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Abstract. In this contribution we focus on calibration and 3D surface
modeling from uncalibrated images. A large number of images from a
scene is collected with a hand-held camera by simply waving the camera
around the objects to be modeled. The images need not be taken in
sequential order, thus either video streams or sets of still images may
be processed. Since images are taken from all possible viewpoints and
directions, we are effectively sampling the viewing sphere around the
objects.

Viewpoint calibration is obtained with a structure-from-motion approach
that tracks salient image points over multiple images. The calibration ex-
ploits the topology of the viewpoint distribution over the viewing sphere
and builds a viewpoint mesh that connects all nearby viewpoints, re-
sulting in a robust multi-image calibration. For each viewpoint a depth
map is estimated that considers all corresponding image matches of
nearby viewpoints. All depth maps are fused to generate a viewpoint-
independent 3D surface representation based on a volumetric voting
scheme. A voxel space is built into which the depth estimates from all
the viewpoints are projected, together with their estimation uncertainty.
Integration over all depth estimates determines a probability density dis-
tribution of the estimated scene surface. The approach was verified on
long image sequences obtained with a hand-held video camera.

1 Introduction

In this contribution we discuss the evaluation of large collection of images for
the purpose of 3D scene reconstruction. A large number of images from a scene
is collected with a hand-held camera by simply waving the camera around the
objects to be modeled. Since images are taking from all possible viewpoints and
directions, we are effectively sampling the viewing sphere around the objects
and generating a mesh of viewpoints. The collection of images can be exploited
to reconstruct the scene, either with image-based rendering techniques [5] or
through reconstruction of 3D surface geometry.

This work is embedded in the context of uncalibrated Structure From Motion
(SFM) where camera calibration and scene geometry are recovered from images
of the scene alone without the need for further scene or camera information.
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Faugeras and Hartley first demonstrated how to obtain uncalibrated projective
reconstructions from image point matches alone [3,6]. Since then, researchers
tried to find ways to upgrade these reconstructions to metric (i.e. Euclidean but
unknown scale, see [4, 15]). Beardsley et al. [1] proposed a scheme to obtain pro-
jective calibration and 3D structure by robustly tracking salient feature points
throughout an image sequence. This sparse object representation outlines the
object shape, but gives not sufficient surface detail for visual reconstruction.
Highly realistic 3D surface models need a dense depth reconstruction and can
not rely on few feature points alone.

In [11] the method of Beardsley e.a. was extended in two directions. On the
one hand the projective reconstruction was updated to metric even for varying
internal camera parameters, on the other hand a dense stereo matching technique
[2] was applied between two selected images of the sequence to obtain a dense
depth map for a single viewpoint. From this depth map a triangular surface
wire-frame was constructed and texture mapping from one image was applied
to obtain realistic surface models. In [8] the approach was further extended to
multi viewpoint depth analysis. The approach can be summarized in 3 steps:

— Camera self-calibration and metric structure is obtained by robust tracking
of salient feature points over the image sequence,

— dense correspondence maps are computed between adjacent image pairs of
the sequence,

— all correspondence maps are linked together by multiple view point linking
to fuse depth measurements over the sequence.

In [7,9,10] this approach was applied to the calibration of lightfield sequences
from hand-held cameras. In this contribution we will extend our approach to the
calibration of large image collections that sample the viewing sphere of the scene.
Novel measures for determining the topological adjacency between viewpoints
are developed in sect. 2. A volumetric surface reconstruction approach is in-
troduced in sect. 3 that integrates all depth maps into a consistent 3D scene
representation. Experiments on view calibration and geometric approximation
conclude this contribution.

2 Calibration of a mesh of viewpoints

When very long image sequences have to be processed there is a risk of calibration
failure due to several factors. For one, the calibration as described above is built
sequentially by adding one view at a time. This may result in accumulation errors
that introduce a bias to the calibration. Secondly, if a single image in the sequence
is not matched, the complete calibration fails. Finally, sequential calibration
does not exploit the specific image acquisition structure used in this approach
to sample the viewing sphere. In this section we will develop a multi-viewpoint
calibration algorithm that allows to actually weave the viewpoint sequence into
a connected viewpoint mesh.



Image pair matching. The basic tool for viewpoint calibration is the two-view
matcher. Image features have to be matched between the two images I;, I of
the viewpoints P;, Pi. Here we rely on a robust computation of the Fundamental
matrix Fj, with the RANSAC (RANdom SAmpling Consensus) method [14]. A
minimum set of 7 features correspondences is picked from a large list of potential
image matches to compute a specific F'. For this particular F' the support is com-
puted from the other potential matches. This procedure is repeated randomly
to obtain the most likely Fj;, with best support in feature correspondence. From
the F' we can initialize a projective camera pair that defines a projective frame
for reconstruction of the corresponding point pairs [1].

Once we have obtained the projection matrices we can triangulate the cor-
responding image features to obtain the corresponding 3D object features. The
object points are determined such that their reprojection error in the images
is minimized. In addition we compute the point uncertainty covariance to keep
track of measurement uncertainties. The 3D object points serve as the mem-
ory for consistent camera tracking, and it is desirable to track the projection
of the 3D points through as many images as possible. This process is repeated
by adding new viewpoints and correspondences throughout the sequence. Fi-
nally constraints are applied to the cameras to obtain a metric reconstruction.
A detailed account of this approach can be found in [12,13].

Estimating the viewpoint topology. Since we are collecting a large amount
of images from all possible viewpoints distributed over the viewing sphere, it
is no longer reasonable to consider a sequential processing along the sequence
frame index alone. Instead we would like to evaluate the image collection in order
to robustly establish image relationships between all nearby images. We need to
define a distance measure that allows to estimate the proximity of two viewpoints
from image matches alone. We are interested in finding those camera viewpoints
that are near to the current viewpoint and that support calibration. Obvious
candidates for these are the preceding and following frames in a sequence, but
normally those viewpoints are taken more or less on a linear path due to camera
motion. This near-linear motion may lead to degeneracies and problems in the
calibration. We are therefore also interested in additional viewpoints that are
perpendicular to the current direction of the camera motion. If the camera sweeps
back and forth over the viewpoint surface we will likely approach the current
viewpoint in previous and future frames. Our goal is now to determine which
of all viewpoints are nearest and most evenly distributed around our current
view. The measurement tool we have at hand is the F-Matrix-computation from
corresponding image points. For each potential neighbor we compute F' w.r.t.
the current image. To measure prozimity and direction of the matched viewpoint
w.r.t. the current one, we can exploit the image epipole as well as the distribution
of the correspondence vectors.

Prozimity: The distribution of the corresponding matches determines the dis-
tance between two viewpoints. Consider a non-planar scene and general motion
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Fig. 1. Left: one image of the robot sequence. Left to right: Buildup of calibration
after 4, 32, and 64 images. The camera viewpoints are indicated by pyramids that are
connected by the viewpoint mesh. The black points in the background are tracked 3D
feature points.

between both cameras. If both camera viewpoints coincide we can cancel out the
camera orientation change between the views with a projective mapping (rec-
tification) and the corresponding points will coincide since no depth parallax
is involved. For a general position of the second camera viewpoint, the depth
parallax will cause a residual correspondence error e, after rectification that is
proportional to the baseline distance between the viewpoints. We can approx-
imate the projective rectification by a linear affine mapping that is estimated
from the image correspondences. We therefore define the residual correspondence
error e, as proximity measure for nearby viewpoints.

Direction: The epipole determines the angular direction a, of the neighboring
camera position, since it represents the projection of the camera center into the
image. Those viewpoints whose epipoles are most evenly distributed over all
image quadrants should be selected for calibration.

Weaving the viewpoint mesh. With the distance measure at hand we can
build a topological network of viewpoints from an unordered collection of images.
This is necessary if one collects a large set of images of a scene with a still camera.
Exploitation of the sequential frame index in a camera sequence however will give
some speed advantages since we do not need to compute all possible F-Matrices.
The strategy for sequential mesh building was described in detail in [10]. Here
we extend that approach to non-sequential image collections.

We start with an arbitrary image of the sequence and compute a, and e, for
subsequent images. If we choose the starting image as first image of the sequence,
we can proceed along the frame index and find the nearest adjacent viewpoints
in all directions. From this seed views we proceed recursively, building up the
viewpoint mesh topology over all views. The method is visualized in fig. 1 for a
sequence taken with a robot arm. The camera is mounted on the arm of a robot
of type SCORBOT-ER VII. The robot sampled a 8 x 8 spherical viewing grid
with a radius of 230 mm. The viewing positions enclosed a maximum angle of
45 degrees which gives an extension of the spherical viewpoint surface patch of
180x 180 mm?. The scene consists of a cactus and some metallic parts on a piece
of rough white wallpaper. One of the original images is shown in fig. 1 together



with the computed viewpoint mesh after tracking of 4, 32, and 64 images (from
left to right). The mesh buildup is indicated by the estimated camera viewpoints
(pyramids) and their topological relation (mesh connecting the cameras). Each
connection indicates that the fundamental matrix between the image pair has
been computed. The mesh builds along the shortest camera distances very much
like a wave propagating over the viewpoint surface.

3 3D scene reconstruction

Once we have retrieved the metric calibration of the cameras we can use image
correspondence techniques to estimate scene depth. We rely on stereo matching
techniques that were developed for dense and reliable matching between adjacent
views. The small baseline paradigm suffices here since we use a rather dense
sampling of viewpoints.

3.1 Dense depth estimation by correspondence matching

For dense correspondence matching an area-based disparity estimator is em-
ployed. The matcher searches at each pixel in one image for maximum normal-
ized cross correlation in the other image by shifting a small measurement win-
dow (kernel size 7x7) along the corresponding scan line. Dynamic programming
is used to evaluate extended image neighborhood relationships and a pyramidal
estimation scheme allows to reliably deal with very large disparity ranges [2].
The geometry of the viewpoint mesh is especially suited for further improve-
ment with a multi viewpoint refinement [8]. For each viewpoint a number of
adjacent viewpoints exist that allow correspondence matching. Since the differ-
ent views are rather similar we will observe every object point in many nearby
images. This redundancy can also be exploited to verify the depth estimation
for each object point, and to refine the depth values to high accuracy.

3.2 View-independent object modeling from multiple depth maps

The depth maps as obtained so far represent a robust and accurate estimate
of local scene geometry. Care has been taken to eliminate measurement outliers
from the depth map. Unfortunately a depth map is viewpoint-dependent and
unable to represent occluded object parts. We have however a large collection
of calibrated and registered depth maps at hand which can be converted into a
consistent and viewpoint-independent 3D scene model.

Building voxel walls. A full 3D representation is possible if we employ a 3D
data structure like the voxel space. For model building we define a 3D voxel
volume that bounds the scene geometry. Since the depth maps are registered by
the calibration, we can simply project them into the volume. Each depth estimate
defines a 3D surface point with an associated depth uncertainty covariance that
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Fig. 2. Left: Voxel space with cameras projecting surface estimates into the voxel space.
The surface is defined as the accumulated probability density distribution value above
a certain threshold. Right: results of surface segmentation for the office scene (see fig 3).
The surface was reconstructed from 151 depth maps projected into a 1282 voxel space.

determines the probability distribution of the point. A voxel will then represent
the probability of the estimated 3D surface point. The integration of all available
depth estimates in voxel space builds a 3D probability density volume with
the maxima being the most likely 3D surface points. Fig. 2 demonstrates the
mapping of depth estimates into the voxel space.

The defined voxel resolution quantizes the surface distribution into nearest-
neighbor approximations. If the voxel quantization is coarser than the estimation
uncertainty, then the density projection approach is reduced to simply increment-
ing individual voxel values. We can think of this technique as building a wall
by setting all individual stones (voxels) of the wall. Each surface voxel will be
hit more than once because it is exposed to multiple views. The probability of a
surface voxel is therefore high as compared to interior and exterior points. Thus
we obtain a robust hough-like integration scheme for surface point candidates
where most of the hits are concentrated on the 3D surface. Outliers will hit wrong
voxels but they are easily discarded by thresholding the voxel distribution.

Volume-Boundary representations. The volume density distribution can be
converted to a surface representation for further processing. The maxima of the
distribution correspond to the most likely surface points. We can classify surface
voxels by simply thresholding the distribution. All voxel values above a certain
threshold are considered as surface points. A volume boundary conversion like
marching cubes will then define a closed surface around the real surface points.
The true surface is guaranteed to be inside the enclosed volume. For voxel quan-
tizations where the depth uncertainty is of the order of the voxel size we obtain
very reliable surfaces reconstructions. The surface extraction is sketched in Fig. 2
(left). It shows a ray through the volume with associated density distribution.
The surface is selected with a global threshold that determines the minimum
number of hits for a voxel in order to be classified as surface. The figure 2 (right)
displays a volumetric surface reconstruction from a real hand-held sequence, see
the next section.



Fig. 3. (Image (left) and depth map (center) from hand-held office sequence. The depth
map was obtained from 7 adjacent views. Right: Viewpoint mesh (in grey) with cameras
as pyramids and tracked 3D points in the background (black).

4 Experiment: Hand-held office sequence

We tested our approach with an uncalibrated hand-held sequence. A digital
consumer video camera (Sony DCR-TRV900 with progressive scan) was swept
freely over a cluttered scene on a desk, covering a viewing surface of about 1 m?2.
The resulting video stream was then digitized on an SGI O2 by simply grabbing
187 frames at more or less constant intervals. No care was taken to manually
stabilize the camera sweep. Fig. 3(left) displays an images of the sequence and
the corresponding depth map (middle). The tracked camera viewpoints and the
viewpoint mesh topology is shown to the right.

Volumetric 3D representations. For the 3-D reconstruction we used 151
depth maps. Each map was already fused from adjacent images to reduce outliers
and to improve the estimates. Fig. 4 shows various results of the reconstruction
that demonstrate the high fidelity of our approach. Please note the very high
detail resolution at the keyboard, the ball and the red glue stick. The stick was
modeled from all directions which is impossible with depth map modeling alone.
The surface can be textured as well to improve the visual result. A side view of
the reconstruction is found in fig 2.

Fig. 4. Reconstruction results. Left: a volumetric reconstruction with a volume ray-
caster where opacity and texture of each surface voxel was set to the mean color
projected from all viewpoints. Center: a high resolution surface reconstruction obtained
from a volume with a resolution of 256x256X128 voxel. Right: surface reconstruction
with texture mapping.
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Conclusions

We have described a system for the automatic calibration of large collections
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images obtained with a hand-held video camera. The calibration exploits the
oximity of viewpoints by building a viewpoint mesh that spans the viewing
here around a scene. Once calibrated, the viewpoint mesh can be used for

image-based rendering or 3D geometric modeling of the scene. We have further
described a novel viewpoint-independent modeling approach that builds a 3D
maximum likelihood surface estimate from the projection of depth estimates
into the scene volume. It allows robust and highly accurate 3D scene modeling
from uncalibrated hand-held image sequences.
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