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Abstract The use of a multi-camera system enables a robot
to obtain a surround view, and thus, maximize its perceptual
awareness of its environment. If vision-based simultaneous
localization and mapping (vSLAM) is expected to provide
reliable pose estimates for a micro aerial vehicle (MAV)
with a multi-camera system, an accurate calibration of the
multi-camera system is a necessary prerequisite. We propose
a novel vSLAM-based self-calibration method for a multi-
camera system that includes at least one calibrated stereo
camera, and an arbitrary number of monocular cameras. We
assume overlapping fields of view to only exist within stereo
cameras. Our self-calibration estimates the inter-camera trans-
forms with metric scale; metric scale is inferred from cal-
ibrated stereo. On our MAV, we set up each camera pair
in a stereo configuration which facilitates the estimation of
the MAV’s pose with metric scale. Once the MAV is cal-
ibrated, the MAV is able to estimate its global pose via a
multi-camera vSLAM implementation based on the general-
ized camera model. We propose a novel minimal and linear
3-point algorithm that uses relative rotation angle measure-
ments from a 3-axis gyroscope to recover the relative mo-
tion of the MAV with metric scale from 2D-2D feature cor-
respondences. This relative motion estimation does not in-
volve scene point triangulation. Our constant-time vSLAM
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implementation with loop closures runs on-board the MAV
in real-time. To the best of our knowledge, no published
work has demonstrated real-time on-board vSLAM with loop
closures. We show experimental results from simulation ex-
periments, and real-world experiments in both indoor and
outdoor environments.
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1 Introduction

Vision-based MAVs are more versatile than laser-based MAVs.
Whereas a laser only provides geometry data, a camera can
provide both geometry data via stereo and structure-from-
motion techniques, and appearance data. A camera is a pas-
sive sensor while a laser is an active sensor and is thus sus-
ceptible to interference. Furthermore, a camera is lighter
and has a smaller footprint. However, utmost care has to be
taken when choosing the camera configuration for a vision-
based MAV expected to operate robustly in challenging en-
vironments. A single-camera configuration introduces lim-
ited perceptual awareness, and in turn, flight constraints be-
cause if the camera observes too few features for some time,
localization can fail and lead to a crash. In the case of a
single downward-looking camera (Weiss et al., 2013), the
MAV cannot fly too close to the ground which often has lit-
tle texture, and at the same time, it cannot perform obstacle
avoidance due to the absence of a forward-looking camera.
In the case of a forward-looking camera, constraints are im-
posed on the path planning. For example, in Prentice and
Roy (2009), any planned path ensures that there are a suf-
ficient number of features for localization. In addition, in
Heng et al. (2011), a path is planned such that the MAV
does not move outside the camera’s field of view, and inad-
vertently crash into an unseen obstacle.
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Fig. 1 We show an image from each of the four fish-eye cameras
on our MAV platform. Our camera configuration provides a surround
view. Each pair of cameras is arranged in a stereo configuration so that
3D scene information is available at all times.

In this paper, we use a multi-camera system on a MAV;
together with the use of fish-eye lenses, this camera config-
uration provides a surround view of the vicinity. Our multi-
camera approach is similar in spirit to Furgale et al. (2013b)
who uses a car equipped with multiple cameras configured
to provide a surround view. The use of such a multi-camera
system eliminates the constraints on path planning associ-
ated with a single camera as discussed earlier, and allows
for immediate path planning in all directions. Furthermore,
localization is more robust as there is always at least one
camera that observes a sufficient number of features. In ad-
dition, the use of fisheye lenses increases the robustness of
localization as it precludes the possibility that a large ob-
ject will occupy a large portion of the field of view of any
camera, and cause a complete loss of feature tracks for that
camera. Another benefit of using multiple cameras is that we
directly infer metric scale.

For autonomous MAV flight to succeed, we need to esti-
mate the MAV’s pose with metric scale. Pose estimates with
incorrect metric scale can cause control stability issues and
incorrectly-scaled maps. Metric scale can be inferred from
either accelerometer measurements (Weiss et al., 2013) or
the use of multiple cameras. However, the significant mea-
surement noise associated with MEMS accelerometers which
are commonly present on MAVs limits the scale accuracy,
and to maximize the scale accuracy, occasional excitation of
the MAV is needed. In contrast, the use of multiple cameras
allows direct inference of metric scale.

Our MAV is self-contained in the sense that all algo-
rithms necessary for autonomous flight are run on-board.

With this self-contained MAV, we circumvent latency and
reliability issues related to off-board computing, especially
in areas where Wi-Fi reception is poor. On the other hand,
more cameras correlate to a requirement for more compu-
tational resources, but with recent advances in computing
hardware, especially in multi-core processors, it is now com-
putationally feasible to run image processing algorithms on-
board a MAV that uses multiple cameras.

For robust operation in the field, we assume that the
multi-camera system includes at least one calibrated stereo
camera; in this way, 3D scene information is always avail-
able, and we can directly infer metric scale from calibrated
stereo. Thus, we avoid the use of failure-prone map initial-
ization methods required for monocular cameras and multi-
camera systems with non-overlapping fields of view.

The use of multiple cameras on a MAV raises two is-
sues we have to resolve before we can realize autonomous
flight: finding the inter-camera transforms, and estimating
the MAV’s pose with this synchronized multi-camera sys-
tem. Inaccurate inter-camera transforms will cause vSLAM
to wrongly estimate the MAV’s pose. Hence, it is impera-
tive that any calibration method must be able to estimate the
inter-camera transforms with high precision. Furthermore,
it is ideal that the calibration method be unsupervised. As
calibration parameters drift over time due to wear and tear,
calibration has to be carried out repeatedly, and tends to be
a tedious process, especially if operator involvement is re-
quired. We want calibration to be a process that can be easily
carried out, does not require special calibration setups, and
minimizes the need for supervision by an operator.

We come up with a novel method for self-calibration of a
multi-camera system with at least one calibrated stereo cam-
era and multiple calibrated monocular cameras. For clarity,
we refer to either a monocular camera or a stereo camera
as a camera entity. Each of the two monocular cameras that
make up a stereo camera is not considered as a camera entity.
We do not assume overlapping fields of view between any
pair of camera entities. Our self-calibration method is based
on vSLAM, only assumes that each monocular and stereo
camera is pre-calibrated, and does not require operator in-
put, fiducial markers or external positioning systems. We
are able to estimate the extrinsic calibration parameters with
metric scale which is inferred from calibrated stereo. We do
not know of other existing vSLAM-based self-calibration
methods for a multi-camera system with at least one cali-
brated stereo camera that is able to estimate the extrinsic cal-
ibration parameters with metric scale and without requiring
an additional sensor for inferring metric scale. Optionally,
our self-calibration method finds the rotation between the
multi-camera system and the gyroscope which is required
for rotating gyroscopic measurements from the gyroscope’s
reference frame into the multi-camera system’s reference
frame. We obtain this rotation by solving the rotational part
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of the hand-eye equation (Daniilidis, 1999) based on gy-
roscopic measurements and the orientations of the multi-
camera system which are estimated as a by-product by the
self-calibration method.

We also come up with a novel method for motion esti-
mation with a multi-camera system based on the generalized
camera model (Pless, 2003). We propose a 3-point minimal
and linear algorithm for motion estimation that uses rela-
tive rotation angle measurements to recover the relative mo-
tion with metric scale. Scene point triangulation is not re-
quired here as we directly estimate the relative motion from
2D-2D feature correspondences. This algorithm is based on
the generalized camera concept that treats all cameras as a
single object. By assuming that the relative orientation is
known from relative rotation angle measurements, we sim-
plify our motion estimation algorithm such that we require 3
point correspondences instead of 17 point correspondences
to find a linear solution. As a result, our 3-point motion es-
timation algorithm is able to compute the relative motion
with a small number of computations. We obtain relative
rotation angle measurements from a 3-axis gyroscope. We
do not see the requirement of a 3-axis gyroscope as restric-
tive as this gyroscope is typically part of the inertial mea-
surement unit (IMU) commonly found on a MAV. To ob-
tain relative rotation angle measurements with respect to the
multi-camera system, we synchronize the gyroscope with
the multi-camera system, and obtain the rotation between
the reference frames of the multi-camera system and the gy-
roscope from our self-calibration method.

We incrementally build a graph of keyframes and con-
straints, and use the double-window optimization method
(Strasdat et al., 2011) to optimize this graph. This graph
optimization enables real-time on-board SLAM with loop
closures on a vision-based MAV, which to the best of our
knowledge, has not been shown before in published works.

This paper is an expanded version of our work in Heng
et al. (2014b). We provide additional details on our self-
calibration method and vSLAM implementation. Further-
more, we extend our self-calibration method for a multi-
stereo-camera system to a multi-camera system with at least
one calibrated stereo camera, and an arbitrary number of
calibrated monocular cameras. Additional experiments are
carried out to validate our self-calibration method for both
types of multi-camera systems, evaluate alternatives to our
self-calibration methods, and look at the impact of calibra-
tion errors on our vSLAM implementation.

2 Related Work

There is an extensive body of work on calibration for multi-
sensor systems. For tractability, we look at current state-of-
the-art methods that involve cameras. Kelly and Sukhatme
(2011) perform simultaneous self-calibration and visual-inertial

SLAM with a camera-IMU system. The calibration param-
eters are only accurate as long as the camera-IMU system
experiences constant excitation about all rotation and ac-
celeration axes of the IMU. Compared to online methods,
offline methods improve the accuracy of visual-inertial cal-
ibration. Furgale et al. (2013a) proposes an offline method
to find an accurate estimate of the transform and the tem-
poral offset between a camera and an IMU using a calibra-
tion pattern. This method makes use of temporal basis func-
tions for parameterization of continuous-time variables, and
continuous-time batch estimation. Similarly to Kelly and Sukhatme
(2011), the method requires excitation about all axes in or-
der for the calibration parameters to be accurate. Brookshire
and Teller (2012) adopt a hand-eye calibration approach in
which they calibrate a multi-sensor system based on relative
motion measurements with metric scale for each sensor. In
the case of the visual-inertial calibration approach applied to
multi-camera systems, we can calibrate each camera-IMU
pair, and infer the inter-camera transforms from the set of
camera-IMU transforms. Similarly, in the case of the hand-
eye calibration approach applied to multi-camera systems,
we can calibrate each pair of cameras, and infer the inter-
camera transforms. However, the estimated inter-camera trans-
forms may not be accurate as the calibration does not con-
sider explicit constraints between camera entities with non-
overlapping fields of view; these constraints are in the form
of 3D scene points mutually observed by such camera en-
tities at different times. In contrast, in our self-calibration,
we exploit these 3D scene points to obtain a more accurate
estimate of inter-camera transforms.

Carrera et al. (2011b); Harmat et al. (2012); Heng et al.
(2013) develop self-calibration methods for multi-camera
systems that are based on vSLAM. However, Carrera et al.
(2011b) only estimates the inter-camera transforms up to
scale. Harmat et al. (2012) solves the scale issue by using a
calibration pattern to infer metric scale. Their SLAM imple-
mentation tracks a mixture of calibration pattern landmarks
and natural features; the calibration pattern landmarks have
known 3D coordinates, and hence, are used as a bootstrap-
ping step for estimating the inter-camera transforms with
metric scale. Heng et al. (2013) uses odometry data to in-
fer metric scale; this method is restricted to ground robots
with odometry sensors, and is not applicable to a MAV. In
contrast, our self-calibration method requires neither a cal-
ibration pattern nor odometry data, and yet, is able to esti-
mate the inter-camera transforms with metric scale. This is
made possible by utilizing calibrated stereo. With our self-
calibration method, a robot can self-calibrate anywhere in
the field without the need for special calibration setups as
long as the stereo calibration parameters remain stable.

We explore existing work on SLAM with a multi-camera
system (Kaess and Dellaert, 2006; Kim et al., 2008; Car-
rera et al., 2011a; Harmat et al., 2012; Tribou, 2014). Kaess
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4 Lionel Heng et al.

and Dellaert (2006) solve an optimization problem compris-
ing pose-point constraints and odometry constraints in order
to obtain the pose of the multi-camera system, and do not
perform loop closure detection. Kim et al. (2008) models a
multi-camera system as a spherical camera. The drawback
with this spherical model is that the relative motion of the
system can only be estimated up to scale. Furthermore, they
do not show experiments with their multi-camera system
on unmanned aerial vehicles. Carrera et al. (2011a) uses a
forward-looking camera and a backward-looking camera on
a ground robot, and implements pose-graph SLAM based
on odometry data and loop closure detection. The absence
of bundle adjustment in any form limits the metric accuracy
of the map. Harmat et al. (2012) implements a multi-camera
version of PTAM on an airship equipped with three cam-
eras; two of these cameras have overlapping fields of view.
At the beginning, they initialize a map with metric scale us-
ing triangulated points from stereo. Subsequently, they in-
crementally build the map, and at the same time, perform
map-based localization. Tribou (2014) removes the require-
ment for overlapping fields of view from the multi-camera
implementation of PTAM. They rely on bundle adjustment
running in a dedicated mapping thread to gradually recover
metric scale. Initial scene point depths are not known with
high certainty, and hence, an initialized map does not have
accurate metric scale. Due to the cubic complexity of bundle
adjustment used by PTAM, the approaches of Harmat et al.
(2012); Tribou (2014) do not scale to large environments. In
addition, both approaches do not perform loop closures.

The described existing work on SLAM models the mul-
tiple cameras as separate entities. There is a body of work
(Grossberg and Nayar, 2001; Pless, 2003) that proposes a
single general camera model to model multiple cameras as a
single entity. In this model, pixels observed in a camera are
represented as lines that intersect the projection center and
the 3D point corresponding to the pixel. In Schweighofer
et al. (2008), an alternative and more efficient approach to
bundle adjustment is proposed for a multi-camera system
using the general camera model proposed by Grossberg and
Nayar (2001). Given initial estimates of the multi-camera
system poses, the 3D feature points are linearly estimated in
closed-form. In turn, they optimize the translational compo-
nents of the multi-camera system poses by solving a closed-
form linear problem, before optimizing the rotational com-
ponents by solving the absolute orientation problem. This
approach requires initial estimates of the multi-camera sys-
tem poses, and if the initial estimates are poor, many itera-
tions are needed to reach convergence. In contrast, the gener-
alized camera model proposed by Pless (2003) is more well-
established; a considerable number of works (Stewénius et al.,
2005; Li et al., 2008; Lee et al., 2013a,b) use the generalized
camera model. In our work, we use this generalized camera
model.

We choose between motion estimation and pose esti-
mation techniques when computing the current pose of the
MAV. Motion estimation involves computing the relative mo-
tion between two frames from 2D-2D feature correspon-
dences. Pose estimation involves computing the pose with
respect to either a past frame or a map using 2D-3D fea-
ture correspondences. For motion estimation with a multi-
camera system, we can estimate the relative motion with
metric scale as long as there are either inter-camera feature
correspondences from overlapping fields of view or signifi-
cant inter-frame rotations without overlapping fields of view.
Li et al. (2008) shows that in the case of only intra-camera
feature correspondences, and the relative rotation being an
identity matrix, the generalized epipolar constraint reduces
to the epipolar constraint which only allows us to recover
the relative pose up to scale. In contrast, wide overlapping
fields of views for each stereo camera on our MAV ensure
that we always have inter-camera feature correspondences,
and thus, are able to obtain pose estimates with metric scale
all the time. For pose estimation with a multi-camera sys-
tem, given a map with correct metric scale, we can estimate
the pose with metric scale from 2D-3D feature correspon-
dences. Lee et al. (2013a) proposes a 3-point non-linear al-
gorithm for pose estimation that returns up to 8 solutions. In
contrast, our 3-point motion estimation algorithm is signif-
icantly more computationally efficient as this algorithm is
linear and returns an unique solution. Although our 3-point
motion estimation algorithm requires relative rotation angle
measurements, we do not see this requirement as restrictive
as an IMU is generally available on a MAV and provides rel-
ative rotation angle measurements via a gyroscope. A num-
ber of works (Lee et al., 2014) exploit the vertical direction
information provided by the IMU to simplify motion esti-
mation algorithms; the vertical direction is not susceptible
to drift unlike gyroscopic measurements. However, the IMU
present on MAVs is of the MEMS type. We used a Vicon
motion capture system to compute the maximum error of
the vertical direction measured by the MEMS IMU on-board
our MAV platform; this maximum error is 3 degrees. As a
result, we did not get accurate relative pose estimates from
using the known vertical in our motion estimation algorithm.

We then look at vision-based MAVs that run real-time
visual odometry algorithms on-board. Schauwecker and Zell
(2014) deploy one downward-looking stereo camera and one
forward-looking stereo camera on a MAV, independently es-
timate the MAV’s pose from each camera, and fuse both
pose estimates. In contrast, we use all cameras to obtain a
single pose estimate. Weiss et al. (2013) utilizes both an
IMU and downward-looking camera together with a mod-
ified version of PTAM to estimate the MAV’s pose, and in-
fer metric scale from accelerometer measurements. Schmid
et al. (2013) uses a FPGA board to compute depth maps
from a forward-looking stereo camera and relies on stereo
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visual odometry for pose estimation. Shen et al. (2013) uses
a forward-looking stereo camera with fish-eye lenses. Here,
they use gyroscopic measurements to filter out incorrect fea-
ture correspondences, and uses a local map to estimate the
MAV’s pose. We note that the visual odometry in all dis-
cussed works is susceptible to drift as loop closure detection
is not carried out. To the best of our knowledge, there is no
published work on real-time on-board SLAM with loop clo-
sures for vision-based MAVs.

3 MAV Platform

We use a AscTec Firefly equipped with an Intel Core i7
single computer board and the ROS1 framework for mes-
sage transmission. The IMU on the AscTec Firefly is time-
synchronized to the single computer board. A VRmagic D3
four-camera system is mounted on the AscTec Firefly. In
this multi-camera system, each camera is connected to an
ARM Cortex A8 board via a proprietary cable. A Lensagon
1.5 mm f/2.0 fish-eye lens with a 185◦ field of view is fit-
ted to each camera. The IMU on the AscTec Firefly sends a
periodic trigger signal at 15 Hz to the ARM board which
then grabs pixel-synchronous 754×480 monochrome im-
ages from all four cameras. Each time a trigger is sent, the
IMU publishes inertial data. In this way, we facilitate inertial-
visual fusion by making inertial information available for
each image. Furthermore, all sensor measurements are times-
tamped with respect to the system clock on the single board
computer. On the ARM board, we use the RTI Connext DDS
middleware2 to transmit image data over an Ethernet con-
nection to the single computer board. We note that this high-
bandwidth image transmission is not possible with ROS as
ROS is only able to publish a maximum of 15 images per
second on the ARM board given the computational con-
straints of the ARM processor. Still, we leverage ROS for
all other message transmissions due to the wide variety of
libraries and ease of use that ROS offers for message data
manipulation.

To enable autonomous flight, we use the state estimation
framework from Weiss et al. (2013) for robust pose estima-
tion by fusing both inertial data from the IMU and pose data
from vSLAM.

For the purpose of brevity, we define the following sym-
bols to be used in this paper. We define a n-camera system
to contain cameras C1, . . . ,Cn. In this multi-camera system,
there are s stereo cameras and m monocular cameras such
that 2s+m = n. Each stereo camera Si comprises the cam-
era pair {C2i−1,C2i} for 1 ≤ i ≤ s. Likewise, each monocu-
lar camera M j corresponds to camera C2s+ j for 1 ≤ j ≤ m.
For each camera Ci, we denote its intrinsics as KCi , and its

1 http://www.ros.org
2 https://www.rti.com/products/dds/index.html

extrinsics with respect to the IMU’s reference frame V as
[RCi , tCi ]. No overlapping fields of view are assumed to ex-
ist between any two camera entities belonging to the set
{S1, . . . ,Ss,M1, . . . ,Mm}.

4 Self-Calibration

Our self-calibration method utilizes vSLAM with natural
features, and accurately estimates the inter-camera transforms
for a multi-camera system with at least one calibrated stereo
camera and any number of calibrated monocular cameras.
Furthermore, our self-calibration method is able to estimate
the rotation between the reference frames of the multi-camera
system and a 3-axis gyroscope. This rotation is required for
rotating the gyroscopic measurements from the gyroscope’s
reference frame into the multi-camera system’s reference
frame. One by-product of the self-calibration is a metrically
accurate and globally consistent map which can be used for
map-based localization (Sattler et al., 2011; Lim et al., 2012)
and infrastructure-based calibration (Heng et al., 2014a).

Figure 2 shows the pipeline underlying the self-calibration
method. For all stereo and monocular cameras, we perform
stereo and monocular visual odometry (VO) respectively.
Using the poses of stereo camera S1 estimated by stereo VO
as a reference, and the poses of all other cameras estimated
by VO, step 1 gives us an initial estimate of the transform
between S1 and each of all other cameras. In steps 2-5, we
improve these initial estimates by finding 3D scene points
mutually observed by camera entities, and using these scene
points as a prior to recover accurate inter-camera transforms.
Step 2 merges maps from all cameras into a single map.
In steps 3-4, we obtain globally consistent pose estimates
for the multi-camera system. In addition, we obtain inter-
camera feature correspondences in the form of loop clo-
sures classified as correct. These feature correspondences
provide a strong prior for accurate inter-camera transforms,
and in step 5, allow us to recover an accurate estimate of
the inter-camera transforms. Step 6 which is an optional
step yields the rotation between the reference frames of the
multi-camera system and the gyroscope.

4.1 Monocular and Stereo Camera Calibration

Our self-calibration method assumes that each camera en-
tity is calibrated. In this step, we calibrate all monocular
and stereo cameras that constitute the multi-camera system.
We use the unified projection model and plumb bob distor-
tion model (Mei and Rives, 2007) to model the camera in-
trinsics. In our chessboard-based calibration, we detect the
chessboard in each image, and after a minimum number of
chessboards is detected, we use the method in Mei and Rives
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Fig. 2 Our self-calibration pipeline estimates the inter-camera trans-
forms and camera-gyroscope rotations.

(2007) to find the initial values for the camera poses and in-
trinsic parameters. In the case of a monocular camera, we
subsequently use non-linear refinement to optimize the in-
trinsic parameters and monocular camera poses. In the case
of a stereo camera, from the camera poses, we infer the
stereo camera poses and the stereo transform between the
two cameras, and subsequently, use non-linear refinement to
optimize the intrinsic parameters, stereo camera poses, and
the stereo transform.

4.2 Extrinsic Self-Calibration

4.2.1 Stereo VO

In this step, each stereo camera builds its own map. For each
stereo frame, we use the CenSurE feature detector (Agrawal
et al., 2008) implemented in OpenCV to detect features in
each image. For each feature, we compute both the ORB fea-
ture descriptor (Rublee et al., 2011) and the backprojected
unitary ray. We match features between the two images, and
for each feature match with corresponding backprojected
rays (r1,r2), if r2

T Er1 is less than a threshold where E is
the essential matrix representing the stereo transform, we
mark the feature match as valid and triangulate the feature
match.

We define the reference frame of the stereo camera pair
{Ci,Ci+1} to be that of camera Ci. To compute the current
pose of the stereo camera, we find 2D-3D correspondences
between the first images of the previous and current stereo
frames, and use the P3P method (Kneip et al., 2011) to-
gether with RANSAC to find the pose that corresponds to
the highest number of inlier correspondences. We optimize
the pose via sliding window bundle adjustment. Here, each
error residual is equivalent to the dot product between the
observed backprojected ray and the ray passing through the

camera center and the 3D scene point. This dot product is
faster to compute compared to the image reprojection error.

4.2.2 Monocular VO

As in the previous step, each monocular camera builds its
own map. However, this map is only up to scale. For each
frame, we use the CenSurE feature detector and ORB fea-
ture descriptor to detect features and compute their descrip-
tors respectively. At the same time, we compute the back-
projected unitary ray for each feature. We use the five-point
algorithm (Nister, 2004) together with RANSAC to compute
the relative camera motion between the first two frames, and
then, use the estimated relative camera motion to triangu-
late the inlier feature correspondences found from the five-
point algorithm coupled with RANSAC. At each subsequent
frame, we use the P3P method (Kneip et al., 2011) together
with RANSAC to compute the camera pose and identify in-
lier feature correspondences, and subsequently, apply slid-
ing window bundle adjustment.

4.2.3 Hand-Eye Calibration

In this step, we find an initial estimate of the transforms
between S1 and each of all other camera entities. Without
loss of generality, we assume that the reference frame of the
multi-camera system is the same as that of stereo camera S1,
which in turn, is the same as that of camera C1. Using the
optimized stereo camera poses for S1 and the poses of all
other camera entities from VO as input, we use the hand-eye
calibration method (Daniilidis, 1999) to find the transforms
between S1 and Si for 2 ≤ i ≤ s and the extended hand-eye
calibration method (Schmidt et al., 2005) to find the trans-
forms between S1 and M j for 1 ≤ j ≤ m. As a result, we
have an initial estimate for the pose of each camera entity
with respect to the multi-camera system’s reference frame.

4.2.4 Map Merging

In this step, we merge the maps from all cameras. At the be-
ginning, we set the poses of the multi-camera system to be
the same as those of S1 which were computed by stereo VO
described in Section 4.2.1. For each stereo and monocular
camera, we infer the camera poses by multiplying the in-
verse of the poses of S1 and the initial estimate of the trans-
form between S1 and that camera as computed by the hand-
eye calibration step described in Section 4.2.3. For each scene
point observed by a stereo camera Si for 2 ≤ i ≤ s, we re-
compute its 3D coordinates by multiplying the pose of Si
at which the scene point was first observed, and the stereo
3D coordinates with respect to Si and which were computed
during stereo triangulation in the VO step described in Sec-
tion 4.2.1. For each scene point observed by a monocular
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Self-Calibration and Visual SLAM with a Multi-Camera System on a Micro Aerial Vehicle 7

Fig. 3 We illustrate an example of loop closure detection between dif-
ferent camera entities for a multi-camera system comprising one stereo
camera and one monocular camera. A blue line represents the pose
graph while green lines represent loop closures.

camera M j for 1≤ j ≤ m, we recompute its 3D coordinates
by using stereo triangulation based on the poses associated
with the first two frames the scene point was observed in.
Non-linear refinement is used to optimize the inter-camera
transforms and scene points; here, the poses of the multi-
camera system are kept fixed.

4.2.5 Loop Closure Detection

The loop closure detection step is the first of the next three
steps that together make the merged map built by the multi-
camera system globally consistent. Furthermore, we use de-
tected loop closures as a strong prior for recovering accurate
inter-camera transforms in the joint optimization step. In this
loop closure detection step, we detect loop closures within
stereo cameras Si for 1 ≤ i ≤ s, within monocular cameras
M j for 1≤ j≤m, and between different camera entities. For
the first image in each frame associated with a camera entity,
we find the n most similar images, and we filter out matched
images whose timestamps are too close to the that of the
query frame. This is to avoid unnecessary linking of adja-
cent frames. Again, we use the P3P method (Kneip et al.,
2011) together with RANSAC to find an inlier set of 2D-3D
correspondences for each of the n images. We add a loop
closure between the query frame and the frame which has
the highest number of 2D-3D correspondences provided that
this number exceeds a threshold. Figure 3 shows an example
of detected loop closures between different camera entities
that make up a multi-camera system containing one stereo
camera and one monocular camera.

4.2.6 Robust Pose Graph Optimization

This step finds correct loop closures. From loop closures
identified as correct, we obtain feature correspondences be-
tween different camera entities, and these feature correspon-
dences allow the joint optimization to recover an accurate
estimate of the transforms between the camera entities. At

the same time, we obtain globally consistent estimates of
the poses of the multi-camera system which are a better ini-
tial guess for bundle adjustment compared to the reference
poses of S1 estimated by stereo VO and which have drift.
Hence, better convergence is achieved in bundle adjustment.
We build a pose graph in which the nodes are the poses of
the multi-camera system, and edges between nodes corre-
spond to measurements of relative 6D transforms obtained
from either VO or loop closures. We use the approach in Lee
et al. (2013c) to simultaneously optimize this pose graph,
and classify loop closures as either correct or wrong. Dur-
ing the pose graph optimization, each scene point is rigidly
attached to the first pose at which the scene point was first
observed. At the end of the optimization, the scene points
are consistent with the new poses. Furthermore, we merge
pairs of duplicate 3D scene points corresponding to correct
loop closures.

4.2.7 Joint Optimization

We jointly optimize the camera extrinsics, camera poses,
and 3D scene points while keeping the stereo transforms
fixed. In the joint optimization, we minimize a cost func-
tion which is the sum of squared image reprojection errors
of the 3D scene points:

min
Kc,Pi,Tc,Xp

∑
c,i,p

wpρ
(
‖∆zc,i,p‖2) , (1)

where

∆zc,i,p = π(Kc,Pi,Tc,Xp)−pcip. (2)

π is a projection function that predicts the image coordi-
nates of the scene point Xp seen in camera c given the cam-
era’s intrinsic parameters Kc, the multi-camera system pose
Pi, and the transform from the camera frame to the multi-
camera system frame Tc. pcip is the observed image coordi-
nates of Xp seen in camera c with the corresponding multi-
camera system pose Pi. ρ is a robust cost function used for
minimizing the influence of outliers.

3D scene points observed by multiple camera entities
usually make up a small percentage of all scene points in the
map. In our experiments, scene points observed by multi-
ple camera entities make up approximately 10% of all scene
points. To ensure that these scene points make a significant
contribution to accurate estimation of the inter-camera trans-
forms, we assign a higher value to wp for feature observa-
tions that are associated with such scene points. Figure 4
illustrates an example of joint optimization for a two-stereo-
camera system. We observe in this figure that the joint op-
timization correctly smooths out the jerky portions of the
MAV’s trajectory which are enclosed in blue circles. The
jerky portions occur because of few features observed by
the reference stereo camera S1 in the area which lead to the
estimation of poses with high uncertainty for S1.
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8 Lionel Heng et al.

(a)

(b)

Fig. 4 We show an example of joint optimization for a two-stereo-
camera system. (a) and (b) show the map before and after joint opti-
mization respectively. Blue circles enclose portions of the MAV’s tra-
jectory which were jerky before the joint optimization and smooth after
the joint optimization.

4.2.8 Hand-Eye Calibration

We find the rotation between the reference frames of the gy-
roscope and the multi-camera system by linearly solving for
the rotational component of the hand-eye equation (Dani-
ilidis, 1999). After the hand-eye calibration, we have the es-
timates of the camera-gyroscope rotations.

5 Visual SLAM

In this section, we describe the algorithms used in our keyframe-
based vSLAM implementation. We propose a novel 3-point
algorithm to estimate the relative motion of the MAV with
metric scale and with respect to the current keyframe. As
this 3-point motion estimation algorithm makes use of the
relative rotation measurement from the gyroscope via short-
term integration of gyroscopic measurements, the accuracy
of this relative rotation measurement with respect to the cur-
rent keyframe drops over time due to gyroscopic drift. Hence,
after a certain period of time during which there is no new
keyframe, we switch to the pose estimation method (Lee
et al., 2013a) which is also based on the generalized camera
model and uses 3 correspondences. This period of time de-
pends on the maximum gyroscopic drift between two frames
and at which the motion estimation algorithm still performs
reasonably well. In our case of a MEMS gyroscope with
considerable drift, the time period for switching over from
motion estimation to pose estimation in the absence of new
keyframes is 1 second. This time period can be longer if we
use a better-quality gyroscope such as a fiber-optic or ring-
laser gyroscope, or use a filter on-board the MAV to esti-
mate the gyroscopic drift and corrected gyroscopic measure-
ments. Our motion estimation technique is far more compu-
tationally efficient than the pose estimation technique. Fur-
thermore, our motion estimation algorithm is linear and com-
putes one unique solution, while the pose estimation algo-
rithm is non-linear and returns up to 8 solutions. A compu-
tational analysis reveals that the number of arithmetic op-
erations required by the pose estimation algorithm is a very
high multiple of that required by the motion estimation algo-
rithm on the order of ten thousands. In addition, our motion
estimation algorithm does not require scene point triangula-
tion unlike the pose estimation algorithm which requires a
set of 3D point landmarks. However, the pose estimation al-
gorithm does not assume prior knowledge of the inter-frame
rotation unlike the motion estimation algorithm.

We mark the current frame as a keyframe if the num-
ber of correspondences falls below a threshold. Over time,
we incrementally build a graph of keyframes and constraints
obtained from both visual odometry and loop closures. We
choose the double-window optimization method (Strasdat
et al., 2011) to optimize the graph as the ability of this method
to run in constant time makes real-time vSLAM on-board a
MAV feasible.

5.1 Motion Estimation

Here, we describe in depth our novel 3-point algorithm for
motion estimation based on the generalized camera model.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Self-Calibration and Visual SLAM with a Multi-Camera System on a Micro Aerial Vehicle 9

5.1.1 Generalized Epipolar Constraint (GEC)

Pless (2003) introduced the generalized camera model for
a multi-camera system which allows for non-central projec-
tion. In this model, we replace each image pixel x in camera
Ci with a ray expressed as a Plücker line 6-vector L that
passes through the camera center of Ci and the normalized
image point x̂ = K−1

Ci
x:

L =
[
qT q′T

]T
, (3)

where q and q′ are the direction and moment vectors:

q = RCi x̂, q′ = tCi ×q. (4)

We write the GEC (Pless, 2003) as

L2
T
[

E R
R 0

]
︸ ︷︷ ︸

EGC

L1 = 0, (5)

where L1↔ L2 are two Plücker line vectors representing a
ray correspondence between two generalized camera frames
V1 and V2, and EGC is the 6×6 generalized essential matrix
in which the first item is the conventional essential matrix
E = [t]×R where R and t are the rotation and translation
from V1 to V2. We note that for the conventional essential
matrix, t is computed only up to scale, but for a general-
ized camera, the scale of t can be computed as shown in
Li et al. (2008). In the degenerate case of no inter-camera
feature correspondences and R being an identity matrix, the
scale of t cannot be recovered. However, the assumption
that the multi-camera system on a MAV includes at least
one calibrated stereo camera ensures that there exists at least
one wide overlapping field of view, and that, in turn, inter-
camera feature correspondences are always present. Thus,
we are always able to compute the scale of t.

5.1.2 Minimal 3-Point Algorithm

We estimate R from short-term integration of gyroscopic
measurements between the two frames V1 and V2. Substitut-
ing L1 = [qT

1 q′1
T ]T and L2 = [qT

2 q′2
T ]T into and rearranging

equation 5 in the form At = b, we get

qT
1 RT [q2]×︸ ︷︷ ︸

A

t =−qT
1 RT q′2−q′1

T RT q2︸ ︷︷ ︸
b

. (6)

As t has three unknown variables, we require 3 Plücker line
correspondences to solve for t. Given 3 Plücker line corre-
spondences, we construct the 3×3 matrix

C =
[
AT

1 AT
2 AT

3
]T

, (7)

and the 3-vector

D =
[
b1 b2 b3

]T
, (8)

Table 1 Comparisons of total number of iterations needed for
RANSAC (w = 0.5 and p = 0.99)

Algorithm # RANSAC
Iterations # Solutions Total

Minimal 3-Point 34 1 34
Minimal 6-Point
(Stewénius et al.,

2005)
292 64 18688

Linear 17-Point
(Pless, 2003) 603606 1 603606

and solve the system of linear equations Ct = D to obtain
t. We note that this 3-point algorithm is linear and does not
require scene point triangulation.

5.1.3 Robust Estimation

We make our 3-point algorithm robust to outliers by imple-
menting it within RANSAC. We determine the best solution
by choosing the solution that has the highest number of in-
liers.

The number of iterations k needed in RANSAC for a n-
point algorithm is given by k = ln(1−p)

ln(1−wn) , where n is the num-
ber of correspondences, w is the probability that any selected
correspondence is an inlier, and p is the probability that all
the selected correspondences are inliers. The total number
of iterations m needed to run RANSAC while evaluating s
solutions is given by m = k× s. Table 1 shows the number
of iterations required by our 3-point algorithm; for compar-
ison, we include the 6-point minimal solution (Stewénius
et al., 2005) and linear 17-point solution (Pless, 2003) to
the GEC problem. We observe that our 3-point algorithm
requires much fewer iterations compared to the 6-point and
17-point solutions; in other words, our 3-point algorithm is
computationally efficient to a large degree when estimating
the relative motion. We then optimize the relative motion
estimate returned by RANSAC using non-linear refinement
and the inlier set of correspondences associated with the rel-
ative motion estimate.

5.2 Pose Estimation

When there is no new keyframe for some time, the relative
rotation measurement between the current keyframe and the
current frame becomes inaccurate due to gyroscopic drift,
and using such rotation measurements will cause our 3-point
algorithm for motion estimation to return inaccurate esti-
mates. In this case, we switch to the pose estimation al-
gorithm (Lee et al., 2013a) based on 3D scene points ob-
served in the current keyframe. In our implementation, we
switch to the pose estimation algorithm if there is no new
keyframe for 1 second. In this pose estimation algorithm,
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we require only 3 correspondences to recover the absolute
pose associated with the current frame. The pose estimation
algorithm returns up to 8 solutions, but in most cases, 2 so-
lutions are returned. As in motion estimation, we use the
RANSAC framework for robustness to outliers, and to find
the best solution that corresponds to the highest number of
inliers.

5.3 Location Recognition

To ensure that the map in the immediate vicinity of the MAV
is globally consistent, we find loop closures. We use the
same loop closure detection technique discussed in Section
4.2.5 to find loop closures.

5.4 Optimization

For graph optimization, we use the double-window optimiza-
tion method (Strasdat et al., 2011) which we implement us-
ing Google’s Ceres Solver (Agarwal et al., 2013). In double-
window optimization, we simultaneously optimize both an
inner window and outer window which correspond to sets of
pose-point constraints and sets of pose-pose constraints re-
spectively. For robustness to outliers, we use the Huber and
Cauchy robust cost functions respectively for the inner and
outer windows. We make one modification to the double-
window optimization such that we include residuals, each
of which corresponds to the error between the vertical di-
rection associated with the MAV’s estimated pose and the
vertical direction measurement from the accelerometer. This
modification ensures that the map is aligned with the ground
plane.

6 Experiments and Results

We conduct experiments to evaluate the accuracy of our self-
calibration method and vSLAM implementation. We use a
Vicon motion capture system in most experiments for the
sole purpose of collecting ground truth data. The results of
these experiments are described in detail in this section.

6.1 Self-Calibration

We use a Vicon motion capture system to evaluate the ac-
curacy of the parameters estimated by our self-calibration
method. To obtain ground-truth estimates, we devise a Vicon-
based calibration method in which we use the Vicon system
to track the pose of both the MAV and a chessboard moving
across the field of view of each camera. Hence, the transform
between the chessboard and MAV is known at any time step.

From intrinsic camera calibration which also computes the
camera poses with respect to the chessboard, we obtain an
initial guess of both the intrinsic camera parameters and the
transform between each camera and the MAV. We optimize
these intrinsic parameters and camera-MAV transforms via
non-linear refinement. From Vicon pose measurements and
gyroscopic measurements, we perform a hand-eye calibra-
tion to find a ground-truth estimate of the rotation between
the reference frames of the MAV and the gyroscope.

We apply our self-calibration method to varying multi-
camera system configurations, and compare the estimated
calibration parameters against the ground-truth calibration
parameters estimated by the Vicon-based calibration. Prior
to running our self-calibration method, we separately cali-
brate each camera entity on the MAV. For each run of self-
calibration, we carry the MAV along a figure-8 path several
times while varying the orientation of the MAV. During this
manoeuvre, the MAV’s heading is roughly parallel to the di-
rection of motion. This figure-8 manoeuvre ensures that we
get a high number of loop closures, and in turn, feature cor-
respondences between different camera entities, and thus,
ensures that the self-calibration method produces accurate
calibration parameters. Any other manoeuvre is useful pro-
vided that each camera entity has observed most parts of
the environment by the end of the manoeuvre, and there are
many loop closures as a result. By varying the orientation of
the MAV continuously, we ensure that the rotation between
the reference frames of the multi-camera system and gyro-
scope is fully observable. The calibration parameters are not
fully observable if there are no or few loop closures between
camera entities or the 3-axis gyroscope is not sufficiently ex-
cited around all 3 rotation axes.

In addition, we evaluate alternatives to our self-calibration
method: hand-eye calibration and camera-IMU self-calibration.
We compare our self-calibration method to these methods
in terms of the accuracy of the estimated inter-camera trans-
forms.

6.1.1 Multi-Camera System With Two Stereo Cameras

We apply our self-calibration method to our MAV whose
multi-camera system comprises two stereo cameras. The figure-
8 manoeuvre took 90 seconds and the travelled distance was
54.16 m. Our self-calibration took 16 minutes, and the re-
sulting average reprojection error associated with the gener-
ated map was 0.659 pixels. The map had 23957 scene points
with an average scene point depth of 4.36 m.

We report in the first column of Table 2 the estimated
rotation in terms of roll, pitch, and yaw angles, and transla-
tion of camera Ci with respect to camera C1 for i = 2,3,4.
We also report the estimated rotation of camera C1 with re-
spect to the gyroscope. The second column of Table 2 shows
the differences between the estimated rotations/translations
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Table 2 Comparison of our estimated inter-sensor transforms from the
self-calibration method with ground-truth estimates from the Vicon-
based calibration method. iR j is the rotation given in roll, pitch, and
yaw angles between sensors i and j. it j is the translation between sen-
sors i and j.

Our self-calibration Difference with
Vicon-based calibration

C1 RC2 [−0.06◦ 0.20◦ −1.39◦] [0.001◦ 0.035◦ 0.016◦]

C1 tC2 [31.89 −0.10 0.04] cm [0.15 0.01 0.11] cm

C1 RC3 [177.41◦ 0.85◦ 176.59◦] [0.177◦ 0.025◦ 0.029◦]

C1 tC3 [1.38 3.31 −28.21] cm [0.67 0.14 0.55] cm

C1 RC4 [176.20◦ 0.34◦ 177.63◦] [0.183◦ 0.060◦ 0.086◦]

C1 tC4 [32.66 1.47 −27.96] cm [0.73 0.06 0.61] cm

GY RORC1 [−94.09◦ 2.42◦ −92.07◦] [0.231◦ 0.050◦ 0.187◦]
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Fig. 5 We plot the robot’s (x,y)-position estimated by the self-
calibration against that measured by the Vicon motion capture sys-
tem. The calibration-estimated positions are colored in blue while the
Vicon-measured positions are colored in red.

and those estimated by the Vicon-based calibration method.
We observe that our estimated inter-camera transforms are
accurate with rotation and translation errors not exceeding
0.183◦ and 0.73 cm respectively.

We plot in Figure 5 the robot’s (x,y)-position both esti-
mated by our self-calibration method (colored in blue) and
measured by the Vicon motion capture system (colored in
red). Similarly, in Figure 6, we plot over time the robot’s z-
position both estimated by our self-calibration method (col-
ored in blue) and measured by the Vicon motion capture sys-
tem (colored in red). The average 3D position error is 1.28
cm, and this low error indicates that our self-calibration pro-
duces an accurate map, and in turn, accurate calibration pa-
rameters.
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Fig. 6 We plot over time the robot’s z−position estimated by the self-
calibration against that measured by the Vicon motion capture sys-
tem. The calibration-estimated positions are colored in blue while the
Vicon-measured positions are colored in red.

Table 3 Comparison of our estimated inter-sensor transforms for the
three-camera system configuration {C1,C2,C3} with ground-truth es-
timates from the Vicon-based calibration method. iR j is the rotation
given in roll, pitch, and yaw angles between sensors i and j. it j is the
translation between sensors i and j.

Our self-calibration Difference with
Vicon-based calibration

C1 RC2 [−0.06◦ 0.20◦ −1.39◦] [0.001◦ 0.035◦ 0.016◦]

C1 tC2 [31.89 −0.10 0.04] cm [0.15 0.11 0.11] cm

C1 RC3 [177.68◦ 1.12◦ 176.40◦] [0.091◦ 0.294◦ 0.224◦]

C1 tC3 [0.69 2.97 −28.66] cm [0.03 0.20 0.10] cm

6.1.2 Multi-Camera System With One Stereo Camera and
One Monocular Camera

We then verify our self-calibration algorithm for two dif-
ferent multi-camera system configurations, each of which
contains one stereo camera and one monocular camera. We
carry out two runs in which we self-calibrate a subset of the
four-camera system on the MAV. In the first run, we calibrate
the multi-camera system containing cameras C1, C2, and C3,
while in the second run, we calibrate the multi-camera sys-
tem containing cameras C1, C2, and C4.

For the first run with camera C4 excluded, we report in
the first column of Table 3 the estimated rotation in terms
of roll, pitch, and yaw angles, and translation of camera Ci
with respect to camera C1 for i = 2,3. The second column
of Table 3 shows the differences between the estimated rota-
tions/translations for the three-camera system configuration
and those estimated by the Vicon-based calibration method.
We observe that the rotation and translation differences are
minimal as they do not exceed 0.294◦ and 0.20 cm respec-
tively.

For the second run with camera C3 excluded, we report
in the first column of Table 4 the estimated rotation in terms
of roll, pitch, and yaw angles, and translation of camera Ci
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Table 4 Comparison of our estimated inter-sensor transforms for the
three-camera system configuration {C1,C2,C4} with ground-truth es-
timates from the Vicon-based calibration method. iR j is the rotation
given in roll, pitch, and yaw angles between sensors i and j. it j is the
translation between sensors i and j.

Our self-calibration Difference with
Vicon-based calibration

C1 RC2 [−0.06◦ 0.20◦ −1.39◦] [0.001◦ 0.035◦ 0.016◦]

C1 tC2 [31.89 −0.10 0.04] cm [0.15 0.01 0.11] cm

C1 RC4 [176.51◦ 0.30◦ 177.46◦] [0.135◦ 0.027◦ 0.259◦]

C1 tC4 [31.67 0.42 −28.49] cm [0.26 0.98 0.07] cm

Table 5 Comparison of our estimated stereo transform for the stereo
pair {C3,C4} with ground-truth estimates from the chessboard-based
stereo calibration method. iR j is the rotation given in roll, pitch, and
yaw angles between sensors i and j. it j is the translation between sen-
sors i and j.

C3 RC4
C3 tC4

Difference [0.04◦ 0.264◦ 0.046◦] [0.19 0.61 0.15] cm

with respect to camera C1 for i = 2,4. The second column
of Table 4 shows the differences between the estimated rota-
tions/translations for the three-camera system configuration
and ground-truth estimates from the Vicon-based calibration
method. We again observe that the rotation and translation
differences are minimal as they do not exceed 0.259◦ and
0.98 cm respectively.

As cameras C3 and C4 are a stereo pair, we compute the
transform between these two cameras using the estimated
transform C1TC3 between cameras C1 and C3 from the first
self-calibration run, and the estimated transform C1TC4 be-
tween cameras C1 and C4 from the second self-calibration
run. We then compare this estimated transform with that
estimated by the chessboard-based stereo calibration, and
tabulate the differences between the rotations/translations in
Table 5. The rotation and translation differences do not ex-
ceed 0.264◦ and 0.61 cm respectively. These small differ-
ences show that our self-calibration method is able to accu-
rately calibrate a multi-camera system that comprises both
stereo and monocular cameras.

6.2 Reduced Self-Calibration

We evaluate a reduced version of our self-calibration method
in which steps 2-5 from map merging to joint optimization
as shown in Figure 2 are not carried out. This reduced self-
calibration method is simply a hand-eye calibration which
uses relative pose estimates from visual odometry with each
camera entity to find the transform between each pair of
camera entities. We wish to compare the accuracy of our
self-calibration method with that of the reduced self-calibration

method, and determine whether steps 2-4 significantly in-
crease the accuracy of the calibration parameters at the cost
of added complexity. We apply the reduced self-calibration
method to each of the three multi-camera system configu-
rations {C1,C2,C3,C4}, {C1,C2,C3}, and {C1,C2,C4} that
were used in the previous evaluation of the self-calibration
method in Section 6.1. For each multi-camera system con-
figuration, we tabulate the differences between the estimated
rotations/translations and those estimated by the Vicon-based
calibration method in Table 6.

For the case of the multi-camera system configuration
with two stereo cameras {C1,C2} and {C3,C4}, we observe
that the maximum rotation and translation errors associated
with the inter-camera transforms estimated by the reduced
self-calibration method are approximately and respectively
200% and 40% higher than those associated with the self-
calibration method. For the case of the multi-camera system
configuration with one stereo camera and one monocular
camera, we observe that the rotation and translation errors
are much higher than those for the two-stereo-camera con-
figuration.

With depth and metric scale from stereo, stereo visual
odometry produces extremely accurate relative pose esti-
mates. Hence, hand-eye calibration with stereo visual odom-
etry poses as input will produce calibration parameters that
are slightly less accurate than ours. Steps 2-5 of the self-
calibration pipeline as shown in Figure 2 further optimize
these calibration parameters by utilizing loop closures be-
tween stereo cameras as a strong prior to recover accurate
inter-camera transforms during the joint optimization. In con-
trast, monocular visual odometry produces pose estimates
whose scale drifts over time. As hand-eye calibration esti-
mates a single scale value, hand-eye calibration with monoc-
ular visual odometry poses whose scale drifts over time will
produce rather inaccurate calibration parameters. These cal-
ibration parameters require further optimization in the forms
of steps 2-5 in the self-calibration pipeline. Step 2 locks the
poses of the monocular cameras to those of the reference
stereo camera. As a result, the initial unscaled poses from
monocular visual odometry now have metric scale. With these
scaled poses and loop closures between different camera en-
tities as a strong prior, accurate inter-camera transforms can
be recovered during the joint optimization.

6.3 Camera-IMU Self-Calibration

We use the implementation provided by Lynen et al. (2013)
to self-calibrate the two-stereo-camera configuration {C1,C2,C3,C4}.
To the best of our knowledge, Lynen et al. (2013) provides
the only publicly available implementation of camera-IMU
self-calibration which does not require a calibration target.
They use an extended Kalman filter to carry out online state
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Table 6 Differences between our estimated inter-sensor transforms from the reduced self-calibration method with ground-truth estimates from
the Vicon-based calibration method. iR j is the rotation given in roll, pitch, and yaw angles between sensors i and j. it j is the translation between
sensors i and j.

Configuration {C1,C2,C3,C4} Configuration {C1,C2,C3} Configuration {C1,C2,C4}

C1 RC2 [0.001◦ 0.035◦ 0.016◦] [0.001◦ 0.035◦ 0.016◦] [0.001◦ 0.035◦ 0.016◦]

C1 tC2 [0.15 0.01 0.11] cm [0.15 0.01 0.11] cm [0.15 0.01 0.11] cm

C1 RC3 [0.177◦ 0.570◦ 0.349◦] [0.003◦ 1.072◦ 0.378◦] -

C1 tC3 [0.98 0.42 0.23] cm [10.9 12.60 16.96] cm -

C1 RC4 [0.181◦ 0.598◦ 0.409◦] - [0.134◦ 2.552◦ 0.565◦]

C1 tC4 [1.02 0.67 0.59] cm - [29.89 17.72 21.15] cm

Table 7 Comparison of the transform between stereo cameras S1 and
S2 with the ground-truth estimate from the Vicon-based calibration
method. iR j is the rotation given in roll, pitch, and yaw angles between
sensors i and j. it j is the translation between sensors i and j.

S1 RS2
S1 tS2

Difference [1.622◦ 0.277◦ 1.285◦] [5.87 3.00 3.10] cm

estimation on a MAV. The MAV’s state includes the camera-
IMU transform. As stereo VO provides pose estimates with
metric scale, and to remove the effect of scale estimation on
the calibration parameters, we fix the scale component of
the state. Unlike our self-calibration method, an initial es-
timate of the state has to be provided beforehand to ensure
convergence.

Using the same dataset used by our self-calibration method
in Section 6.1.1, we use the online camera-IMU self-calibration
implementation to compute the transform between each stereo
camera and the IMU. In turn, we infer the transform be-
tween S1 and S2, and based on the ground-truth transform
estimated by the Vicon-based calibration method, we com-
pute the associated rotation and translation errors. We tabu-
late these errors in Table 7.

The rotational and translation errors associated with the
transform between S1 and S2 inferred from the estimated
stereo-camera-IMU transforms are considerably higher than
those associated with the estimates from our self-calibration
method. In Section 6.4, we evaluate the impact of the in-
creased calibration errors on the vSLAM performance, and
subsequently, discuss whether the impact is insignificant enough
to warrant the use of a camera-IMU calibration method in
place of our self-calibration method.

6.4 vSLAM

We conduct a combination of both simulation and real-world
experiments. The simulation experiments are designed to
provide a quantitative analysis of the accuracy of our 3-
point algorithm for motion estimation. Two real-world ex-

periments are carried out in different settings to verify the
accuracy of the poses estimated by our vSLAM implemen-
tation. In both real-world experiments, the MAV flies au-
tonomously by relying on pose estimates from vSLAM which
are input to the state estimator, and we manually send veloc-
ity commands to the MAV via a remote control. The MAV
is constantly on the move such that we rely heavily on our
3-point motion estimation algorithm rather than the pose es-
timation algorithm. In the first experiment, the MAV moves
along multiple loops in an indoor environment, and we use
the Vicon motion capture system to record the MAV poses.
In the second experiment, the MAV flies in a horizontal loop
in an outdoor environment, and we use the loop closure error
metric to evaluate the pose accuracy. Furthermore, we eval-
uate the impact of calibration errors on the vSLAM imple-
mentation. We carry out a simulation experiment to evalu-
ate the accuracy of our 3-point motion estimation algorithm
against a range of calibration errors, and a real-world ex-
periment to evaluate the pose accuracy of the vSLAM im-
plementation with calibration parameters from the camera-
IMU self-calibration method described in Section 6.3.

In all real-world experiments, the input to our vSLAM
implementation consists of 754×480 images from the four-
camera system together with inertial data, and our vSLAM
implementation runs at 7-12 Hz with the inner window size
and outer window size for the double-window optimization
set to 15 and 50 respectively.

6.4.1 Simulation Experiments

Here, we run simulations to quantify the accuracy of our
3-point algorithm for motion estimation, and compare the
accuracy against that of the 2-point algorithm based on the
Ackermann motion model (Lee et al., 2013b) and that of the
linear 17-point algorithm (Pless, 2003). In each simulation,
we use the same multi-camera system setup on the MAV.
For each trial, we generate a random relative motion (θ ,ρ)

where θ and ρ are the relative yaw and scale respectively of
the Ackermann motion defined in Lee et al. (2013b). θ and
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ρ are assigned random values in the ranges of [0.05,0.15]
radians and [0.25,0.75] m respectively. The 3D scene points
are randomly sampled from the range of [−10,10] m with
respect to the world reference frame. Point correspondences
are obtained by reprojecting the 3D scene points into the
cameras, and we ensure that each 3D scene point is seen by
at least one camera over two consecutive frames.

Figures 7(a) and 7(b) show the average rotation and trans-
lation errors over 1000 trials, and a range of pixel noise lev-
els between 0 and 1 pixels and with a 0.1 pixel interval. The
rotation error is defined as the norm of the Euler angles from
RR̃T , where R and R̃ are the estimated and ground truth ro-
tation matrices. Following Quan and Lan (1999), we define
the translation error as 2||t− t̃||/(||t||+ ||t̃||), where t and t̃
are the estimated and ground truth translations. We can see
that the errors from the linear 17-point algorithm are signif-
icantly higher, while the 2-point and our 3-point algorithms
similarly show low errors.

Figures 7(c) and 7(d) show the rotation and translation
errors over 1000 trials, and a range of relative rotation mea-
surement noise levels between 0 and 0.6 degrees and with an
interval of 0.1 degrees. The pixel noise is kept fixed at 0.5
pixels. At each relative rotation measurement noise level,
we collectively corrupt the relative roll, pitch, and yaw an-
gles with noise. We can see that the error from the linear
17-point algorithm is significantly higher than our 3-point
algorithm despite the fact that the relative rotation measure-
ment from the gyroscope is corrupted with noise. It is to be
noted that the gyroscope used on our MAV has a maximum
error of 0.1 degrees over two consecutive frames.

We also look at how each algorithm performs when we
allow relative motion along the z-axis, and here, the Ack-
ermann motion constraint is violated. Figures 7(e) and 7(f)
show the rotation and translation errors as we set the z-
component of the relative translation from 0 to 0.6 m with
a step of 0.1 m. The pixel noise is kept fixed at 0.5 pixels.
We can see that the errors from the 2-point algorithm in-
crease as the Ackermann constraint is increasingly violated.
In contrast, the errors from our 3-point algorithm remain rel-
atively constant, and at the same time, they are significantly
lower than the errors from the linear 17-point algorithm.

6.4.2 Indoor Experiment

In this indoor experiment, the MAV flies 3 loops over a dis-
tance of 45.48 m, starting each loop at an increasing height.
Figure 8 shows the state of the keyframe graph at the end of
the flight. In this figure, the keyframes belonging to the in-
ner and outer windows are marked with red and blue spheres
respectively. Green lines between keyframe pairs indicate
loop closures. Green points represent 3D scene points in the
map while yellow points represent 3D scene points observed
in the inner window. A blue line traces the keyframe posi-

Fig. 8 We show the keyframe graph at the end of a 3-loop flight in an
indoor environment. The red and blue spheres represent the keyframe
poses belonging to the inner and outer windows respectively. A blue
line traces the keyframe positions while a red line traces the corre-
sponding Vicon-measured positions.

Fig. 9 We increase the size of the outer window to include all
keyframes except those in the inner window. As a result, the keyframe
position accuracy increases, but the running time of the double-window
optimization now scales with the number of keyframes instead of being
constant.

tions as estimated by our vSLAM implementation. A red
line traces the corresponding Vicon-measured keyframe po-
sitions.

Based on Vicon measurements, the average error of the
110 keyframe positions is 6.34 cm. We observe that the er-
rors associated with the keyframes not belonging to either
the inner or outer windows, and especially at the boundary
of the outer window, are higher as these keyframes are not
included in the optimization.

We re-run the vSLAM implementation with real-time
playback of the data logged from this experiment, and make
one change to the double-window optimization such that the
outer window includes all keyframes except those in the in-
ner window. Figure 9 shows the state of the keyframe graph
at the end of the flight. As expected, the average error of
the keyframe positions decreases to 4.57 cm. However, with
this outer window setting, the double-window optimization
no longer runs in constant time, and thus, is not capable of
real-time performance.

The results show that by switching from optimization
over all keyframes to optimization with fixed-size inner and
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Fig. 7 Comparisons of rotation (rad) and translation (no units) errors from the Ackermann 2-pt, linear 17-point, and our 3-point algorithms in
simulation over (a)-(b) image pixel noise, (c)-(d) relative angular measurement noise with pixel noise fixed at 0.5 pixels, and (e)-(f) off Ackermann
motion along the z-axis with pixel noise fixed at 0.5 pixels.

outer windows, the accuracy of the keyframe positions slightly
decreases. However, the keyframe poses are still reasonably
accurate for tasks such as mapping and path planning.

6.4.3 Outdoor Experiment

In this outdoor experiment, we disable the loop closure de-
tection as we want to evaluate the pose drift in the absence
of loop closures. Here, the MAV flies one large loop on
hilly terrain, and both the start and end points are the same.
The flight time is 185 seconds, and the travelled distance is
112.98 m. At the end of the flight, the resulting keyframe
graph has 820 keyframes. Figure 10 shows the MAV’s path
estimated by our vSLAM implementation. In this figure, a
purple square and red circle mark the start and end points
of the flight. The distance between the start and end point is
3.31 m, and thus, the loop closure error is 2.93%.

6.4.4 Impact of Calibration Errors on vSLAM

Here, we evaluate the impact of calibration errors on our vS-
LAM implementation via simulation and real-world experi-
ments. In a simulation experiment, we look at the effect of
calibration errors on the pose accuracy of our 3-point motion
estimation algorithm. In a real-world experiment, we look at
the effect of calibration errors on the pose accuracy of the
overall vSLAM implementation that includes both motion
estimation and loop closures.

In the simulation experiment, we use the same two-stereo-
camera system setup on the MAV and the ground-truth cal-
ibration generated by the Vicon-based calibration method.
For each trial, we generate a random relative motion where

Fig. 10 In an outdoor experiment, we plot the (x,y) positions of the
MAV estimated by our vSLAM implementation. A purple square and
red circle mark the start and end points which are the same. Green dots
represent 3D scene points.

the Euler angles are randomly sampled from a uniform dis-
tribution of [0.05,0.15] radians and each translation com-
ponent is randomly sampled from a uniform distribution of
[0.25,0.75] m. 100 3D scene points are randomly sampled
from the range of [−10,10] m with respect to the world ref-
erence frame. Point correspondences are obtained by repro-
jecting the 3D scene points into the cameras, and we ensure
that each 3D scene point is seen by at least one camera over
two consecutive frames.

We use the same rotation and translation error metrics
used in the earlier simulation experiment in Section 6.4.1 to
quantify the effect of the calibration errors on the pose accu-
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racy of our 3-point motion estimation algorithm. We com-
pute a range of pitch errors in the rotation S1RS2 between
the two stereo cameras. This range is between 0 and 2 de-
grees with an interval of 0.1 degrees. Figures 11(a) and 11(b)
show the average rotation and translation errors over 1000
trials, and the range of pitch errors. Similarly, we compute a
range of y-translation errors in the translation S1 tS2 between
the two stereo cameras. This range is between 0 and 10 cm
with an interval of 0.5 cm. Figures 11(c) and 11(d) show the
average rotation and translation errors over 1000 trials, and
the range of y-translation errors. We observe from these fig-
ures that the pose accuracy of our 3-point motion estimation
algorithm is significantly more sensitive to rotation errors
in the calibration than translation errors in the calibration.
Furthermore, we observe that a given rotation error in the
calibration approximately corresponds to the same rotation
error in the relative pose estimated by the 3-point motion es-
timation algorithm. In general, higher calibration errors lead
to reduced accuracy of motion estimation. Hence, it is im-
portant that the calibration errors are kept to a minimum so
that the motion estimation algorithm can compute relative
poses with high accuracy; in turn, drift is minimized in the
absence of loop closures.

Using the ground-truth calibration generated from the
Vicon-based calibration method as the reference calibration
in simulations, the estimated relative pose using the calibra-
tion generated by our self-calibration method has a rotation
error of 0.00274 radians and a translation error of 0.0158
averaged over 1000 trials. The estimated relative pose using
the calibration generated by the camera-IMU self-calibration
method described in Section 6.3 has a rotation error of 0.035
radians and a translation error of 0.115 averaged over 1000
trials. It is apparent that the more accurate calibration asso-
ciated with our self-calibration method corresponds to more
precise motion estimation.

Calibration errors affect not only motion estimation but
also loop closures. Calibration errors lead to a globally in-
consistent map, and thus, leads to the inaccurate estimation
of loop closure transforms. In turn, the overall accuracy of
vSLAM is reduced. We look the impact of calibration er-
rors on the overall vSLAM performance in real-world set-
tings. We repeat the indoor experiment described in Section
6.4.2 and with constant-time double window optimization,
and re-use the data logged from that experiment. We use the
calibration parameters estimated by the camera-IMU self-
calibration method. Based on Vicon measurements, the av-
erage error of the keyframe positions is 11.83 cm which is
significantly higher than the average error of 6.34 cm asso-
ciated with our self-calibration method.

7 Conclusions

Our vSLAM-based self-calibration method produces accu-
rate extrinsic calibration parameters with metric scale for a
MAV with at least one stereo camera and any number of
monocular cameras. Overlapping fields of view are not as-
sumed to exist between any two camera entities. In addition,
we estimate the rotation between the reference frames of the
gyroscope and multi-camera system. This rotation facilitates
the use of gyroscopic measurements in our motion estima-
tion algorithm. We use real-world experiments to validate
our self-calibration method.

We quantify the accuracy of our 3-point motion esti-
mation algorithm through simulation experiments in which
we vary factors such as gyroscopic noise and pixel noise.
Through real-world experiments in both indoor and outdoor
experiments, we demonstrate real-time on-board vSLAM with
loop closures on a MAV with two calibrated stereo cameras.
There are no overlapping fields of view between these two
stereo cameras. The MAV is able to perform autonomous
flight based on the pose estimates from vSLAM. Further-
more, via both simulation and real-world experiments, we
show how an inaccurate calibration causes our vSLAM im-
plementation to produce degraded estimates of the MAV’s
pose. This demonstration supports the fact that our self-calibration
method outputs calibration parameters with the necessary
level of precision that is required for vSLAM with a multi-
camera system to estimate accurate poses.

There are several common factors that affect the accu-
racy of our self-calibration method and vSLAM implemen-
tation. We discuss these factors:

1. Number of features in the environment: few features limit
the accuracy of visual odometry and estimated loop clo-
sure transforms, and in turn, both the self-calibration and
vSLAM.

2. Number of temporal feature correspondences between
camera entities in the form of loop closures: the more
these correspondences, the more accurate the self-calibration
and the more globally consistent the map built by vS-
LAM. In the case of self-calibration, temporal feature
correspondences between camera entities act as a prior
for recovering accurate transforms between these cam-
era entities.

3. Distance of the scene points from the cameras: the nearer
the scene points to the cameras, the lower the uncertainty
of the estimated 3D coordinates, and the more accurate
the self-calibration and vSLAM.

4. Image resolution: The higher the image resolution, the
smaller the angle subtended by a pixel in a camera im-
age, and the more accurate the self-calibration and vS-
LAM. The 3D coordinates of scene points can be esti-
mated more precisely with a higher image resolution.
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Fig. 11 Comparisons of rotation (degree) and translation (no units) errors from our 3-point motion estimation algorithm in simulation over (a)-(b)
error in S1 RS2 , and (c)-(d) error in S1 tS2 .

5. Type of lens used: A wider-field-of-view lens such as a
fisheye lens increases the angle subtended by a pixel in a
camera image. As a result, scene points are triangulated
with higher uncertainty, and in turn, the self-calibration
and vSLAM are less accurate.

Future work will focus on improving the robustness of
vSLAM, and adding capabilities such as dense mapping and
3D exploration to our MAV platform. We plan to improve
the robustness of vSLAM by switching from motion estima-
tion to pose estimation in the event that there are no inter-
camera feature correspondences for the case of a MAV with
one stereo camera and one monocular camera. If the stereo
camera’s field of view is blocked by an object, there will
be no inter-camera feature correspondences. As a result, our
motion estimation method will only estimate the relative
motion up to scale if the relative rotation is close to iden-
tity. However, the monocular camera may continue to track
many features on the current map, meaning that 2D-3D fea-
ture correspondences are still available for the monocular
camera. To circumvent a possible failure of the motion es-
timation method in the absence of inter-camera correspon-
dences, we can use our pose estimation method to continue
localizing the MAV.
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