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Abstract— A high update rate of metric velocity values is
crucial for a robust operation of navigation control loops of
mobile robots such as micro aerial vehicles (MAVs). An efficient
way for obtaining metric velocity of robots without external
reference are image-based optical flow measurements, scaled
with the distance between camera and the observed scene. How-
ever, since optical flow and stereo vision are computationally
intensive tasks, metric optical flow calculations on embedded
systems are typically only possible at limited frame rate.
In this work, we therefore present an FPGA-based platform
with the capability of calculating real-time metric optical flow
at 127 frames per second and 376x240 resolution. Radial undis-
tortion, image rectification, disparity estimation and optical flow
calculation tasks are performed on a single FPGA without the
need for external memory. The platform is perfectly suited for
mobile robots or MAVs due to its low weight and low power
consumption.

I. INTRODUCTION
Mobile robots often require a constant update of their

state parameters such as position and velocity to operate au-
tonomously. In particular, autonomous micro aerial vehicles
(MAV) require high-rate and low-latency updates of their
current velocity to guarantee a successful flight operation [4].
Such navigational information can be obtained by inertial
navigation systems (INS) in conjuncture with GPS or by
the use of computer vision systems. Vision systems are very
versatile because they can extract a lot of information from
the environment and only need a few image sensors.

However, image sensors generate a high amount of data
which needs to be processed in real-time and at low-latency.
Hence, high computational power is necessary which con-
flicts with the often stringent limitations on energy consump-
tion and also on maximal weight and size. Computer vision
algorithms typically run in real-time only on high-end CPUs
or GPUs consuming a prohibitive amount of energy. Also,
the usage of CPUs increases processing latency which is
unwanted in feedback loops.

Field Programmable Gate Arrays (FPGAs) are a poten-
tial alternative to overcome the computational and latency
bottlenecks of real-time computer vision algorithms. FPGAs
have high computational performance but only consume a
fraction of the power compared to processor-based systems.
Low-level vision tasks can indeed be efficiently executed
on FPGAs [1]. Multiple camera streams can be handled
in parallel in real-time and at low latency due to pipelined
stream processing.

In this work, we show an FPGA system that performs
radial distortion correction, stereo rectification, depth esti-
mation, and optical flow at 127 stereo frames per second at

a resolution of 376x240 pixels. The obtained flow values are
scaled with the estimated depth values for each pixel, which
are used to determine the metric velocity of the camera with
respect to the observed scene. The system is implemented
with a low-end FPGA and provides accurate results.

A lot of computer vision algorithms have been success-
fully ported to dedicated hardware: FPGA systems that per-
form disparity estimation in real-time on high resolution [6],
ASIC implementations of stereo vision [2], and optical flow
estimation on FPGA [5]. [3] presents a combination of stereo
vision and optical flow on a GPU-FPGA system, targeted for
automotive driver assistance. All these systems are however
not targeted toward mobile robot operation. Very recently,
a low-power optical flow sensor for robot applications has
been presented [7]. We extend this work by increasing
computational performance and, more importantly, by adding
depth information for metric velocities.

In summary, the contributions of this work are as follows.
We first provide a summary of simple yet efficient and
well-performing algorithms that combined provide robust
metric optical flow values which can be used to calculate
metric velocities of a mobile robot. We show an efficient
FPGA architecture of all of these algorithms and provide key
results of the implementation. The resulting FPGA system is
low-power, low-latency, low-cost, and small in size an thus
perfectly suited for mobile robot applications. To validate
our system, we show our measurement setup and compare
our results to the results of a VICON system.

II. BACKGROUND

In this section, we summerize the relation between pixel-
based optical flow and metric velocity. Section III provides
more details on the employed algorithms for optical flow and
disparity estimation.

A. Basic Equations of the Optical Flow Field

The optical flow field is the projection of the 3-D velocity
field on the image plane. Let P = [X,Y,Z]> be a 3-D point
in the camera reference frame. The optical axis is the Z-axis,
f denotes the focal length and the projection center is in the
origin. The pixel coordinates of P on the image plane are
given by

p = f
P

Z
. (1)

Since the distance of the image plane to the origin is equal
to the focal length f, the third coordinate of p is constant



p = [x, y, f]>. The relative motion between P and the camera
is given by

V = −T − ω × P, (2)

where ω is the angular velocity and T the translational
component of the motion. The derivative with respect to time
of both sides of (1) leads to the relation between the velocity
of P in the camera reference frame and the velocity or the
flow of p in the image plane

flow

∆time
=̂ v = f

ZV −VzP

Z2
. (3)

Written in components and using (2) the optical flow field
is defined as

vx =
Tzx− Txf

Z
− ωyf + ωzy +

ωxxy − ωyx
2

f
(4)

vy =
Tzy − Tyf

Z
+ ωxf − ωzx +

ωxy
2 − ωyxy

f
. (5)

The components of the optical flow field are the sum of pure
translational and pure rotational parts. The rotational parts
are independent from Z and therefore the angular velocity
does not carry scene depth information.
The translational components in (4) and (5) are scaled with
the focal length and the current distance Z to the scene. In
situations where we are only interested in the translational
velocity, e.g., when the rotational veclocity is known or
constant, the translational velocity can be transformed into
metric scale

vm,trans = v
Z

f
= v

b

d
(6)

where b is the interaxial distance between the two cameras
and d the estimated disparity values. The combination of op-
tical flow values and depth estimation leads to a translational
velocity measurement per pixel in metric scale.

III. SYSTEM SETUP

The proposed system performs optical flow calculation
and depth estimation. Cameras are directly connected to an
FPGA, to process the image stream in real-time. An overview
of the setup is shown in Figure 1.
The computer vision module consists of three main blocks.
In the undistortion and rectification block, the images are
corrected to account for nonlinear lense distortion and verti-
cal position offsets of the left and right cameras. Inside the
stereo block, the disparity estimation is performed and finally
the flow block performs the optical flow calculation on one
of the rectified images.

A. Undistortion and Rectification Block

The undistortion and rectification is done using backward
mapping. The coordinates of the pixel in the target image are
distorted and then unrectified to get the information where
in the source image the corresponding pixel value is located.
This value is taken and interpolated into the new image. A
buffer is used to store the incoming source pixel values.
The undistortion as well as the rectification are warp op-
erations, which allows for combining them into just one
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Fig. 1. System overview, cameras are directly connected to the FPGA. The
video streams are undistorted and rectified in the Computer Vision Module.
Then disparity estimation and optical flow calculation is performed. The
flow values scaled with the corresponding distance are finally sent out.

operation.
The backward mapping outputs fractional coordinates. Bilin-
ear interpolation is used to get the new value at the desired
coordinate out of the four nearest neighbours. The final
output is the undistorted and rectified pixel data, where the
epipolar lines are aligned with the horizontal lines.

B. Stereo Block

After the undistortion and rectification, stereo matching
can be performed between the two corresponding images.
A bit-oriented cost computation is used based on a census
transform [8]. For each pixel in one image the best match
along the corresponding epipolar line in the other image is
selected within a search range of 32 pixels, which corre-
sponds to approximately 10% of the image width.
The different viewpoint of the two images can cause occlu-
sions, i.e., a point in one image is not visible in the other. To
prevent wrong matching results in such situations, a left-right
consistency check is performed and the inconsistent points
are rejected. A median filter of size three by three removes
spikes on the disparity output.

C. Flow Block

Optical flow is calculated between two successive frames.
Since the storage of one complete frame requires almost the
whole available embedded memory, the flow is not calculated
dense but on a downscaled grid. 36 rows and 23 columns
are stored, resulting in 828 intersection points where the
flow is calculated. Due to the reduced amount of points, the
complete flow calculation can be performed within the same
frame.
The rows and columns of the corresponding images are
stored separately and a correlation between the stored rows
and columns from the adjacent frames starts as soon as
enough data has arrived. A search range of ±7 pixels is
used for the 32 pixel wide correlation window. The resulting
horizontal and vertical optical flow is stored in a memory. A
sub pixel estimation, using parabola fitting, creates additional
accuracy in adding fractions to the ±7 pixel correlation
window result.
The ±7 pixels correspond to ±3.5 meters per second for an
object at two meters at 127 frames per second (fps), which
is enough for our application.



D. Components

The used image sensor is the MT9V032 CMOS sensor
from Aptina. The active imaging pixel array is 752Hx480V
with a pixel output clock of 25 MHz. This allows for up
to 60 fps running at full resolution. Using windowing or
pixel binning the frame rate can be further increased, by
downscaling the image.
A well-performing configuration mode is obtained by
binning rows and columns twice, since it reduces the
resolution to 376Hx240V, but improves sensitivity and
increases the frame rate to 127 fps.
A suitable FPGA development board, which is small and
light weight enough to allow tests on a mobile robot is the
DBM3C80 from DevBoards1, it is equipped with a Cyclone
III EP3C80 FPGA from Altera. There are enough I/O pins
to connect multiple cameras as well as an ethernet phy.

E. FPGA Infrastructure

Besides computer vision and communication, the FPGA
also performs maintenance tasks. The camera chips are
configured over an I2C interface to achieve the desired
resolution and frame rate. An ethernet link is used to transmit
velocity values as well as processed images to a PC for debug
and visualization purposes. A Nios II soft-core CPU from
Altera is instanced within the FPGA to perform these tasks.

IV. FPGA ARCHITECTURE

In the following, we describe the FPGA architecture of
the computer vision algorithms.

A. Undistortion and Rectification

For each frame, a coordinate counter steps uniformly up
to the output resolution. To produce the target coordinate,
the coordinates are distorted and unrectified according to
the backward mapping algorithm. The resulting coordinate is
used to get the corresponding pixel value out of the source
pixel buffer. Since the calculated coordinates do not point
exactly at one pixel position, the four nearest neighbouring
pixels are combined using bilinear interpolation to the final
corrected pixel value.
The design is fully pipelined and runs at 25 MHz pixel
clock. The divisions inside the rectification are done using
pipelined divison cores from Altera to achieve the required
throughput of 25 MHz. The precision of the custom fixed-
point arithmetic is designed to fit inside the available 18x18-
bit multipliers of the FPGA.
To enable parallel readout of four neighbouring pixels in
each cycle, incoming pixels are stored column- and row-
interleaved in four separate buffers with a separate read/write
port each.

1www.devboards.de
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Fig. 2. Stereo module data path for a simplified disparity search range of
four pixels. Left and right image pixels are census transformed using a 7x7
window. The correlation is done in parallel, the last four right census vectors
are delayed for that reason. The disparity value is found at the minimal
Hamming distance. For robustness a 5x5 window of Hamming distances is
used where the minimum is searched out of the 11 bit total sum. A RL-
consistency check is performed to minimize error due to occlusions. Finally,
a 3x3 median filter removes spikes.

B. Disparity Estimation

The census transform creates a bit vector containing
information about a present pixel p and its neighbouring
pixels. The intensity values of the neighbouring pixels are
compared with the intensity of pixel p. The corresponding
bit in the census vector is set to zero or one depending on
whether the intensity is less or greater.
The dissimilarity between two census vectors is measured
with the Hamming distance, which is the number of bits
different in the two vectors. Perfect matching would get
a Hamming distance of zero, whereas completely different
vectors lead to a Hamming distance equal to the total number
of bits of one vector. The robustness can be increased using
a window of Hamming distances instead of using just one
to find the best match.
Figure 2 shows the data path inside the stereo module.
Because of the window-based processing of the census
transform a pixel and its neighbours need to be accessed
simultaneously. A set of registers, called window buffer, and
a set of line buffers are implemented to provide all of the
needed intensity values within one census transform.
The rectified and undistorted pixel values of the stereo
camera pair are streamed into the top left position of a
window buffer. This square dimensioned window buffer is
made out of shift registers, each of them capable to store
one pixel value. Each pixel clock the values are shifted one
position from left to right. The right-most column of the
window buffer is connected to line buffers. The line buffers
are capable to store one complete line minus the size of one



line of the window buffer. For the census transform a window
buffer with dimension of seven by seven pixels and six line
buffers are instanced for each camera. The shift registers in
the window buffer allow a simultaneous access to all the
pixels.
A total of 48 intensity compare operations are performed
in parallel for each camera to get the census vector of
the middle pixel within the seven by seven window. A
simple XOR operation between the census vectors from
both cameras results in a bit vector containing a ’1’ for
a difference in the two census vectors at that position or
a ’0’ for identity. Summing up this vector using an adder
tree leads to the Hamming distance of the two compared
pixel positions. Since the range of the Hamming distance
between two pixels can be from 0 to 48, six bits are needed
to represent it.
The disparity search is done finding the minimum Hamming
distance within the search range of 32 pixels. To produce
more robust results not the single Hamming distances are
compared, but windows of size five by five containing
Hamming distances.
All the correlation candidates are calculated in parallel. The
last 32 census vectors from the right image are delayed
and processed in parallel with the current census vector
from the left image. The resulting 32 Hamming distances
are compared within the five by five window. The window
containing the minimum Hamming distances in total is
selected as the best match. The coordinate difference from
the current pixel in the left image and the one in the right
with minimal sum of Hamming distances, represents the LR-
disparity result.
The search for disparity is performed form left to right.
To avoid wrong results caused by occlusions, every found
disparity needs to be cross-checked from right to the left.
The summations of the Hamming distances within the five
by five windows are therefore stored in 32 independent LR-
buffers. Since the disparity range is 0 to 31, the buffers need
to store ± 32 summations each.
The found LR-disparity defines the output order of the LR-
buffer to maintain the corresponding RL-candidates. The
location of the minimum RL-candidate represents the RL-
disparity. The difference between LR- and RL-disparity has
to be less than a predefined threshold value of two, to result
in a valid disparity output.
Using a total amount of 19 compare operations organized in
nine pipeline steps, the median value out of the nine possible
pixel values is found and sent out.
The design runs at a pixel clock of 25 MHz.

C. Flow

Figure 3 shows the data path of the optical flow module.
The incoming pixel data is first filtered with a five by five
gaussian filter mask. Horizontal and vertical gradients are
built afterwards and stored in separate memory blocks.
Since pixel data is streamed row by row, only one data point
for each vertical line arrives within one row.
Correlation is done for horizontal data first. Every time a
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Fig. 3. Data path of the flow calculation module. Data is first Gaussian
filtered, horizontal and vertical gradients are built afterwards. Both gradients
are stored separately in memory. Horizontal flow is calculated first, vertical
afterwards. The correlation is performed over a search range of 15 pixels in
total. Sub pixel estimation based on a parabola fit gives additional accuracy.

complete horizontal line is stored in memory, the correlation
stage performs the flow calculation at the 36 points within
this line. 32 multipliers are implemented in parallel with a
successive adder tree to allow a pipelined cross-correlation.
The search range is in total 15 pixels wide.
Incoming data from frame n stays the same, whereas data
from frame n-1 is shifted 15 pixels in total within one
correlation. 64 pixel values from frame n and 96 values
from frame n-1 are taken out of the memory to perform
the correlation at four points in series. This is repeated nine
times until the correlation is done at all 36 points in a row.
The correlation position resulting in the maximum value is
taken as the flow result.
The value of the maximum correlation and the precedent
and successive neighbour are used within the sub-pixel
estimation. Parabola fitting is performed to reach additional
four bits accuracy. Vertical data is processed as soon as the
first vertical line is complete in memory. The data is filled
into the correlation stage in the same way as in the horizontal
calculation.
Using dual port memory, the correlation stage can be clocked
independently from the other processes. The clock rate is
adjusted to finish all correlation calculations until the end of
the frame. The correlation is running at 75 MHz, whereas
the other parts of the design run at a pixel clock of 25 MHz.

V. RESULTS
The resulting system runs at 127 fps, calculates a dense

disparity map (376x240 pixels) and optical flow on 36*23
points. The overall latency is 30 lines that is 450 µs (micro
seconds) at 25 MHz pixel clock. Figure 4 (a) shows a picture
of the system with labeled main parts.
Velocity values, horizontal and vertical flow data and the
disparity images are sent to a host PC using the ethernet
link. The right undistorted and rectified image as well as the
corresponding disparity map output and the flow field are
shown in Figure 4 (b-d).

A. Implementation

The resource utilization on the Cyclone III FGPA is
provided in Table I. The design containing one disparity
estimation-block and one optical flow calculation-block fits



(a) (b)

(c) (d)
Fig. 4. Overview of the prototype system with labeled main parts in (a), right undistorted and rectified image (b), the output of the stereo module is
shown in (c), flow field (d)

TABLE I
USED RESOURCES OF STEREO SETUP AND FLOW CALCULATION,

IMPLEMENTED ON A CYCLONE III FPGA.

Module
Logic Embedded M9K 18-bit x

Elements Memory Blocks 18-bit
(Kbits) Multipliers

Flow 10273 272 34 16
Rectification& 3619 128 16 18Undistortion L
Rectification& 3656 128 16 18Undistortion R
Stereo 17577 342 83 0
Nios II 13122 153 45 2
Others 1408 88 14 0
Total 49655(49%) 1111(40%) 208(68%) 54(22%)

easily into the device.
The stereo module takes most of the used memory blocks
to support the 32 pixel disparity range. Rectification and
undistortion is performed with a line buffer of 40 lines, lenses
with more distortion or a camera setup with poorly aligned
cameras would require larger buffers.
However, 40 lines are sufficient in most practical situations.
The system runs at the incoming pixel rate (25 MHz), except
for the optical flow correlation stage, running at 75 MHz.
The FPGA consumes 2.8 Watt while performing optical flow
calculation and disparity estimation. One camera consumes
0.3 Watt.

B. Metric Velocity Measurement

A Vicon camera tracking system is used to verify the
measurements performed by the FPGA system. The Vicon
system is capable of measuring velocities in a metric scale
at up to 250 fps with high precision. This is fast enough to
verify the FPGA measurements at 127 fps.
In order to validate the obtained velocity estimates two
types of measurements are performed. First, pure rotational
velocity is evaluated by avoiding translational movements.
Second, pure translational velocities are evaluated by
moving the system along one axis.
Note that, for the use in navigation-control loops, rotational
movement is assumed to be zero or estimated and
compensated with an auxiliary sensor such as a gyroscope.

1) Rotation: The system is placed on a rotatable plane.
Angular velocity can be measured without distance scaling,
which allows for a verification of the optical flow results
without scaling with depth values. Without any translational
movement and fixed axes except one, the angular velocity
of the remaining axis is the measured flow scaled with the
focal length as shown in (4) and (5).
The maximum measurable angular rate with the used 508
pixels focal length lenses, 127 fps update rate and ±7 pixels
maximum flow is ±100 degrees per second. An average
over all optical flow points is taken as the resulting output.
The camera head is turned in front of a textured surface.
Results of the velocity estimates compared to the angular
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Fig. 5. Angular Rate Measurement, the camera is rotated in front of a
textured wall. Rate measurements from Vicon and FPGA in (a), error in
(b).

velocity obtained from the VICON system are shown in
Figure 5. Up to a velocity of 80 degrees per second the
system is quite accurate. Since each wrong correlation result
at measurements with maximum flow lowers the average over
all points, the measured velocity is underestimated at peaks.

2) Translation: The camera head including the FPGA is
horizontally placed on a cart and moved along one axis.
All other axes are fixed, to only allow one translational
movement. Measurements are done with different textures in
the scene and located at various distances to the camera head.
Flow and depth data are combined as shown in (6) to achieve
a metric per pixel velocity measurement. Points rejected from
the LR consistency check, caused by occlusions or the lack
of texture, are considered invalid and are thus neglected.
An average over all pixel velocities is taken as the resulting
velocity of the system.
Figure 6 shows the measured velocity of a translational
movement along textured planes at various distances. Due
to the independent scaling of the flow points with the
corresponding distance to the scene, any changes in distance
are compensated.

VI. CONCLUSION

This paper has shown, how computational intensive tasks
such as optical flow calculation and low-level stereo vision
can be implemented in a single FPGA to produce accurate
metric velocity for MAV applications.
The power consumption of 2.8 Watt is low compared to
any other CPU based system, where the power consumption
in idle mode is in best case in that range. FPGAs are
thus promising candidates for realizing real-time computer
vision algorithms. Since the system is also light weight,
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Fig. 6. Translation measurement with different textures in the scene located
at various distances to the camera head. Velocity measurements from Vicon
and FPGA (left scale axis) and current distance (right scale axis) in (a),
error in (b).

it is suitable for any mobile robot or micro aerial application.
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