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Abstract

We present a technique for coupling simulated fluid phenomena that interact with real dynamic scenes captured
as a binocular video sequence. We first process the binocular video sequence to obtain a complete 3D reconstruc-
tion of the scene, including velocity information. We use stereo for the visible parts of 3D geometry and surface
completion to fill the missing regions. We then perform fluid simulation within a 3D domain that contains the
object, enabling one-way coupling from the video to the fluid. In order to maintain temporal consistency of the
reconstructed scene and the animated fluid across frames, we develop a geometry tracking algorithm that com-
bines optic flow and depth information with a novel technique for “velocity completion”. The velocity completion
technique uses local rigidity constraints to hypothesize a motion field for the entire 3D shape, which is then used
to propagate and filter the reconstructed shape over time. This approach not only generates smoothly varying
geometry across time, but also simultaneously provides the necessary boundary conditions for one-way coupling
between the dynamic geometry and the simulated fluid. Finally, we employ a GPU based scheme for rendering the
synthetic fluid in the real video, taking refraction and scene texture into account.

1. Introduction

Augmentation of real world scenes with synthetic objects
is a problem of significant interest for Computer Graphics
(CG) as well as other research disciplines. Many special ef-
fects involve combining CG elements with real footage. Syn-
thetic objects rendered onto real video have also been used
to enhance visualization for engineering and medical appli-
cations. Most research in this area has primarily focused on
using either static or rigidly moving objects as CG elements
to be inserted into the scene. In contrary, we are interested
in exploring the augmentation of real scenes with fluids. By
being completely non-rigid, fluids pose very different chal-
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Figure 1: An augmented video frame with CG fluid gener-
ated by our system

lenges from those posed by rigid objects. Registration is the
most important problem with rigid objects. In addition to the
registration problem, fluids may flow freely anywhere in the
scene and hence a much more complete reconstruction of
the scene is necessary. This requirement makes insertion of
CG fluid into a real video considerably more challenging,
especially if the scene is dynamic in nature.
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Main Results: In this paper, we present a framework for
inserting fluid phenomena, such as water and smoke, into a
real dynamic scene, given a binocular (stereo-pair) video of
the scene. We also demonstrate our technique on multiple-
camera video data where visual hull computation can be
used to obtain the foreground objects. We reconstruct the
scene geometry in a manner suitable for interfacing and cou-
pling with a fluid simulator. We allow one-way coupling
from the video to the fluid, i.e. moving objects in the scene
affect the behavior of the fluid but not vice-versa. In order
for this coupling to be effective and for the results to look
plausible, the surface of object or objects has to be closed
and thus a reasonable approximation for the invisible parts
has to be estimated.

Figure 2 illustrates the key steps of our pipeline. Given
a binocular video sequence as input, we can reconstruct the
visible surfaces in each frame using stereo vision methods.
We can also process surfaces in other forms, such as point
clouds, or implicit representations, such as binary indicator
functions or distance fields. In these cases, the foreground
extraction and depth map reconstruction steps are omitted.
In general, given a binocular video sequence, we reconstruct
a colored 3D model of the background from a few empty
frames, which stays constant throughout the sequence. We
also use this background frame to aid in the segmentation
of the dynamic foreground objects in the scene, which are
then used for stereo depth map reconstruction and optic flow
computation. Foreground extraction is useful for two rea-
sons. Firstly, it allows us to speed up the reconstruction of
the 3D model for every frame by constraining the stereo al-
gorithm to only use foreground objects. Secondly, it helps
increase the accuracy of 2D optic flow computation, which
is necessary for velocity estimation. The foreground depth
map only provides information about the visible surface(s),
which need to be converted into a complete 3D object rep-
resentation for it to interact with the animated objects (e.g.
fluids). To achieve this goal, we use a surface completion
technique that combines the current depth map with pre-
dicted estimates for foreground geometry. These predictions,
in turn, are obtained by transporting the geometry in the pre-
vious frame by its velocity. The velocity field itself is com-
puted by combining optic flow with the foreground depth
maps, which gives us partial scene flow (for the visible re-
gions). We obtain the velocity field for the entire foreground
object(s) using a novel formulation for velocity completion
that keeps connected objects as locally rigid as possible.

Once we have the completed geometry and velocity infor-
mation for each frame, we can design CG animations that
interact with the real scene, as we demonstrate by simulat-
ing fluids in real video. Since we only have color informa-
tion for the viewpoints of the cameras, the rendered output
is constrained to be for one of the original viewpoints. Fi-
nally, we employ a GPU based scheme for rendering fluids

in the video. We show results using several fluids with dif-
ferent properties. Our rendering takes refraction, reflection
and partial occlusion from the fluid into account and uses
the texture of the scene to generate convincing results.

To summarize, the key results of our work presented in
this paper include:

• Novel algorithms for computing reconstructed 3D geom-
etry and velocity fields for the hidden geometry of the
scene by combining accurate estimates for visible regions
with appropriate rigidity and temporal constraints;

• An effective rendering mechanism that combines texture
and geometry from the video with CG fluids to synthesize
the appearance of fluid phenomena in real video;

• An integrated system that generates temporally consistent
geometry and velocity fields from input video data that
contain only partial geometry and velocity information,
which can then be augmented with a computer animation
system, such as a fluid simulator, to easily create interest-
ing visual effects with little human intervention.
We demonstrate our integrated system on two sequences

of video footage with different fluid phenomena as shown in
Fig. 1 to illustrate its potential. Our system enables a seam-
less integration of virtual CG elements into a real video se-
quences, leading to many possible novel applications in en-
gineering and scientific visualization.

Organization: The rest of the paper is organized as fol-
lows. Section 2 briefly surveys related work. We describe our
3D geometry reconstruction algorithm in Section 3 and our
novel velocity field computation and completion approach
in Section 4. Section 5 describes the interaction between the
reconstructed geometry and the fluid simulator. We present
a fast image-based method for rendering synthetic fluids in
a pre-recorded video sequence in Section 6 and demonstrate
the resulting system in Section 7. We finally conclude and
discuss several possible future research directions.

2. Background

Rendering synthetic simulations into real world scenes is an
important application of both computer graphics and com-
puter vision. Thus, our work draws upon research in both
fields. Computer vision techniques can be used to recon-
struct 3D models of real world scenes, whereas computer
graphics can be used to render these reconstructed 3D mod-
els, as well as the synthetic models.

The reconstruction of 3D models is the focus of stereo
vision, which is among the most active areas in com-
puter vision. Due to lack of space we refer readers to
[SSZ02, SCD∗06]. We are interested in the reconstruction
of dynamic scenes from multiple video streams captured
by stationary calibrated cameras. Zitnick et al. [ZKU∗04]
present an approach for video view interpolation that gen-
erates realistic videos with varying viewpoints, even though
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Figure 2: System Overview Diagram

each frame is processed separately. Methods that enforce
temporal consistency have been reported in the literature
[VBR∗05, CK02, GILM07].

Vedula et al. [VBR∗05] estimate what is termed 3D scene
flow which is the 3D equivalent of optic flow. Scene flow
is a dense motion field for all surface points of the scene
from frame to frame. Its projection on one of the images
gives optic flow. Our approach is similar in that we also
compute optic flow [BA96] to infer approximate 3D veloc-
ities of scene points, but scene flow by itself does not sat-
isfy our requirement for closed surfaces if the cameras do
not view the objects completely. Consequently, we interpo-
late missing velocities using a novel local rigidity constraint,
which is similar in spirit to that of Alexa et al. [ACOL00]
and Igarashi et al. [IMH05] for as-rigid-as-possible shape
interpolation and manipulation, respectively. While those
techniques rely on a one-to-one mapping between pairs of
shapes, our method directly works with velocity vectors.

Snavely et al. [SZKC06] approached a problem similar to
ours. Given 2.5-D videos, in which depth is computed us-
ing structured light, they apply 3D effects to achieve non-
photorealistically rendered videos. The first steps of their al-
gorithm are similar to ours: foreground/background separa-
tion, stereo reconstruction and detection of temporal corre-
spondences. To obtain the desired quality for their applica-
tion, they simplify some of the tasks by using black back-
ground to enable automatic segmentation and by using an
active sensor (structured light) for the reconstruction. In ad-
dition to facing the same challenges, our application requires
complete surfaces, even if they are not visible, to avoid im-
plausible interactions between the objects and the fluid.

Surface completion is an inherent ability of the human
visual system that is hard to replicate in an artificial sys-
tem. According to researchers in psychology, neuroscience
and computer vision, completion relies on various cues,
which may be local (good continuation), global (symmetry),
and prior knowledge [BF05]. Here, we do not attempt to
handle complex occlusion, but rather to produce plausible
completions for 2.5-D surfaces produced by stereo recon-
struction. Our approach is based on the method of Kazh-
dan et al. [KBH06] who cast surface reconstruction from an
oriented set of points as a spatial Poisson problem. They pro-
posed an adaptive multi-scale algorithm that infers a plausi-

ble indicator function, which is 1 inside the volume and 0
outside. This method is robust to noise and thus suitable for
our data.

Fluid simulation and various related natural phe-
nomena have received much attention recently. Fos-
ter and Metaxas [FM96] were among the first to present
the use of the full 3D Navier-Stokes differential equations
for generating fluid animations in computer graphics. The
“stable fluids” method of Stam [Sta99] introduced stable
semi-Lagrangian advection combined with an implicit vis-
cosity solver to arrive at a completely stable method, more
amenable to use in animation. Level set methods [FSJ01,
FF01, EMF02, LGF04, CMT04] have been used very suc-
cessfully for liquid surface tracking. Other mesh-free meth-
ods [SF95,DG96,MCG03,Liu02,LL03] have also been pro-
posed to simulate fluid dynamics. We refer the readers to
more detailed surveys in [LY05, SSK05].

With regard to augmenting real worlds with fluid or other
physical simulation, Allard and Raffin [AR06] have de-
veloped a Virtual Reality system for this purpose. Their
focus, however, is real time performance as opposed to
high quality simulation, while our goal is high quality re-
construction and animation using as little as two cameras.
Khan et al. [KRFB06] present a method for replacing the
material of scene objects with completely different materi-
als, including transparent and translucent ones. They argue
that the user tolerates certain inaccuracies in such a system.
This is true for our application as well. Inaccuracies that can-
not be tolerated, however, include the location and velocity
of object boundaries that interact with the synthetic fluid,
which will be addressed in this paper. The work of Jancène
et al. [JNP∗95] is close to ours in that they also models ob-
jects from video for Augmented Reality applications. How-
ever, they insert solid CG objects into the scene as opposed
to fluids, and hence deal with somewhat different issues.

3. Geometry Reconstruction

In this section we present our approach for recovering 3D ge-
ometry from the captured videos using two stationary cam-
eras. Our reconstruction strategy is to treat the static (back-
ground) and dynamic (foreground) parts of the scene sep-
arately for multiple reasons. We begin by capturing a few
frames of the static background without any foreground to
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initialize our background model. It includes both appearance
and geometry, which we obtain by running our stereo algo-
rithm on these images. The appearance model can be used
to segment the foreground in all subsequent frames. After
segmentation, we perform stereo reconstruction on the seg-
mented foreground only using an approach based on graph-
cuts [BVZ01] due to the high quality results it produces in
settings such as ours, that is in computing open surfaces (2.5-
D depth maps). We also estimate the optic flow on the seg-
mented images and combine the output with the geometry to
obtain 3D velocity estimates that are used to drive the inter-
action between the reconstructed geometry and the fluid.

3.1. Background Modeling

The use of a background model that encompasses both ap-
pearance and geometry brings about several advantages. Re-
garding the background itself, it results in a temporally con-
sistent reconstruction, as opposed to reconstructing the back-
ground independently in each frame, which besides being re-
dundant, may cause artifacts in the simulation. Slight miss-
estimations in shape from frame to frame can cause jittering
which in turn will affect the fluid. Velocities do not have to
be computed for the static parts of the scene since they are
always zero. Thus the geometry of the background provides
boundary conditions to the fluid simulation that remain con-
stant for all frames.

The advantages of separate foreground processing include
improvements in both efficiency and quality. Since high-
quality stereo methods are relatively expensive, we gain a lot
in terms of speed by applying the graph-cut algorithm to the
foreground only. Besides the reduced number of pixels that
are processed, the number of potential correspondences for
each pixel are considerably fewer and correspondence ambi-
guity is reduced. The same apply to the optic flow computa-
tion. An additional benefit, shown in [TSK01], is that after
segmentation we can produce depth maps with exception-
ally sharp object boundaries. This aspect is important since
the object boundaries as seen in the reference camera are the
interfaces with the fluid where disturbing artifacts would ap-
pear if the geometry was inaccurate.

3.2. Foreground Extraction

Several methods for extracting the foreground from video
sequences have been reported in the literature [RKB04,
SZTS06, KCB∗06]. We use the one of Sun et al. [SZTS06]
which estimates Gaussian mixture models for the back-
ground and foreground color distributions and a per-pixel
appearance model of the static background. The optimal
segmentation is computed using graph cuts with two labels
and a smoothness term that attenuates the effect of back-
ground edges. The attenuation of background edges enforces
smoothness on the background and allows the edges between
the foreground and background to guide the segmentation.

(a) Segmented image (b) Un-optimized depth map

(c) Output of graph-cuts (d) Filtered depth map

Figure 3: Steps of stereo reconstruction for a frame of the
video sequence of an AIBO robot dog: (a) segmented image
from the left camera; (b) un-optimized depth map in which
each pixel is assigned the disparity with the minimum data
term; (c) the result after graph-cuts in which noise has been
significantly reduced; (d) final depth map after filtering in
which disparity varies smoothly over the entire AIBO and is
not piece-wise constant as in (c).

Since our cameras may not be photometrically calibrated,
we use separate models for the left and right video stream.

3.3. Stereo Correspondence

We used the graph-cut based stereo approach of Boykov et
al. [BVZ01] to compute depth maps for the background
once, as well as for the foreground of each frame. Graph-
cut methods aim at the minimization of an energy function
that has two terms: a data term and a smoothness term. The
former is a function of the cost of assigning a certain label
to each pixel and the second is a function of the dissimilar-
ity between labels of two adjacent pixels. The smoothness
cost penalizes the labeling if neighboring pixels have differ-
ent labels. The output of the graph cut is an assignment of a
label (disparity) to each node (pixel) of the graph that attains
a strong local minimum of the energy. Figure 3(b) shows the
depth map for a frame of the AIBO sequence (see Section 7
for more details and results) if we select the minimum cost of
the data term for each pixel. The number of errors is reduced
in the graph cut solution (Fig. 3(c)).

The disparity map is relatively accurate and noise-free,
but suffers from bias towards fronto-parallel surfaces that is
inherent in graph cuts. To reduce this bias we iteratively ap-
ply a simplified bilateral filter (typically 3×3) on the depth
map to obtain a smoother surface. The filter is designed sim-
ilar to [TM98] so that it does not blend disparities across
pixels that are more than a few disparity levels apart. In all
our experiments, pixels do not affect each other if their dis-
parities differ by 3 levels or more.

3D reconstruction of the visible parts of the surfaces is
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(a) 2.5-D surface (b) Completed surface

Figure 4: 2.5-D surface for a video frame of the AIBO se-
quence and 3D surface completion (see Section 3.4)

performed by a module that computes the depth of each
pixel and constructs a mesh. The vertices of the mesh for the
foreground are computed by triangulating the rays of cor-
responding pixels. The triangles of the mesh are formed by
linking vertices that project to adjacent pixels. Triangles are
not generated if there is a depth discontinuity between any of
their vertices. Furthermore, we can compute the normal for
each vertex using its 3D position and neighboring vertices.

3.4. Complete 3D from 2.5-D Surfaces

While a depth map may be sufficient for creating a 3D mesh
of the visible parts of the surfaces or for view interpola-
tion, it is not sufficient for running a fluid simulation through
the scene. Such an operation requires the construction of a
closed, watertight geometric mesh that can be converted into
a signed distance function (SDF) – our fluid simulator uses
the SDF as boundary representation. Watertight geometry is
necessary because the fluid may go into regions occluded
in the view, resulting in unrealistic phenomena. Note that
obtaining such a watertight mesh is non-trivial because the
occluded portions are invisible to the camera and therefore
ambiguous. Our goal is to obtain a plausible but not neces-
sarily accurate completion of the objects. Such a surface is
sufficient for our purposes since the results of the simulation
are rendered from the viewpoint of one of the cameras.

Here we adapt the algorithm of Kazhdan et al. [KBH06]
that reconstructs a closed surface given a set of sparse ori-
ented points, potentially corrupted by significant amounts of
noise. The unknown surface that bounds the volume can be
represented as the locus of non-zero gradients of a binary
indicator function, which is 1 inside the object and 0 out-
side. This results in a spatial Poisson problem solved in an
adaptive multi-scale fashion. Our experiments have shown
that even in the case of a 2.5-D reconstruction, where all
points are on one side of the object, this algorithm is able
to produce a plausible shape that is consistent with the visi-
ble parts of the surface. To aid the completion we add a few
points, typically less than 10, along the viewing lines of the
silhouette of the foreground. (Viewing lines are rays from the
camera center through the contour of the silhouette.) These
points are added at distances that are similar to the distance
between neighboring reconstructed points. Even though the
thickness of the object is unknown, the inferred invisible side
is important for effective simulations.

We typically perform the completion step in this fashion
to obtain a closed surface for the first frame of the sequence.
Figure 4 shows an example of a 2.5-D surface and the 3D
completion obtained using only the points from the recon-
struction of a single frame and the additional points on the
viewing lines. After the first frame, this completed surface is
combined with velocity information and subsequent partial
surfaces to obtain similar surfaces for the following frames;
this procedure is described in the next section.

4. Velocity Field Computation

For the simulated fluid to interact realistically with the dy-
namic objects in the scene, it is necessary that the fluid fol-
lows the scene objects closely. This requires the computation
of a velocity field on the surface of the object, which can then
be used as boundary condition for the fluid simulator. We
start by computing the 2D optic flow field from segmented
images. This flow is then converted to 3D scene flow at each
visible surface point using the depth map. Using these ini-
tialized velocities at visible points as constraints, we then
solve for the velocities at all points – visible and invisible –
of the surface. We achieve this by solving a novel optimiza-
tion problem that keeps the surface velocity field as locally
rigid as possible. We represent the surface as a mesh, and
the 3D velocity is computed at every vertex. While accuracy
does not need to be very high for the invisible parts of the
surface, which remain invisible in the rendering, the com-
pleted surface and its velocity should be plausible as well
as temporally coherent so that they do not cause unexpected
or unrealistic effects when interacting with the fluid. The re-
quired processing steps are described below in detail. If in-
stead of binocular video, the input came in the form of a
point cloud or a visual hull, these steps would be the first
stages of processing.

4.1. Partial Scene Flow

We start velocity computation by determining optic flow for
the foreground. The use of a segmented foreground has two
advantages: it restricts processing to the dynamic parts of the
scene and helps the optic flow algorithm to disambiguate the
flow near object boundaries. Consequently, we obtain a flow
field that is much more accurate than the one achieved by
running optic flow on the full frame. We use the technique
of [BA96] for computing optic flow. Note that since we have
multiple views, the flow computation is run for each camera.

Optic flow computation gives us velocity information
in the 2D image plane of each camera. The next step is
to project this 2D velocity into 3D by combining flow
and stereo information from each camera. There exist
prior approaches for performing this operation. For exam-
ple, [VBR∗05] describe different mechanisms for combining
optic flow from multiple cameras. To obtain the 3D velocity
at a given vertex of the reconstructed surface mesh, we first
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predict its 3D velocity using the optic flow for each camera
in which it is visible: for every such camera, we compute the
2D projection of the vertex on the camera plane, and trans-
port this 2D location along the optic flow vector to obtain
its new location in the next frame. The depth at this trans-
ported location gives us the 3D position of the vertex in the
next frame, and effectively determines the 3D velocity (dis-
placement) of the vertex. These predicted velocities from all
cameras in which the vertex is visible are then combined
through a weighted mean to obtain the final 3D velocity of
the vertex.

4.2. Velocity Completion

The scene flow computed above using 3D projection of optic
flow determines the velocity only for visible vertices. Addi-
tionally, near depth discontinuities, either the vertices may
not be visible in both the current and the next frame, or the
optic flow computation may not be reliable. Consequently,
the appropriate velocity is not always available at all ver-
tices of the mesh. Given this partial scene flow information
for the foreground, the next step is to compute the velocity
at all vertices of the mesh.

We propose a novel approach for completing the surface
velocity field at all vertices of the foreground mesh from
the partial scene flow computed above. We postulate a local
rigidity assumption on the motion of the mesh, i.e., nearby
points on the mesh should move as rigidly as possible. Note
that we cannot make a global rigidity assumption, since the
foreground may consist of many different objects, some of
which may be articulated. However, it is reasonable to as-
sume that most regions of the surface that are in close prox-
imity will move rigidly with respect to each other. This as-
sumption can be formulated into a constraint as follows:

Let pa and pb be two points on the surface moving with
velocities va and vb. A rigid motion of the line segment,
d = pb − pa, joining them would imply that its length |d|
stays constant. That will happen only if the relative veloc-
ity between the two points, vd = vb −va, is orthogonal to d.
Hence, the local rigidity constraint between the two points
can be written as:

d ·vd = 0.

However, this constraint may not be exactly satisfied every-
where for a set of velocity vectors that are part of the partial
scene flow computed above. A velocity field that minimizes
its deviation from this constraint can be obtained by mini-
mizing the following cost function:

C(v) = ∑
d

vT
d ddT vd, (1)

treating the partial scene flow velocity vectors, where avail-
able, as boundary conditions. d iterates over all edges in the

(a) Partial scene flow (b) Scene flow for
completed object

Figure 5: 3D velocity vectors for the 2.5-D surface for a
frame of the AIBO sequence and the result of our velocity
completion algorithm as described in Section 4.2. The ball
is static and thus has zero-length velocity vectors.

polygonal mesh representing the foreground surface. Equa-
tion 1 is a type of least squares formulation for the veloc-
ity field. It requires solving a linear system of equations,
for which we use the Preconditioned Conjugate Gradient
method. An example of the estimated velocity vectors for
the visible parts of the geometry can be seen in Fig. 5(a).
The completed velocities for the entire surface are shown
in Fig. 5(b). Effectively, our algorithm computes a coherent
velocity field for the object by propagating information from
visible vertices to invisible ones, through the edge paths that
connect them in the mesh.

4.3. Shape Prediction

The output of the velocity completion step is a 3D mesh
with a velocity vector associated with each vertex. One could
repeat the procedure of Sections 3.4 through 4.2 for each
frame. The results, however, could contain large inconsis-
tencies between frames. To maintain temporal consistency
we use the shape and velocity estimates of the current frame
combined with the partial stereo reconstruction of the fol-
lowing frame to estimate the shape of the object or objects
in the following frame. Specifically, we apply the surface
completion algorithm of Section 3.4 simultaneously on two
sets of input points:

• The first set of points is obtained by transporting the ver-
tices of the current frame using their 3D velocities as esti-
mated in Section 4.1 and completed in Section 4.2.

• The second set of points is obtained by stereo as in Section
3.3 and covers only the visible parts of the surface.

The Poisson surface completion algorithm of Section 3.4
is applied to the merged point cloud containing both sets of
points. This procedure has the effect of combining the in-
stantaneous measurement of the surface obtained via stereo,
with its shape predicted from the previous time step. Conse-
quently, the portions of the surface visible to the stereo algo-
rithm in the current frame have a crisp appearance, while
the missing parts are synthesized in a fashion that main-
tains spatio-temporal continuity of the surface. Finally, we
use the foreground silhouettes to carve away parts of the
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Figure 6: Screenshots of the completed objects in the scene
taken from novel viewpoints. The frames are not consecutive.

surface that project on background pixels. This step is nec-
essary to obtain accurate boundaries, which are crucial for
convincing interaction with the fluid. Another important re-
quirement is consistency in time to avoid jitter in the sim-
ulation. The shape prediction step described in this section
maintains consistency in the foreground model. The back-
ground model, on the other hand, is kept constant through-
out the simulation to prevent it from causing jitter. Figure
6 contains screenshots of the completed 3D objects from a
viewpoint different than those of the cameras. Note that our
prediction-completion algorithm is even able to overcome
failures in stereo computation, which can happen occasion-
ally for some frames if the cameras are not fully synchro-
nized. We have in fact used it to interpolate the shape for
several unsynchronized frames in the AIBO sequence (see 7
for results).

5. Interaction with Fluid Simulation

Once we have processed the video data to obtain completed
shapes and velocities of the dynamic objects in the scene, we
are ready to insert fluid behavior into the scene. To this end,
we use the processed data to generate boundary conditions
for our fluid simulator, which consequently ensures a one-
way coupling from the video to the fluid, i.e., the geometry
and motions present in the video affect the behavior of the
fluid, but not vice-versa.

We use a grid-based Eulerian approach for fluid simula-
tion, which is similar in spirit to the method of Stam [Sta99],
but has many of the improvements proposed by later au-
thors, such as [CMT04]. The fluid simulator discretizes the
3D space into a uniform grid of cells. It then solves for the
fluid velocity in each of these cells at every time step of the
simulation. To construct a fluid animation that properly in-
teracts with the video, we need to discretize the shape and
velocity of the objects in the video onto the same grid on
which the simulation is performed. In the previous steps, we
compute a boundary (triangle-mesh) representation for the
geometry of the foreground and background objects in the
scene. For simulation, this boundary representation is con-
verted into a signed distance function using the Fast March-

ing method [Set98]. This conversion is performed just once
for the (stationary) background. The foreground, on the other
hand, is discretized for every time step. Once the geometry is
discretized on the grid, the velocity from the surface points
can be extended onto grid locations by evolving them along
the surface in a way that preserves the signed distance func-
tion (see [AS99] for details).

Another aspect of simulation is the specification of the
fluid in the domain. For example, one could start with an
initial fluid volume that then evolves under the simulation.
One could also specify emitters and drains for the fluid in
the scene. Our simulation API provides an interface for per-
forming these initializations – currently we interact with the
API programmatically but it is foreseeable to build a user-
interface around it that would further ease the task of author-
ing simulations.

6. Rendering

The visual plausibility of the rendered result depends greatly
on the accuracy of scene silhouettes. If the silhouettes are not
correct, the fluid will not be occluded properly by objects in
the scene, and such a visual artifact is very noticeable. On the
other hand, the variation of depth within an object silhouette
is less visually important. Therefore, for the purpose of ren-
dering, we use the 3D information of the scene directly from
the depth map rather than the volumetric model generated
for simulation.

Smoke rendering is done using a standard ray marching
approach [FSJ01]. For rendering liquids, we use ray tracing
to render them into the scene with correct reflections and
refractions. The intersection test of a ray with the scene’s
depth map is performed by comparing the projective depth
of a point on the ray with the value of the depth map at that
position, and applying the bisection method. We have im-
plemented a version of this rendering algorithm which runs
on the GPU, based on recently proposed techniques such
as [DW07,HQ07]. However, the presence of large depth dis-
continuities in real scenes can lead to prominent visual ar-
tifacts. These can be made less noticeable by biasing the
ray–depth-map intersection towards the farther side of the
discontinuity, so that the color chosen for the ray is taken
from the background rather than a foreground object. The
renderer runs in real-time on current graphics hardware.

7. Results

We demonstrate our results by simulating liquid and smoke
animations within real video. We used a grid-based fluid
solver for our simulations, which employed the shapes and
velocities computed by our algorithm as boundary condi-
tions. Figure 7 shows an example where a baby is crawl-
ing on a table. We drop a blob of synthetic fluid on the
baby and it correctly interacts with the crawling baby. Fig-
ure 8 uses the same video as input but here water is pour-
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ing via an imaginary hose on the baby. Note that for this
baby sequence, visual hull based shape information was al-
ready available to us, courtesy of Brostow et al. [BESK04].
However, we still needed to perform velocity completion for
proper dynamic behavior of the fluid. The visual hull also
provides ground truth information. In Figure 8, we compare
the hose result using visual hull based shape, and that ob-
tained using our completion algorithm after eliminating all
but two of the nine cameras used in visual hull reconstruc-
tion. The results look quite similar, which reinforces our
claim that the surfaces obtained through the completion al-
gorithm are good enough for simulation.

The complete pipeline has been demonstrated on videos
featuring a Sony AIBO Entertainment Robot. The videos
were captured by two synchronized 1024 × 768 video-
cameras. The user was part of the loop in the segmentation
stage, in which some adjustments were required, and also de-
signed the fluid simulations. Figure 10 shows some frames
of the AIBO interacting with different fluids. Notice how
our system allows a user to edit the material properties of
the fluid in addition to generating novel simulations. Here
we show examples where the AIBO interacts with water and
honey. In Figure 9, we show simulated smoke interacting
with the AIBO. Please see the supplemental material for an-
imated videos and more examples.

Figure 8: Left: Visual Hull, Right: Completion

8. Implementation Issues and Discussion

As we go through our processing pipeline, the objects
in the scene undergo various transformations and change
of representations. The stereo algorithm generates 2.5-D
depth maps, which are represented as a triangle-mesh. This
triangle-mesh gets converted into a volumetric representa-
tion by the Poisson surface completion algorithm. At this
stage, we re-convert the objects into a triangle-mesh repre-
sentation for velocity completion, after which the geometry
is further discretized onto the volumetric fluid grid for simu-
lation. There are two reasons for going back to the triangle-
mesh representation in the velocity completion stage. Firstly,
the velocity completion itself is faster and more robust on
the triangle-mesh, because the rigidity constraints are prop-
agated over a 2-D manifold as opposed to through a 3D
volume resulting in a more compact system. Also, the for-
mulation for velocity completion presented here assumes a

Figure 9: AIBO interacting with smoke.

triangle-mesh representation and would need to be modified
non-trivially to make it work with a volumetric represen-
tation. Secondly, the two volumetric representations, used
for completion and simulation respectively, serve different
purposes and typically have different resolutions. The com-
pletion algorithm uses a multi-resolution octree-based grid,
while the simulation uses a (generally coarser) uniform grid.
Therefore, one needs to convert between these representa-
tions.

The Poisson completion algorithm was originally de-
signed for scenarios where only small parts of the object are
missing. In our case, the first frame provides a case where
large parts of the object are missing, which can cause the al-
gorithm to potentially generate unstable results, thus some-
times requiring manual tweaking of the completed surface to
make it satisfactory. However, such processes typically only
need to be done in the first frame, since in the subsequent
frames the velocity based propagation algorithm generates
points over most of the object, thus enabling robust comple-
tion of the surface. A promising direction for future work
is to jointly optimize the shape in all frames, which should
make the algorithm more robust to noise and occlusion.

Our current approach assumes local rigidity for veloc-
ity completion and does not impose any global volume-
preservation constraints. In other words, the reconstructed
and completed objects always project correctly onto the
video frames, but they may change (generally increase
slightly) their volume over time. We have not noticed any
artifacts related to the volume increase in our results. How-
ever, it may be desirable to enforce the starting volume as a
constraint throughout the sequence.

9. Conclusions

We have presented a framework for inserting fluid phenom-
ena into a real dynamic scene that includes articulated ob-
jects. We reconstruct the scene geometry in a manner suit-
able for interfacing and coupling with a fluid simulator. In
order for this coupling to be effective, the surface of the ob-
jects has to be closed and thus a reasonable approximation
for the invisible parts has to be estimated. To this end we
have presented novel algorithms for computing 3D geome-
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Figure 7: Pouring synthetic water over a baby

Figure 10: AIBO video with various fluid examples.

try and velocity fields for the hidden geometry of the scene
by combining estimates for visible regions with appropriate
rigidity and temporal constraints. We have shown that, while
these estimates do not correspond to the actual object, they
enable us to generate convincing visual effects with limited
user input. The final stage of our system is an effective ren-
dering mechanism that combines the texture and geometry
from the video with CG fluid data to synthesize the appear-
ance of fluid phenomena in real video. Our future work will
focus on the development of an interactive tool that would
make the design and testing of such simulations even easier.
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