clear and vague minimum.
Bottom row convex approximations.

• Having hv and hv fixed the energy reduces to∫
Ωinside

|∇hu|+
1

2θ
(hu − hv)2+

|∇hu|+
1

2θ
(hu − hv)2dx.

(15)

This is the sum of two ROF energies, which allows to
minimize it with the already in the labeling regulariza-
tion presented gradient descent/reprojection algorithm
from [11].

• Having hu and hu fixed the minimum can be calculated
directly by taking the gradient of the remaining terms.∫

Ωinside

1

2θ
(hu − hv)2 +

1

2θ
(hu − hv)2+

λhC
conv
x,y (hv, hv)dx.

(16)

This can be done point-wise because the hv are not
dependent on the spatial context. However because
Cconvx,y is not differentiable everywhere it leads to a case
distinction of 13 cases, where the minimum can lie. In
contrast to the update step for the regularized labeling,
here no clamping is necessary.

E. Anisotropic Total Variation

In the standard definition of the total variation each direc-
tion is weighted equally. However for architectural scenes
some directions are much more probable then others for
example in most of the buildings all the walls, floors and
ceilings are aligned to three orthogonal directions. In [12]
the total variation is extended to a more general model
that replaces the L2 norm by a positively 1-homogeneous
function φ(·).

Eφ(u) =

∫
Ω

φ(∇u)dx, (17)

is then defined as the anisotropic total variation. The set

Wφ = {p ∈ RN : 〈p,x〉 ≤ φ(x) ∀x ∈ RN} (18)



Fig. 7. Input images of the hallway junction

is called Wulff Shape Wφ associated to φ. It is connected to
the dual vector field p from the gradient descent/reprojection
scheme given in Eq. (9). For the anisotropic total variation it
is required that the dual vectors p are within the Wulff shape
Wφ. By setting φ(·) to the L2 norm the associated Wulff
shape turns out to be the unit ball. It is directly verifiable
that the update step in Eq. (9) in fact reprojects p back to
the unit ball.

We replace the standard total variation with the anisotropic
model in our energy functionals to align the directions
present in the final reconstruction to three orthogonal di-
rections. This is achieved by using the L1-norm or a rotated
L1-norm for the function φ(·). In this case the associated
Wulff shape is the unit square or a rotated version of it. For
the axis aligned case the reprojection is a simple clamping
of the individual components of the dual vector p.

By using more general functions for φ(·) than the L1-norm
also cases where walls are not orthogonal could be handled
with this model.

IV. IMPLEMENTATION AND RESULTS

As input data to our fusion we used the results generated
with the VSLAM pipelines described in [13], [14]. Their
outputs are pairs of keyframes with their camera poses. As a
first step the input images are rectified such that it is possible
to apply standard stereo algorithms. This rectification process
is done with the algorithm described in [15].

For our experiments we used three different stereo match-
ing algorithms. The semi-global block matching (SGBM)
algorithm from OpenCV1, which is a variation of the semi-
global matching algorithm from [16], the dynamic program-
ming algorithm on simple tree structures (STDP) from [17]
and the efficient large scale stereo (ELAS) algorithm from
[18]. In Fig. 6 the results for the different stereo matching
algorithms for one stereo image pair are given.

In order to align the occupancy grid with the upright
direction we detect the vanishing point associated to this di-
rection in the input images. For this we detect line segments
with [19] and optimize the vanishing point with Levenberg-
Marquart iterations on the biggest inlier set found with
RANSAC.

To compare the proposed heightmap fusion with a recon-
struction that does not restrict the possible three dimensional
solutions, we also run the TV-Flux fusion from [3] on the
same occupancy grids. In Fig. 7 three input images of the
hallway junction that is used below for the comparison of
the different methods are shown.

1http://opencv.willowgarage.com/

Fig. 8. Fusion results for TV-Flux fusion using the L2-norm with the three
different stereo matching algorithms SGBM, STDP and ELAS

Fig. 9. Fusion results for TV-Flux fusion using the L1-norm with the three
different stereo matching algorithms SGBM, STDP and ELAS

Fig. 10. Fusion results for the two level height map whithout any
regularization for the three different stereo matching algorithms SGBM,
STDP and ELAS

Fig. 11. Input images showing the hallway junction. The floor and ceiling
are not observed in some region in the junction. Also the wall on the opposite
site is not observed. The last image shows a vertical slice of the occupancy
grid. The floor, ceiling and left wall are missing only the right wall is shown
in red, which means a positive weight.

Figs. 8 and 9 show the resulting 3D model of a hallway
junction when using the TV-Flux fusion. In the case of the
L2 norm the junction is reconstructed with rounded parts
which is because this part of the scene is unobserved (see Fig.
11) and thus the fusion tries to fill in the missing part with
a surface that has low variation. When using the L1 norm
this parts are filled in with surfaces that are aligned with
the main coordinate axes, which leads to a more reasonable
reconstruction for an architectural environment where sharp
corners are more likely than rounded surfaces.

In Fig. 10 the resulting 3D model of the junction when di-
rectly extracting the height levels without any regularization
is shown. The input depth maps contain noise and erroneous
depth estimates this leads to a noisy reconstruction. For the
unobserved area in the junction the reconstruction aligns with
the border of observed and unobserved space, which leads
to an unwanted constriction in this area.



Fig. 6. Input stereo image pair and resulting disparity maps for SGBM, STDP and ELAS. To filter out wrong matches uniqueness ratio tests and speckle
filtering are used.

Fig. 12. Our regularized height level fusion results for the two level height
map with regularization using the L2-norm for the three different stereo
matching algorithms SGBM, STDP and ELAS

Fig. 13. Our regularized height level fusion results for the two level height
map with regularization using the L1-norm for the three different stereo
matching algorithms SGBM, STDP and ELAS

By using the regularization a lot of noise can be removed
from the reconstruction, Figs. 12 and 13. The L2-norm leads
to rounded corners which are introduced in the labeling part
of the fusion. By constraining the final reconstruction to
surfaces that are aligned with the coordinate axes by using
the L1 norm, the sharp corners of the walls are present in the
final model. Items standing on the ground like the garbage
can (see Figs. 7, 12 and 13) in the hallway corner are still
present in the final reconstruction, which is important for
robot navigation tasks.

It is noteworthy that by decoupling the walls from the floor
and ceiling by the two pass optimization, the constrictions in
the junction area are mostly removed from the reconstruction.
This works better in case of the anisotropic total variation.
Using the standard isotropic total variation it is possible to
remove them from the floor and ceiling too. For the walls
the data fidelity must be set very low to completely remove
them, which results in very rounded corners.

Another benefit of the two pass optimization is that the
floor and ceiling position are only calculated where they are
really necessary. In some datasets like the hallway (Fig. 14)
the reduced domain can be much smaller then the complete
height map in this cases the computational benefit can be
significant. Most of the heightmap is already masked out in
the labeling part of fusion.

In Fig. 15 the reconstruction of a whole big office room
with multiple desks and aisles in between is presented.
All the relevant details to navigate through the aisles are
contained in the final reconstruction. The main errors in
the reconstruction are due to the glass walls that surround
the reconstructed are, which are not present in the final
reconstruction.

V. CONCLUSION

In this paper we presented how height levels can be
used to reconstruct indoor environments suitable for the
navigation of a robot. By introducing a regularization step
to the extraction of raw height maps proposed in [7] a lot
of noise can be removed. In regions where the floor and
ceiling of the scene are unobserved more likely positions
are deduced with a total variation prior.

By restricting the space of possible reconstructions to the
two level heightmap representation we reduce the dimension
of the space on which an energy functional is optimized by
one in contrast to other fusion techniques such as the TV-
Flux fusion from [3]. This allows to still represent the scene
accurate enough for the navigation of a robot, because all
the relevant information for the navigation can be expressed
in this representation. The floor level can be used as space
where the robot moves, it needs to be decided which parts
of the floor are regular enough for the movement capabilities
of the robot. With additionally having a ceiling level it can
be decided if the robot fits into the free space between floor
and ceiling. These informations can be used to implement
path planning tasks.

By using an anisotropic version of the standard isotropic
total variation the surfaces of the final reconstruction can
be aligned with the dominant directions in the scene. This
allows the reconstruction of sharp edges in architectural
environments.

REFERENCES

[1] P. Merrell, A. Akbarzadeh, L. Wang, J.-M. Frahm, R. Yang, and
D. Nistér, “Real-time visibility-based fusion of depth maps,” in Proc.
IEEE International Conference on Computer Vision (ICCV), 2007.

[2] C. Zach, T. Pock, and H. Bischof, “A globally optimal algorithm for
robust TV-L1 range image integration,” in Proc. IEEE International
Conference on Computer Vision (ICCV), 2007.

[3] C. Zach, “Fast and high quality fusion of depth maps,” in Proc.
International Symposium on 3D Data Processing, Visualization, and
Transmission (3DPVT), 2008.

[4] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Manhattan-
world stereo,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.



Fig. 14. Result of the hallway dataset: labeling, regularized floor and ceiling height level with L1-norm total variation, 3D model.

Fig. 15. Top row: 4 out of 518 input images. Bottom row: labeling result, regularized floor and ceiling height level with L1-norm total variation, 3D
model of the whole office data set.

[5] Y. Furukawa and J. Ponce, “Patch-based multi-view stereo software,”
http://grail.cs.washington.edu/software/pmvs/.

[6] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Reconstructing
building interiors from images,” in Proc. IEEE International Confer-
ence on Computer Vision (ICCV), 2009.

[7] D. Gallup, J.-M. Frahm, and M. Pollefeys, “A heightmap model
for efficient 3D reconstruction from street-level video,” in Proc.
International Symposium on 3D Data Processing, Visualization, and
Transmission (3DPVT), 2010.

[8] D. Gallup, M. Pollefeys, and J.-M. Frahm, “3D reconstruction using
an n-layer heightmap,” in Proc. Annual Symposium of the German
Association for Pattern Recognition (DAGM), 2010.

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[10] D. Gallup, J.-M. Frahm, and M. Pollefeys, “Variable base-
line/resolution stereo,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2008.

[11] A. Chambolle, “Total variation minimization and a class of binary
MRF models,” in Proc. International Workshop on Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition (EMM-
CVPR), 2005.

[12] S. J. Osher and S. Esedoglu, “Decomposition of images by the
anisotropic Rudin-Osher-Fatemi model,” Communications on Pure and
Applied Mathematics, vol. 57, no. 12, pp. 1609–1626, 2004.

[13] B. Clipp, J. Lim, J.-M. Frahm, and M. Pollefeys, “Parallel, real-
time visual slam,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2010.

[14] J. Lim, J.-M. Frahm, and M. Pollefeys, “Online environment map-
ping,” in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2011.

[15] A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for

rectification of stereo pairs,” Machine Vision and Applications (MVA),
vol. 12, no. 1, pp. 16–22, 2000.

[16] H. Hirschmüller, “Stereo processing by semi-global matching and mu-
tual information,” IEEE Trans. Pattern Anal. Machine Intell., vol. 30,
no. 2, pp. 328–341, 2008.

[17] M. Bleyer and M. Gelautz, “Simple but effective tree structures for
dynamic programming-based stereo matching,” in Proc. International
Conference on Computer Vision Theory and Applications (VISAPP),
2008.

[18] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Proc. Asian Conference on Computer Vision (ACCV),
2010.

[19] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “LSD: A
fast line segment detector with a false detection control,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 32, no. 4, pp. 722–732, 2010.


