A Geometric Approach to Lightfield Calibration
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Abstract. Lightfield rendering allows fast visualization of complex scenes
by view interpolation from images of densely spaced camera viewpoints.
The lightfield data structure requires calibrated viewpoints, and ren-
dering quality can be improved substantially when local scene depth
is known for each viewpoint. In this contribution we propose to com-
bine lightfield rendering with a geometry-based structure-from-motion
approach that computes camera calibration and local depth estimates.
The advantage of the combined approach w.r.t. a pure geometric struc-
ture recovery is that the estimated geometry need not be globally con-
sistent but is updated locally depending on the rendering viewpoint. We
concentrate on the viewpoint calibration that is computed directly from
the image data by tracking image feature points. Ground-truth experi-
ments on real lightfield sequences confirm the quality of calibration.

1 Introduction

There is an ongoing debate in the computer vision and graphics community
between geometry-based and image-based scene reconstruction and visualization
methods. Both methods aim at realistic and fast rendering of 3D scenes from
image sequences.

Geometric reconstruction approaches generate explicit 3D scene descriptions
with polygonal (triangular) surface meshes. A limited set of camera views of
the scene is sufficient to reconstruct the 3D scene. Texture mapping adds the
necessary fidelity for photo-realistic rendering to the object surface.

Image-based rendering approaches like lightfield rendering [14] and the lu-
migraph [6] have lately received a lot of attention, since they can capture the
appearance of a 3D scene from images only, without the explicit use of 3D ge-
ometry. Thus one may be able handle scenes with complex geometry and surface
reflections that can not be modeled otherwise. Basically one caches all possible
views of the scene and retrieves them during view rendering.

Both approaches have their distinct advantages and weak points. In this con-
tribution we discuss the combination of image-based rendering with a geometric
structure-from-motion approach to obtain lightfields from image sequences of a
freely moving camera. The necessary camera calibration and local depth esti-
mates are obtained with the structure-from-motion approach. We will first give
a brief overview of image-based rendering and geometric reconstruction tech-
niques. We will then focus on the calibration problem for lightfield acquisition



from hand-held camera sequences. Experiments on lightfield calibration and ge-
ometric approximation conclude this contribution.

2 Image-based rendering

Image-based rendering techniques allow to capture a scene with a principally
unlimited geometric complexity, with complex lighting and specular surface re-
flections. The view rendering depends only on the efficiency of data access and
not on the scene complexity, hence rendering in constant time is possible. The
price to pay for this advantage is a very high amount of data and a tedious image
acquisition. In fact, one has to obtain the plenoptic function of the scene space
with viewing rays in all possible positions, which is a 5-dimensional function.
Perfect rendering is possible only if all viewing rays of a newly rendered view
intersect the focal centers of originally acquired views. Interpolation between
viewpoints will cause a distortion that is dependent on the scene geometry as
well. The amount of views to be acquired is limited by the storage requirements,
since a dense view sampling of a scene might easily generate Gigabytes of im-
age data. Therefore one must try to compress the data efficiently by removing
the inherent redundancy. Since the approach is strictly image-based, no view-
point extrapolation is possible. Furthermore the geometry is encoded implicitly
in the data and there is no way to change geometric scene properties e.g. for
animations.

Recently two equivalent realizations of the plenoptic function were proposed
in form of the lightfield [14], and the lumigraph [6]. They handle the case when we
observe an object surface in free space, hence the plenoptic function is reduced
to four dimensions (light rays are emitted from the 2-dimensional surface in
all possible directions). The 4-D lightfield data structure employs a two-plane
parameterization (see fig. 1). Each light ray passes through two parallel planes
with plane coordinates (s,t) and (u,v). Thus the ray is uniquely described by
the 4-tuple (u, v, s,t). The (s, t)-plane is the viewpoint plane in which all camera
focal points are placed on regular grid points. The (u,v)-plane is the focal plane
where all camera image planes are placed with regular pixel spacing. The optical
axes of all cameras are perpendicular to the planes. This data structure covers
one side of an object. For a full lightfield we would need to construct six such
data structures on a cube around the object.

New views can be rendered from this data structure by placing a virtual
camera on an arbitrary viewpoint and intersecting the viewing ray r with the
two planes at (s,t,u,v). The resulting radiance is a simple radiance lookup for
r. This, however, applies only if the viewing ray passes through original camera
viewpoints and pixel positions. For rays passing in between the (s,t) and (u,v)
grid coordinates an interpolation is applied that will degrade the rendering qual-
ity depending on the scene geometry. In fact, the lightfield contains an implicit
geometrical assumption: The scene geometry is planar and coincides with the
focal plane. Deviation of the scene geometry from the focal plane causes image
warping. If depth information for each view is available, a specific geometrical
warping can compensate the image distortion. Heidrich et al. [8] introduce a
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Fig. 1. Left: 4-D lightfield data structure with (s,¢) viewpoint plane and (u,v) focal
plane. Center: Rendering of novel views by interpolation of viewing ray r between
the grid coordinates in the (s,u) slice. The radiance is interpolated from the object
radiance at positions I(s;, u) and I(s;—1, u). Image distortion occurs if the object surface
deviates from the focal plane. Right: Tracking path for camera calibration along the
(s,t)-viewing grid. Measurements are performed sequentially from image 1 to 49.

warping-based refinement from a depth-compensated lightfield to synthesize in-
termediate views. They construct a dense lightfield from a sparse set of ray-traced
synthetic images. This approach allows interactive visualization of complex ray-
traced scenes that is split into the initial off-line ray-tracing of few images and the
online refinement for lightfield rendering. The problem is facilitated by the fact
that calibration and depth estimation is obsolete since we deal with synthetic
scenes. The ray-tracer delivers all necessary depth information as side product of
the rendering. The discussion above reveals two major problems when acquiring
lightfields from real image sequences:

— the need to directly obtain camera calibration from the image data, and

— the need to estimate local depth for view interpolation.

The original lumigraph approach [6] already tackles both problems. A cali-
bration of the camera is obtained by incorporating a background with a known
calibration pattern into the scene. The known specific markers on the background
are used to obtain camera parameters and pose estimation [19]. It provides no
means to calibrate the images from image data only. For depth integration the
object geometry is approximated by constructing a visual hull from the object
silhouettes. The hull approximates the global surface geometry but can not deal
with local concavities. Furthermore, the silhouette approach is not feasible for
general scenes and viewing conditions since a specific background is needed. This
approach is therefore confined to laboratory conditions and does not provide a
general solution for arbitrary scenes.

3 Camera calibration and geometric reconstruction

The problem of simultaneous camera calibration and depth estimation from im-
age sequences (structure-from-motion, SFM) has been addressed for quite some
time in the computer vision community. In the case of known intrinsic camera
parameters, the camera pose as well as the scene structure can be estimated



from correspondences in the 2D image sequence up to an unknown scale factor.
Longuet-Higgins [15] first demonstrated how to obtain structure and camera
pose from eight point correspondences in one image pair. The uniqueness of this
external calibration was proven in [18]. It exploits the basic relationship between
image correspondences of a rigid scene, the Essential matrix F. The approach
has been extended in several works, e.g. [10,4] to an arbitrary number of point
correspondences and views using non-linear optimization methods. Faugeras [5]
and Hartley [7] later demonstrated that a projective reconstruction is possible
from image matches alone even if the camera is totally uncalibrated.

A 3D scene reconstruction system using structure-from-motion was proposed
by Beardsley et al. [1] who obtained projective calibration and sparse 3D struc-
ture by robustly tracking salient feature points throughout an image sequence.
We have extended their method to obtain metric reconstructions (Euclidean re-
construction up to global scale) for fully uncalibrated sequences with methods
of self-calibration [16]. For dense structure recovery a stereo matching technique
was applied between image pairs of the sequence to obtain a dense depth map
for each viewpoint. From this depth map a triangular surface wire-frame is con-
structed and texture mapping from the image is applied to obtain realistic surface
models [11]. To summarize, we obtain a metric scene reconstruction in a 3-step
approach:

1. Camera pose calibration is obtained by robust tracking of salient feature
points over the image sequence,

2. local dense depth maps for all viewpoints are computed from correspon-
dences between adjacent image pairs of the sequence,

3. a global 3-D surface mesh approximates the geometry, and surface texture
is mapped onto it to enhance the visual appearance.

3.1 Combining Lightfield rendering and SFM

If we compare lightfield rendering and SFM, we see a considerable overlap. Both
approaches require a good camera calibration and the estimation of local depth
maps from the image data. For a geometric reconstruction we then need to
combine all local depth estimates into a globally consistent surface model with
a unique surface texture. This may be difficult to obtain for complex geometries
and reflectivities. It would be better to compute depth maps only and to switch
the geometry and surface texture depending on the current rendering viewpoint.
And this is precisely what the lightfield approach can do once calibration and
depth maps are given [8]. We therefore propose to combine the first two steps of
our structure-from-motion approach with lightfield rendering.

The calibration is facilitated for the lightfield approach since we use densely
spaced viewpoints where the adjacent images are rather similar. The camera
viewpoints are tracked sequentially (along the 1-D viewing path that the cam-
era takes). However, for a lightfield we are obtaining a 2-D viewing surface with
the camera viewpoints as nodes of this grid in the s,t-plane. With a moving
camera we can scan this viewing surface row by row in a sequential fashion (see



also Fig. 1, right). The camera poses are estimated by tracking salient image fea-
tures throughout the sequence. Salient image feature points are matched using
robust (RANSAC) techniques for that purpose. At first feature correspondences
are found by extracting intensity corners in different images and matching them
using a robust corner matcher [17]. In conjunction with the corner matching a
restricted calibration of the setup is calculated. This allows to eliminate matches
which are inconsistent with the calibration. The matching is started on the first
two images of the sequence. The calibration of these views defines a metric
coordinate system in which the projection matrices of the other views are re-
trieved one by one. A depth triangulation of the corresponding image matches
will give a 3D estimate of salient scene points. In subsequent views we utilize
this 3D estimate to predict correspondences and to verify them throughout the
sequence. The estimated 3D feature points also define a coarse estimate of 3D
scene structure. The intrinsic camera parameters were calibrated offline [19] and
the approach of [16] has been modified to estimate the camera poses only. This
allows robust metric reconstruction from any camera motion.

Once we have retrieved the metric calibration of the cameras we can use image
correspondence techniques to estimate scene depth. For dense correspondence
matching a disparity estimator based on the dynamic programming scheme of
Cox et al. [2] is employed. It operates on rectified image pairs where the epipolar
lines coincide with image scan lines. The rectification is easily obtained for each
pair of adjacent viewpoints by projective mapping of the image planes onto
standard parallel stereo geometry. The matcher searches at each pixel in one
image for maximum normalized cross correlation in the other image by shifting
a small measurement window (kernel size 5x5 or 7x7) along the corresponding
scan line. The algorithm employs an extended neighborhood relationship and a
pyramidal estimation scheme to reliably deal with very large disparity ranges [3].
It was further extended to multi-viewpoint depth analysis [11]. This allows to
obtain locally consistent dense depth estimates for each viewpoint.

4 Experimental Results

In order to test the approach we used a calibrated robot arm for image acqui-
sition. This allows us to obtain ground truth information for the camera pose.
The intrinsic parameters were estimated off-line before the experiments.

The camera is mounted on the arm of a robot of type SCORBOT-ER VIL.
The position of its picker arm is known from the angles of the 5 axes and the
dimensions of the arm. Optical calibration methods have to be applied to de-
termine the relative position of the camera to the picker arm. This is done by
the hand/eye—calibration method of [20]. The main problem is to determine the
position along the optical axis of the camera. The repetition error of the robot is
0.2 mm and 0.03 degrees, respectively. Because of the limited size of the robot,
we are restricted to scenes with maximum size of about 100 mm in diameter. For
testing we used a scene with planar motion (compliant to the viewpoint plane)
and a scene with spherical motion.
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Fig. 2. Planar motion on a 7 x 7 viewpoint grid. Left: One of the input images. Middle:
Corresponding dense depth map (color coded: dark=near,light=far, black=undefined).
Right: 3D surface model and calibrated camera grid. The little pyramids symbolize the
estimated camera poses.

Planar motion: To show the applicability for natural scenes, we chose a small
cactus together with two mirrors. This scene has a non-trivial geometry with
occlusions, spikes, reflections, etc., see fig. 2. In the planar case, we controlled
the robot so that the center of projection moved within a planar 7 x 7 grid, the
optical axis always intersecting one central point in the middle of the scene. The
grid had spacing between the views of 13.3x16.6 mm. The orthogonal distance
of the grid to the central point was 200 mm. This setup allows ground truth
comparison of the camera calibration method. During calibration we tracked the
camera positions sequentially row by row, moving like a snake from image 1 to
49 over all views (see fig. 1,right). We did not consider the connectivity between
the rows which would additionally stabilize the tracking. The calibrated sequence
allows to reconstruct dense depth maps for each viewpoint. From the depth map
we obtain local geometry for image warping. Results of the 3D surface modeling
are shown in fig. 2.

A quantitative evaluation of the camera calibration can be computed if we
compare the length of the estimated displacements between adjacent camera
positions (the baseline) with the baseline as given by the robot. Since the SFM
algorithm generates only metric estimates (arbitrary scale for the baseline be-
tween the first two cameras) we scaled the estimates to the known robot baseline
of 13.3 mm between the first two cameras. We could then measure all baselines
between adjacent cameras.

The result is summarized in table 4. We have to distinguish between the
statistics of row and column displacements. Since the camera moved sequentially
row by row (see fig. 1,right), only the camera positions along the rows were
estimated directly. The adjacency between columns was not exploited which
causes an increased column baseline error. Still, the column statistics show a very
good agreement with the expected value and no significant error accumulation
was noticed. These figures document the stability and accuracy of the proposed
calibration method. The overall performance of the calibration is within the
range of the robot arm accuracy.

Spherical motion The proposed system can work with any camera motion and
is not confined to planar viewing planes. To test this we performed a spherical
robot motion. In the spherical case the robot sampled a 8 x 8 spherical grid



Table 1. Statistical distribution of the baseline length between camera positions.

Displacement|ground truth robot|measured baselines| standard repeatability

Statistics baseline[mm)] mean [mm] deviation [mm]|of robot [mm)]
TOWS 13.30 12.65 0.478 0.2
columns 16.60 16.99 0.931 0.2

with a radius of 230 mm. The viewing positions enclosed a maximum angle
of 45 degrees. The results of the camera calibration and geometric estimation
are shown in fig. 3. The estimated camera positions are equally spaced on the
viewing sphere and the geometry shows quite some detail.

Fig. 3. Spherical motion. Left: One of the input images. Center: Dense depth map of
scene. Right: 3D surface model and calibrated camera grid of spherical scene.

5 Conclusions and Further Work

We have employed a geometric structure-from-motion approach for lightfield
calibration and local depth estimation which can be used to improve lightfield
rendering. Image acquisition as well as rendering quality will profit from this
integration. Most notably, we were able to generate lightfields from image se-
quences of freely moving cameras.

We are currently working to further integrate both approaches. The ongo-
ing research has delivered additional results which we could not include here
but would like to refer to. The inherent two-dimensional relationship between
lightfield images has been exploited, resulting in a robust calibration of a 2D
viewpoint mesh over all views [12] and improved depth reconstruction from the
viewpoint mesh [13]. The image-based rendering approach has been adapted to
incorporate local depth estimates and to render images from irregular viewpoint
meshes of hand-held camera sequences [9].
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