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Abstract

The paper proposes a vision based online mapping of
large-scale environments. Our novel approach uses a hy-
brid representation of a fully metric Euclidean environment
map and a topological map. This novel hybrid representa-
tion facilitates our scalable online hierarchical bundle ad-
justment approach. The proposed method achieves scala-
bility by solving the local registration through embedding
neighboring keyframes and landmarks into a Euclidean
space. The global adjustment is performed on a segmen-
tation of the keyframes and posed as the iterative optimiza-
tion of the arrangement of keyframes in each segment and
the arrangement of rigidly moving segments. The iterative
global adjustment is performed concurrently with the local
registration of the keyframes in a local map. Thus the map
is always locally metric around the current location, and
likely to be globally consistent. Loop closures are handled
very efficiently benefiting from the topological nature of the
map and overcoming the loss of the metric map properties
as previous approaches. The effectiveness of the proposed
method is demonstrated in real-time on various challenging
video sequences.

1. Introduction

The progress of robotics and computing hardware in the
last decade has increased the demand for online metric map
reconstruction from cameras. At the same time the scale
of those maps has been increased by two to three orders
of magnitude [1, 10, 8]. This poses a significant challenge
for current state of the art camera based large scale model-
ing approaches. One of the most demanding applications of
vision based map reconstruction is in robotics. Robots in-
herently need to model the surround environment to safely
navigate in the space while performing the various tasks.
Our proposed approach for online simultaneous localiza-
tion and mapping (SLAM) is tackling this problem which
has also been intensively studied in the robotics community
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Figure 1. (a) A keyframe pose graph which shows the topolog-
ical structure of the environment. Orange circles represent the
keyframes and gray circles the landmarks. (b) A metric embed-
ding of the keyframes together with the landmarks. Refer the text
for detailed description.

for decades.

Traditionally laser range finders (LIDAR) have been
used in this task mainly because they directly measure the
distance to the surface with high precision. However there
are significant limitations in this type of sensors. The major
limitation is that typical LIDAR sensors only scan a 2D slice
of the space and the slice needs to be in the same plane for
a SLAM system to work. This limits the use of laser-based
SLAM systems in an environment with objects with com-
plex height profile (such as tables or shelves) and when the
robot moves freely in 3D space, not restricted on a flat floor.
Moreover LIDAR sensors require highly accurate tracking
on mobile platforms when moving. Another issue with the
sensor is its size, weight and power consumption, which is
significantly larger than passive sensors like video cameras.

Recently there have been many attempts to address
SLAM for larger environment using monocular or stereo
cameras [9, ]. By using cameras, the visual SLAM
system can avoid the shortcomings of laser-based SLAM
systems, but instead it needs to solve the problem of esti-
mating the 3D environment from 2D image observations.
The recent advances in structure-and-motion research pro-
vide the theoretical basis and useful machineries [ ].

In SLAM systems, the most difficult problem is to main-
tain the map (the perceived model of the environment) con-
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sistent to all observations, especially when loops exist in the
robot trajectory. Traditionally in visual SLAM this map ad-
justment is performed by bundle adjustment which scales
cubically with the problem size prohibiting online compu-
tation in large scale environments. Topological mapping is
devised to avoid this problem. It represents the world as a
graph with a set of places (nodes) and the relative location
information between the places (edges). In this represen-
tation, a loop closure does not require any additional error
adjustment. However, in return, it loses the globally met-
ric property. For example, a robot can not perform spatial
reasoning for proximity unless the link between the map lo-
cations is present in the topological map.

The proposed approach deploys a hybrid mapping
method combining the benefits of metric Euclidean maps
and topological maps, namely the locally-metric globally-
topological mapping. The map is represented as a graph
of the keyframes (nodes) and the relative pose between
keyframes (edges), like the topological approach. The main
distinction to previous approaches is that the system en-
forces the metric properties as much as possible, i.e. if
one follows the links and merges the relative poses in or-
der, it will become the identity transformation. Our method
strictly enforces the locally metric property all the time via
local adjustment, and global “metricness” is achieved (with
some delay) via a decoupled parallel global bundle adjust-
ment module.

The paper is organized as follows; in the next section
we review the related work. Our proposed novel method
is described in detail in Section 3. More information on
the design choices of the method are provided in Section 4
and Section 5 presents the experimental results on various
challenging sequences. Finally we summarize the proposed
method in Section 6.

2. Related Work

Triggs et al. [27] brought bundle adjustment into the fo-
cus of the computer vision community about a decade ago.
Since then bundle adjustment has become a topic of high in-
terest in computer vision given the ability to perform large
scale structure from motion from video [23] or from Internet
photo collections [25]. The results of the inherently incre-
mental structure from motion process has to be adjusted to
overcome drift [7]. We propose a combination of nested dis-
section and topological mapping to address this challenge.

Essentially bundle adjustment parameterizes structure
from motion as an optimization problem, which character-
izes each camera with six degrees of freedom (DOF) for
the translation and rotation of the camera and plus parame-
ters for the camera calibration and radial distortion. Addi-
tionally, the 3D points are parameterized through their three
position parameters. The projection equations are then used
to derive a non-linear set of equations which are then lin-
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earized through a Taylor series. This delivers a large sparse
linear equation system that can be efficiently solved through
a sparse Levenberg-Marquardt solver [12]. Large scale re-
constructions are challenging since the complexity of the
bundle adjustment is at least cubic in the number of cam-
eras plus a linear complexity in the number of points.

The scalability challenge has been recently addressed by
several researchers through a variety of methods. A very
prominent approach is nested dissection [2, 15], which is
a divide-and-conquer method to solve a set of sparse con-
straints as used in structure from motion. Nested dissection
regroups the reconstruction problem into sub-maps, which
conceptually can be solved independently except for the
cross sub-map interactions through parameters that influ-
ence multiple sub-maps. Then the parameters of the global
problem are sorted in two groups one group of parameters
that only influence one sub-map (intra-sub-map parameters)
and the second parameter group effecting more than one
sub-map (inter-sub-map parameters). To enable parallelism
during the sparse Cholesky factorization in the inner loop
of the sparse Levenberg-Marquardt solver, which provides
a sizable speed-up. The concept was initially deployed in
the field of photogrammetry to improve the efficiency of
bundle adjustment [5].

A concept similar in spirit to nested dissection has been
introduced by Ni et al. [20]. They proposed a hierarchi-
cal bundle adjustment to overcome the computational com-
plexity by partitioning the bundle adjustment into connected
sub-maps by modeling the parameters of each sub-map in a
local coordinate system and also dividing them into intra-
sub-map parameters and boundary variables. In contrast
to nested dissection the sub-problems are solved till con-
vergence and only then propagate the residual energy into
the global solution achieving significantly higher conver-
gence. In contrast to both of the above systems our pro-
posed approach is modeling the inter-sub-map relationships
through topological transformations effectively summariz-
ing the constraints into the transformation. This provides
a more compact representation of the boundary variables
leading to a computationally more efficient solution of the
global problem. Ni and Dellaert recently extended their ap-
proach [19] to a multi-level sub-map tree which represents
the constraints between the different sub-maps through the
graph edges.

Alternatively, Snavely et al. [26] aimed at reducing the
redundancy in the data by determining a set of essential
cameras (‘“‘skeletal cameras”) and removing all remaining
cameras from the optimization. Our system reduces the
number of cameras by selecting key-frames along the lines
of the approach of Clipp et al. [8], and in global problem
further reduction using segments of keyframes is employed.

In our method we encode the constraints between sub-
maps through the topological transformations between the



sub-maps. This is similar to the reduction of the param-
eter space introduced by Konolige and Agrawal in their
FrameSLAM method [14]. The reduction in FrameSLAM
is achieved through a marginalization of feature constraints
into 6DOF constraints between cameras with their corre-
sponding uncertainties. In contrast to FrameSLAM our
method does not depend on the linearization of the projec-
tion function to create the marginalized constraints, hence
we do not suffer under the inaccuracy in the linearization.

Holmes et al. [13] linearize the 3D features in the local
coordinate system of the cameras to obtain a locally consis-
tent fast solution of the bundle adjustment losing the glob-
ally metric property of the solution. In contrast our method
achieves a globally metric solution while maintaining the
efficiency during the solution of the sub-maps.

Similarly the HMT-SLAM of Blanco et al. [4] aims at
large scale modeling in real-time. Blanco et al. propose to
update a topological map of metric sub-maps to a globally
consistent map by optimizing the constraints of adjacent
sub-maps (sub-maps which have a topological transforma-
tion defined in between them) through iterative optimization
of the non-linear constraints. The latter process is similar to
bundle adjustment but does not encode the information of
the local metric sub-map as in our proposed map.

After briefly reviewing the previous work we now will
introduce our method in more detail.

3. Online Mapping
3.1. Keyframe Pose Graph

The environment map is represented as a keyframe pose
graph, whose nodes are the keyframes and edges represent
the relative pose between two keyframes. More precisely,
an edge a — b : Py, represents a link from node a to node
b with the associated 3D Euclidean transformation P, (P,
is a 4 x 4 camera projection matrix with six 3D pose param-
eters, which is inverse of the camera motion matrix). As
the pose graph is an undirected graph; if a — b : P, is in
the graph, b — a : Py, = Pa_b1 is also in the graph. An
example keyframe pose graph is shown in Fig. 1 (a). Please
note that there intentionally is no global coordinate system
in this representation.

The map is incrementally constructed as the cam-
era moves. Most keyframes are linked to the previous
keyframes via commonly observed landmarks (these tem-
poral links are shown as black lines in Fig. 1). When the
robot visits previously seen places, the location recognition
module [8] finds additional links between keyframes, which
creates loops in the pose graph (dashed lines in Fig. 1). The
landmarks are attached to the anchor keyframes in which
they are first observed (green lines in Fig 1 (a). Each land-
mark’s position is represented as a homogeneous 4-vector
x in the anchor keyframe’s coordinate system.
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A metric embedding of the keyframe pose graph is con-
structed as follows. For a given reference keyframe a,

1. put the keyframe a at the origin (Pao = I44), and

push (0, ag) into a priority queue pq.

repeat until pq is empty.
- pop (d, a) with smallest d from pq.
- for each neighbor keyframe b of a, a — b : Py,
- if b is not in the embedding,
- add the keyframe b with the pose ]5b = Pabpa.
- put (d 4 |Papla, b) into pg.

for each landmark [ and its anchor keyfran}e q,
- add the landmark [ at the location &; = chlasl.

P, denotes the pose of a keyframe a in the embedded space.
|P|c denotes the norm of the translation component in P,
thus d in (d, a) is in fact the geodesic distance from ag to a
on the graph.

Conceptually this procedure performs weighted breadth-
first search of the pose graph from the reference keyframe
and embeds the keyframes according to the order. The land-
marks are then embedded using their anchor keyframe’s em-
bedded pose. Fig. 1 (b) shows an example of the embedded
keyframe pose graph. Note, that the embedded maps may
be very different depending on the choice of the reference
keyframes, and also there is no guarantee that a loop in the
map remains as a valid loop in the embedded map. If there
is metric inconsistency in a loop (when the combined trans-
formation along a loop # I,«4), the accumulated error will
break the farthest link from the reference keyframe.

Compared to the relative bundle adjustment (RBA) [24],
the proposed system is to improve this artifact in topological
mapping by enforcing the metric property through local and
global adjustment. Note that there is no simple way to en-
force the metric constraint in purely topological framework.
Our hybrid approach enables us to maintain the benefit of
topological maps (instant loop closure) whereas the map is
enforced to be metrically correct after local and global ad-
justment.

3.2. Local Adjustment

Intuitively it is expected that a new keyframe provides
the majority of changes in the map in its nearby keyframes
with commonly visible landmarks. In our method this
change is computed through the local adjustment mod-
ule, which improves the estimated motion of the current
keyframe, and ensures a locally metric map around the cur-
rent keyframe’s location. When a new keyframe is added,
the estimated pose of the keyframe may contain small er-
ror because it is computed and optimized using the land-
marks, which are themselves fixed in position. In the case
of a detected loop, the local and global metric constraint
may additionally be violated by the newly added link. It is
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Figure 2. (a) Local bundle adjustment. Active keyframes and
landmarks are drawn in red, and fixed keyframes in light gray
(window size=5). Green links show the observations of landmarks
by keyframes. The fixed keyframes are those outside the window
but with observations to the active landmarks. Dimmed keyframes
and landmarks are not used in the local optimization. (b) Local
bundle adjustment with a detected loop.

very important to resolve these inconsistencies in time, at
least locally, to ensure that the pose estimation and location
recognition in the next keyframes will work properly.

Our proposed local bundle adjustment updates the links
to the active keyframes and the positions of the active land-
marks. The most recent-w keyframes (w is the window size
parameter, typically 5~10) are initially selected as the ac-
tive keyframes. If there are recognized links to the initial ac-
tive keyframes, those keyframes are also added to the active
keyframe set. The size of the active keyframe set is bounded
since the number of active keyframes is at most twice the
window size w due to the fact that the location recogni-
tion adds no more than one additional link per keyframe.
Next, all landmarks visible from the active keyframes are
used in the optimization as the active landmarks. All other
keyframes which have the observations of the active land-
marks are included as fixed keyframes that allows to use all
available observations of the landmarks in the local adjust-
ment.

Local adjustment performs the following steps for the
new keyframes.

1. find the active keyframes {a;}, then determine active

landmarks {/;} and fixed keyframes {a;, }.

. embed {a;} {1;} {a},} into { Py} {d1,} {Py }
in a local metric space centered at the most recent
keyframe ag € {a;}.

1.

update the map using adjusted keyframe poses {]5a_7.}
and landmark positions {;, }:

- any existing a — b, a € {a;},seta — b: PP/~ 1.

- any existing b — a, a € {a;},setb — a: Papé’l_

-any [ € {l;} with its anchor keyframe ¢;, &; = P, ;.

run the sparse bundle adjustment algorithm [

In the embedded metric space the standard sparse bundle
adjustment (SBA) algorithm [16] is used for optimization.
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After applying the Schur complement, the largest linear sys-
tem to be solved has at most 12 xw variables, which can be
solved very quickly. The number of landmarks and fixed
keyframes affects the performance through the increased
number of observations, but in usual setup the local adjust-
ment runs efficiently. Once the keyframes and landmarks
are embedded in a metric space, the explicit topological
structure is not used anymore, but it still remains in the ob-
servations that associates keyframes and landmarks. Thus
in SBA, the same topological structure is being used im-
plicitly through the Jacobian matrices for keyframes and
landmarks. After it finishes, the optimized keyframes and
landmarks are imported back into the graphical environ-
ment map. Note that all anchor keyframes for the active
landmarks are always part of the embedding from the con-
struction.

While this process on first sight seems similar to
RBA [24] it shows advantages over RBA through the de-
tails. The most important improvement is that our method
guarantees the local metric constraint since all entities are
embedded in a metric space, whereas that is not guaran-
teed in RBA. Moreover, our approach has no need to propa-
gate Jacobian matrices over the edges of the graph making it
more computationally efficient. Additionally, our technique
is conceptually simpler than RBA since it fully operates in
the familiar metric space and can use all known bundle ad-
justment methods.

3.3. Global Adjustment

With the above described local adjustment, it is guaran-
teed that the map is locally metric, but still the entire map
may not be metric due to the errors along the loops. Achiev-
ing global metric consistency is in general not simple in
topological maps. The approach we take is to embed the
entire map into the metric space, optimize the embedded
structure, and update the result back into the topological
map. This is fundamentally identical to the local adjustment
step, but when a large number of keyframes and landmarks
exist, this may take significant computation time and may
have difficulty in converging to the right map.

In this section we propose a novel divide-and-conquer
strategy to efficiently solve the global adjustment problem.
First the keyframes are clustered into multiple disjoint sets
(called segments) using geodesic distance on the graph, then
the global adjustment module iterates local segment-wise
optimization and global segment optimization:

L.
2.
3.

group the keyframes into x segments s;, = {a§-k)}.
for each segment s;, run local adjustment if necessary.
run global segment optimization:

- embed all segments {s; } into a metric space, {Qs, }.
- embed all landmarks {l; } into the same space, {&;, }.

- optimize {st} and {#,, }, into {st} and {&;, }.
- update the map using {Q,, } and {&;, }.
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Figure 3. Global adjustment procedure. The keyframe pose graph is partitioned into multiple segments and the segments are embedded
into a metric space. Each segment is optimized by the local adjustment algorithm if necessary, then the global segment optimization adjusts
the segments’ poses and landmarks’ position assuming that the segments are moving rigidly. After iteration the result keyframe poses and
landmark positions are updated back into the keyframe pose graph. The green lines in the segment-wise optimization illustration are shown

to visualize how the fixed keyframes are selected.

In global segment optimization, segments are treated as
rigid bodies in embedding and optimization in Step 3. QS
denotes a segment-wise six degree of freedom 3D rigid mo-
tion, and the projected coordinate of landmark [ to keyframe
7 in segment k is

(2, Py, Qr) = KP;Qra (D)
where K is the 3 X 4 camera projection matrix. Note that
Pj is only updated in Step 2 and kept constant in Step 3.
Figure 3 illustrates the proposed algorithm.

Since each segment moves as a rigid body, the number
of variables in the linear system after Schur complement is
6x k. The main idea is to make the global segment adjust-
ment faster by reducing the number of variables, and more
stable by grouping nearby keyframes together. As discussed
earlier, in the embedded space the inconsistency along a
loop is concentrated at the farthest link from the reference
keyframe, thus there may be a large opening or overlap at
the link. If individual keyframes are used with SBA for
global adjustment, it is likely that the keyframes around this
link may not converge to the right pose (see Fig. 5 (b)). If
a group of keyframes is restricted to move rigidly, the con-
tribution of each observation is accumulated to the segment
instead of the individual keyframe, and it is more likely to
find the correct pose, although it may not be as accurate as
optimizing individual keyframes. The small errors that may
be caused by rigid segment treatment will be reduced by the
segment-wise optimization in the next iteration.

As briefly discussed in Section 2, the proposed method
has several advantages over existing methods. Using nested
dissection with boundary variables [20, 19] has a seri-
ous problem of most of variables being boundary when
the graph is not very sparse and segmentation is fine.
Long tracks of features induces dependencies among all
keyframes that observe common landmarks, and the spar-
sity is significantly reduced. The proposed method does not
have this issue since it treats each segment as a virtual cam-
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Scene Flow

KLT tracker (x2) > RANSAC w. 3pt alg.

Local Adjustment

Metric embedding

Sparse bundle
adjustment

Relative pose
computation

Segment optimization

Global optimization

Global Adjustment

Vocabulary tree
RANSAC w. 3pt alg.
Pose optimization

Location Recognition

Keyframe Pose Graph
+ Landmarks

Figure 4. System overview. The system consists of four in-
dependently running tasks. Scene Flow processes input stereo
frames, tracks features and generates keyframes if there are
enough changes. The keyframes are added to the map and passed
to Local Adjustment and Location Recognition modules. Location
Recognition detects possible loop closure, and Local Adjustment
enhances local geometry around the recent keyframes in the map.
Global Adjustment periodically checks and optimizes the global
map.

era, so the size of global optimization does not depend on
the sparsity of the map.

4. Algorithm

In this section we detail our algorithm and its realization
on a robot platform. The method takes a calibrated stereo
video stream as input and generates an environment map of
sparse 3D point landmarks. The proposed online environ-
ment mapping system consists of four major components:
Scene Flow Computation, Location Recognition, Local Ad-
justment and Global Adjustment (see Fig. 4). All compo-
nents are executed in parallel to minimize latency and to
maximize throughput. Necessary informations are propa-
gated between modules using message passing.



Scene Flow The Scene Flow module is responsible for
detecting and tracking salient features in the input video
stream, finding inlier features among the tracked features
and computing the initial six degree of freedom motion es-
timates of the camera system. This is done for all input
frames, so the robot has the pose estimate at all times.

Our feature detection uses the Harris corner detector,
limited to detection on edges [28]. This ensures the feature
placement to be on the true corners in the scene. Detected
features are then tracked by two 2D KLT trackers [18] on
the left and right camera’s video streams separately. Stereo
correspondences of the features are established using Nor-
malized SSD [6] when they are initially detected, and they
are constantly checked if they are on the epipolar line with
valid disparity during tracking. The initial 3D position of a
landmark is computed using the disparity from the stereo
feature match, and as the camera moves the Local and
Global Adjustment modules update the position using all
available observations from different view points.

Some of tracked features may be drifted or may be from
independently moving objects. We employ a 3-point algo-
rithm embedded in a RANSAC [11] for robust motion esti-
mation and outlier rejection. Once RANSAC finds the ini-
tial 3D camera pose and inlier features, the 3D pose is en-
hanced with a non-linear optimization using all inlier fea-
tures, and a new set of inliers is found with the enhanced
pose estimate.

If there exists enough camera motion or change in fea-
tures, a keyframe is created and added to the map. The new
keyframe is then passed to the Location Recognition and
the Local Adjustment for further processing. Newly estab-
lished features are added as new landmarks, and the land-
marks with too few observations are later removed from the
map when they are lost in tracking.

To boost performance all low-level image processing
routines are parallelized including image rectification, KLT
feature tracking and stereo feature matching, and are exe-
cuted on commodity graphics processors.

Location Recognition The Location Recognition module
tries to find possible loop closures, i.e. if the system is revis-
iting a previously-captured location. It uses USURF-64 [3]
descriptors computed on the tracked feature points. This
is possible because the scale of each feature can be com-
puted from the inverse of the depth of the feature. The ad-
vantages are increased performance by saving the interest
point detection and better stability in determining the fea-
ture’s scale. The descriptors are computed using integral
image technique on the CPU as proposed in [3], and it is
attached to the landmark observation.

Candidate keyframes are selected using the vocabulary
tree [22] on the USURF-64 descriptor (width=40, depth=3),
which is trained off-line from 1.76 million descriptors from
various indoor and outdoor training videos. For each
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candidate we perform the relative pose estimation using
RANSAC with the 3-point algorithm similarly to the Scene
Flow module, and the candidate with most inliers (above a
given threshold) is chosen as the location recognition result.
The obtained pose estimate and the inlier set are improved
via a non-linear optimization. If a match is successfully
found, a new link connecting the current keyframe to the
detected keyframe is added into the keyframe pose graph.
This link will then be optimized by both the Local and the
Global Adjustment modules.

Local Adjustment The Local Adjustment module per-
forms a windowed bundle adjustment of the recently added
keyframes as described in Section 3.2. The standard sparse
bundle adjustment algorithm [17] with pseudo Huber norm
is implemented internally using LAPACK.

Global Adjustment The Global Adjustment module per-
forms the optimization of the entire map as described in
Section 3.3. The keyframes, which are currently consid-
ered in the Local Adjustment’s windowed bundle adjust-
ment are excluded from the Global Adjustment to avoid in-
consistencies by updating the same link in different mod-
ules. Segment-wise optimization is performed in the same
way as the Local Adjustment with all keyframes in the seg-
ment as active keyframes. For global segment optimization,
we need to compute a Jacobian matrix for segment-wise
motion (Eqn. 1), and the rest is similar to the local adjust-
ment.

To make Global Adjustment use as many keyframes as
possible, the global optimization iterates only once and new
segmentation is found using all available keyframes includ-
ing newly added keyframes after the previous global opti-
mization.

5. Experimental Result

We use two stereo camera rigs for our experiments, one
with 7.5cm baseline and about 110° horizontal field of view
mounted in the head of a humanoid robot. The second
stereo rig has a baseline of 16 cm and a 95° horizontal field
of view and is mounted at the front of an electric cart. The
effective image resolution after rectification is 640x360
pixel. The test videos are recorded at 12~15 fps.

First we demonstrate that our proposed local adjust-
ment can handle the topological changes successfully. The
Two images shown in Fig. 5 (a) are the local embeddings
before and after the loop closure (in the robot sequence
in Fig. 6 (a)). Note that the topological changes are re-
flected in the optimization, where the loop closure creates
additional constraints among keyframes. With only local
adjustment and location recognition, the resulting map is
only locally metric. Globally the embedding may have large
openings like the black trajectory in Fig. 5 (b). Severe mis-
alignments may even prevent traditional bundle adjustment
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Figure 5. (a) Local adjustment around a loop closure event. Left image is before a loop closure, and only 5 recent keyframes are active.
Right is after the loop closure where additional fixed frames are included in the embedding. (b) Direct application of SBA on an embedding
of Fig. 6 (c) without global adjustment. Note that the result is not accurate due to large misalignments in the embedded map. (c) First
two iterations of the proposed global adjustment on the same input map as (b) are shown. The first and third images with various colors
show the segmentation after segment-wise optimization, and the second and forth show the global segment optimization result. Note that
it converges reasonably good even after the first iteration. For all result images, gray is fixed keyframes, black and red are active keyframes
before and after the optimization respectively. Only keyframes are shown for presentational clarity, but all associated landmarks are used

in optimizations.

from converging to the right map, as the red trajectory in
the same figure. Fig. 5 (c) shows how our proposed global
adjustment works. For each iteration, it segments the map
into several pieces (the 1st and 3rd image), individual seg-
ments are optimized locally, afterwards it aligns the seg-
ments jointly with all the landmarks. The results of the
global segment optimization are also presented in Fig. 5 (c).

Fig. 6 shows the final mapping results of the three differ-
ent test sequences. For full details on the system’s perfor-
mance, please see the videos in the supplementary material.

The first sequence is from a humanoid robot walking in
a large building. Due to the robot’s motion characteristics
the camera experiences shaking and vibrations, but the fea-
ture tracker was able to robustly track the features. There is
a corridor with very few features in which case the motion
estimation becomes inaccurate, despite this locally decreas-
ing accuracy is global adjustment able to deliver the global
geometry correctly as shown in Fig. 6 (a).

Additionally, we present results of a second indoor scene
and an outdoor sequence taken from a moving electric
cart. The cart-outdoor sequence contains a very long travel
around a building, and the accumulated motion estimation
error is corrected when loops are detected (Fig. 6 (b)). The
cart-indoor sequence is also very interesting since the depth
range of the tracked features ranges from very close to far,
as well as the sequence contains a significant number of
loops. Globally metric mapping methods have difficulties
when many loop closures occur within a short time, since
there is not enough time to update the map before next
loop closes. Our proposed method keeps the local geome-
try in the map to be metric and correct all the time, whereas
the global metric property is improved as global adjustment
progresses.

The timing of each of the modules is shown in the bot-
tom row of Fig. 6. The colored pixels represent when the
module was running and how long. Each pixel in the im-
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age represents 20ms and one column corresponds to one
second. The system is running on a laptop computer with
a 2.66GHz Core 17 CPU and a GeForce 330M GPU. The
input frames are provided to the system at 20 fps, which
is 30~60% faster than the original frame rate. The Scene
Flow module is able to process them in real-time, and as
can be seen in Fig. 6, Location Recognition and Local Ad-
justment also perform in real-time. The Global Adjustment
module slows down as more keyframes and landmarks are
added to the system, but still each iteration runs within 10
seconds even at the end of the sequences.

6. Discussion and Future Work

In this paper we present a novel method that bridges the
topological map representation and the metric property in
Euclidean maps. While keeping the benefit of an efficient
representation of the topological maps allowing instant loop
closing, the method tries to enforce the metric property lo-
cally and over entire map. As a result, the system is able
to maintain the nearby keyframes and landmarks around the
current location always accurate and metrically correct. The
global map is also optimized to model the environment cor-
rectly while maintaining the metric property, and the pro-
posed segment-based iterative optimization is used for effi-
cient processing.

One interesting problem is to keep the number of
keyframes and landmarks within a manageable range by
merging or trimming redundant map entries. This would al-
low the map size to be proportional to the size of the space
and not to the time spent in the space.
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