
Get Out of My Lab:

Large-scale, Real-Time Visual-Inertial Localization

Simon Lynen∗, Torsten Sattler†, Michael Bosse∗, Joel Hesch‡, Marc Pollefeys† and Roland Siegwart∗

∗Autonomous Systems Lab, ETH Zurich
†Computer Vision and Geometry Group, Department of Computer Science, ETH Zurich

‡Google Inc., Mountain View, CA

Abstract—Accurately estimating a robot’s pose relative to a
global scene model and precisely tracking the pose in real-time
is a fundamental problem for navigation and obstacle avoidance
tasks. Due to the computational complexity of localization against
a large map and the memory consumed by the model, state-of-
the-art approaches are either limited to small workspaces or
rely on a server-side system to query the global model while
tracking the pose locally. The latter approaches face the problem
of smoothly integrating the server’s pose estimates into the
trajectory computed locally to avoid temporal discontinuities.

In this paper, we demonstrate that large-scale, real-time pose
estimation and tracking can be performed on mobile platforms
with limited resources without the use of an external server.
This is achieved by employing map and descriptor compression
schemes as well as efficient search algorithms from computer
vision. We derive a formulation for integrating the global pose
information into a local state estimator that produces much
smoother trajectories than current approaches. Through detailed
experiments, we evaluate each of our design choices individually
and document its impact on the overall system performance,
demonstrating that our approach outperforms state-of-the-art
algorithms for localization at scale.

I. INTRODUCTION AND RELATED WORK

Being able to reliably estimate and track the pose of a robot

with respect to a global map at a high frequency is fundamental

to unlock path-planning, obstacle avoidance and manipulation.

Designing systems that provide accurate localization at a large

scale while running on platforms with limited computational

resources is thus a key problem in robotics. Such systems

are also highly relevant for Augmented Reality (AR) appli-

cations, e.g., for mobile phones, which require high-quality

pose estimates relative to a global map to correctly project

virtual objects into the camera view. One crucial aspect for

localization systems, independent whether they are used for

agile flying robots, manipulation tasks, or AR, is that they

provide a (nearly) perfect registration to a global model with

subsequent pose estimates being free of discontinuities.

Using visual and inertial sensors, i.e., a camera and an

inertial measurement unit (IMU), enables localization under a

wide range of conditions without relying on the availability

of GPS or WiFi. State-of-the-art methods for online, low-

latency visual (inertial) localization assume the existence of a

3D model of the scene. This model is often pre-built from a set

of database images using Structure-from-Motion (SfM). Since

SfM reconstructs each 3D scene point from multiple views,

each such 3D landmark can be associated with a set of local

p
o
s
it
io

n
 [
m

]

-100

-50

0

50

100

position [m]
-350-300-250-200-150-100-50050

Fig. 1. The proposed system uses efficient nearest neighbor search
techniques and projected binary feature descriptors to achieve highly
accurate localization against a large “RSS” 3D model in real-time.
(Top-left) Projecting the map points (yellow) into the camera view
shows the quality of our 2D-3D alignment. (Top-right) Blue lines
connect image features to their corresponding 3D model points.
(Bottom) The 3D points of the model (blue), the trajectory taken
during model building (black), and the current trajectory (red).

image descriptors [41]. Given a novel image together with

features [6, 28, 23] extracted from it, the camera pose w.r.t.

to the model can be computed from 2D-3D matches between

image features and landmarks using relative [37] or abso-

lute [18] pose solvers. In order to match the features against

the 3D landmarks, approaches from robotics can be used to

first retrieve relevant database images [8, 16, 48]. The image

features are then matched against the landmarks observed in

the retrieved keyframes [3, 11]. Alternatively, matching can

also be done directly against the full model [20, 26, 32, 44, 53].

Once an initial pose has been computed, real-time marker-

less tracking [3, 27] or simultaneous localization and mapping

(SLAM) [32, 44, 52] track the camera pose without having to

match against the model in every frame.

Localization approaches that keep the full scene model

on the device [3, 11, 20, 27, 53] are usually restricted to

small workspaces due to the high memory requirements of

the landmark descriptors. More scalable approaches assume

the availability of an external server, which sends the relevant

model parts to the device [4] or even performs the actual

localization [32, 51, 52]. The latter methods run SLAM on

the device, enabling them to handle the latency of transmit-

ting images to the server and to track the pose for periods

where localization against the global model fails [32, 44, 52].

Besides removing restrictions on the workspace, tracking a

local pose estimate enables the high frequency and smooth

pose estimates that are essential for robot control. However,

relying on a server connection implies that WiFi/GSM is

available, which in turn already gives a very accurate prior

for global localization. Instead of outsourcing computations,

we compress the global model by both removing unnecessary

scene geometry and quantizing the landmark descriptors. By

drastically compressing global maps our approach is able to

handle building scale models on clients having computational

resources similar to micro aerial vehicles or mobile phones.

Our approach is based on the observation that pose estimates

relative to the global model are only required infrequently

when combined with robust local pose tracking.

To align the local SLAM map with the global model

from the server, state-of-the-art methods apply loosely cou-

pled approaches that employ the 2D-3D matches used by

server-side global localization: Se et al. [44] triangulate local

landmarks and perform 3D-3D landmark alignment to the

global map. Both Middelberg et al. [32] and Ventura et al.

[52] first compute an initial alignment using either the camera

poses returned by the server or the global landmark positions.

For all following frames that are sent to the server, they

then optimize the alignment by including the global 2D-3D

matches into the bundle adjustment (BA) of the local map. To

limit the computational complexity, they perform a windowed

version of SLAM based on a limited number of keyframes.

Keyframes which are furthest away from the current pose [32]

or oldest [52] are discarded together with their constraints to

the local and global model. Discarding (instead of properly

marginalizing) measurements however has been shown to lead

to suboptimal estimation performance [12, 45, 35, 24]. The

removal of constraints from the optimization furthermore leads

to discontinuities in the resulting pose estimate as the mini-

mum of the cost function changes. In this paper, we therefore

show how to properly handle these global constraints.

Overall, this paper makes the following contributions:

• We propose a large-scale system that entirely runs on de-

vices with limited computational and memory resources

while offering highly accurate, real-time localization.

• We provide an extensive experimental evaluation that

demonstrates that large-scale localization on such devices

is feasible. We evaluate each component individually and

also demonstrate its influence on the overall performance.

• We propose a direct inclusion of 2D-3D matches from

global localization into the local visual-inertial estimator,

leading to smoother trajectories and orders of magnitude

faster run-times compared to sliding window BA.

• We demonstrate the feasibility of state-of-the-art match-

ing and compression schemes for mobile localization.

II. SYSTEM OVERVIEW

In an offline stage, a 3D point cloud is reconstructed

from a set of database images using SfM. The model is

then compressed by removing less important landmarks and

quantizing the 3D point descriptors before being stored on

the mobile system. The device runs a keyframe-based visual

inertial SLAM method to smoothly track the movement of

the camera. For each keyframe, visual features are extracted

and their descriptors are matched against the descriptors of

the 3D model. The resulting 2D-3D matches are then used

to robustly estimate the camera pose via RANSAC [14]. The

pose computed for the first keyframe gives the initial position

and orientation of the mobile system w.r.t. to the global model.

For all subsequent keyframes, the inliers to the estimated pose

are integrated into the state estimator to provide additional

constraints besides the features tracked by SLAM.

A. Descriptor Extraction and Projection

In order to match interest points detected in an image against

the 3D model, the same feature type has to be used for model

construction and matching. To enable real-time performance

on mobile devices efficient binary descriptors [2] are used

and projected to a real-valued space following [7, 29]. The

projection is designed such that the L2 distance between

descriptors in the projected space matches the Likelihood

Ratio Test (LRT) statistic [7]. The LRT is the hypothesis test

that best separates matching from non-matching descriptors

for a given maximum false-positive matching rate [36]. After

projection the descriptor is reduced to 10 dimensions by

removing the dimensions with the lowest signal-to-noise ratio.

While this does not significantly reduce the memory footprint

(from 64 to 40 bytes), the projection vastly increases the

efficiency of the k-nearest neighbor (kNN) search at minimal

loss of precision [29]. More importantly, the projection enables

the use of high-quality kNN algorithms for real-valued vectors

[15, 38, 40, 5] and thus avoids the problems of kNN searches

in binary spaces [50].

III. GLOBAL 3D MODEL CREATION AND COMPRESSION

The global localization model is built from a sequence of

database images using standard SfM techniques. The metric

scale of the resulting map, which is essential for any robotic

application, is recovered by including IMU data. A loop-

closure pipeline, combining the work of Galvez-Lopez and

Tardos [16] with the FABMAP algorithm by Cummins and

Newman [9], identifies places that have been visited multiple

times. Following Leutenegger et al. [24], the model is refined

through non-linear optimization [1] by minimizing a cost

function J(x) that depends on a state x which involves camera

and structure parameters. The cost function contains both the

(weighted) reprojection errors er and the (weighted) temporal

error term from the IMU es:

J(x) :=

I∑

i=1

∑

j∈J (i)

ei,jr
T

Wi,j
r ei,jr

︸ ︷︷ ︸

visual

+

I−1∑

i=1

eis
T

Wi
se

i
s

︸ ︷︷ ︸

inertial

, (1)

where i denotes the camera frame index and j denotes the

landmark index. The set J (i) contains the indices of land-

marks visible in the ith frame. Furthermore, Wi,j
r represents

the inverse measurement covariance of the respective land-

mark, and Wi
s the inverse covariance of the ith IMU constraint.

A. Model Compression

To reduce the memory footprint of storing the model, the

3D point cloud is compressed by approximately solving a (NP-

complete) set cover problem: Both Li et al. [26] and Park

et al. [39] try to select a minimal subset of all landmarks

such that each keyframes observes at least Nthres (here 15)

selected landmarks in order to guarantee robust localization.

We initially remove every second key-frame since consecutive

frames have a highly similar visual appearance and descriptors

contribute a large portion to the model size. Inspired by Li

et al. [26], who iteratively select landmarks, our approach then

uses a greedy algorithm that iteratively removes landmarks

from the model which are not observed often while at the

same time making sure no keyframe is left with less than

Nthres observations. Finally, only the minimal amount of data

required for localization is retained, which are the 3D land-

mark positions together with their corresponding descriptors as

well as landmark covisibility information. Since the reduction

process removes the landmarks which have been observed the

least or have a large estimated covariance, initially the overall

quality of the model improves, while only at high reduction

rates an impact on the localization quality is apparent [26].

Product Quantization [21] is used to compress the de-

scriptors of the remaining landmarks: The 10-dimensional

descriptor space is split into MPQ subspaces of equal dimen-

sionality, i.e., each descriptor is split into MPQ parts of length

DPQ = 10/MPQ. For each subspace, a visual vocabulary with

kPQ words is learned through kPQ-means clustering. These

vocabularies are then used to quantize each part of a land-

mark descriptor individually. A descriptor is thus represented

by the indices of the closest cluster center for each of its

parts. This quantization can significantly reduce the memory

requirements. E.g., when using two vocabularies (MPQ = 2)

with kPQ = 256 centers each, storing a descriptor requires

only 2 bytes instead of 40 bytes.

The squared Euclidean distance between a regular descriptor

d = (d1 · · · dMPQ
), dT

j ∈ R
DPQ , and a quantized descriptor

represented by a set of indices (i1, . . . , iMPQ
) is computed as

MPQ∑

j=1

(dj − cj(ij))
2

. (2)

Here cj(ij) is the word corresponding to index ij in the jth

vocabulary. Notice that the distance from dj to all words in

Fig. 2. Starting from an initial model of size 136.7 MB we apply a
pruning technique to remove 3D points that have not been observed
often. This reduces the model size to 19.8 MB. Combining pruning
with a descriptor compression technique, we can fit the model in
as little as 0.64 MB while not incuring substantial penalties on
the localization quality. The plot shows the error statistics for (top)
position and (bottom) orientation when localizing against models
from different pruning levels.

the jth vocabulary can be pre-computed and stored in a look-

up table [21]. Consequently, only table look-ups and additions

are required to compute the descriptor distance.

Decomposing the descriptor space such that each compo-

nent has a similar variance reduces the quantization error of

product quantization [17]. As a result, Eq. (2) better approx-

imates the true descriptor distance between the two original

descriptors. This balancing can be achieved by permuting the

rows of a rotation matrix that aligns the descriptor space

with its principal directions [17]. Notice that this balancing

step does not introduce any computational overhead as the

rotation matrix is pre-computed and then pre-multiplied with

the projection matrix from Section II-A.

IV. LOCALIZATION AGAINST THE GLOBAL MODEL

Given the global model, 2D-3D matches between the fea-

tures found in the current keyframe and the 3D landmarks are

established via descriptor matching. These correspondences

are then used to estimate the camera pose. A popular approach

in related work is to use image retrieval techniques [38, 46]

to identify a set of database images which are similar to

the current keyframe [9, 20, 48, 16, 31, 30, 34]. 2D-3D

matches between features and landmarks from the retrieved

images can easily be established based on common visual

words. Unfortunately, this approach often introduces so many

wrong matches that RANSAC-based pose estimation becomes

infeasible [43]. Thus, pairwise descriptor matching between

the query keyframe and the top-ranked retrieved images is

performed to reduce the fraction of outliers [20, 43].

The bag-of-words model becomes less distinctive as the

database grows, i.e., more and more unrelated views are found

among the top ranked images [22]. Using a finer vocabu-

lary can reduce the problem of voting for unrelated images

[22, 43, 47]. Yet, most large-scale localization approaches

rely on directly matching the feature descriptors against the

landmark descriptors without any intermediate retrieval step

[25, 26, 41, 42, 49]. A popular approach to accelerate the

matching process is to build a kd-tree for (approximate)

nearest neighbor search on top of the landmark descriptors

[25, 49]. While offering an excellent search performance, a kd-

tree is rather slow due to backtracking and irregular memory

access [41]. In addition, the kd-tree would need to be rebuilt

when extending the global model, which is undesirable for

SLAM scenarios. Current state-of-the-art methods for efficient

large-scale localization [41, 42] instead use an inverted index:

Given a fixed-size vocabulary, each feature descriptor from

the current frame is assigned to its closest word. Exhaustive

search through all landmark descriptors assigned to this word

then yields the nearest neighboring landmark. This approach is

faster than kd-tree search and can be accelerated even further

through prioritization [41, 42], i.e., stopping the search once

a fixed number of matches has been found. Notice that search

structures based on inverted indexes allow extentions to the

3D model by simply appending descriptors.

In this paper, an inverted index is used to accelerate nearest

neighbor search. Obviously, larger vocabularies are desirable

as fewer descriptors will be stored for every word. Yet,

using a larger vocabulary implies higher assignment times and

memory consumption. Both of these problems can largely be

circumvented by using an inverted multi-index [5]: Similar

to product quantization, the descriptor space is split into two

parts and a visual vocabulary Vi containing Nimi words is

trained for each part. The product of both vocabularies then

defines a large vocabulary V = V1×V2 containing N2
imi words.

Finding the nearest word ω = (ω1, ω2) ∈ V for a descriptor d

consists of finding the nearest neighboring words ω1, ω2 from

the two smaller vocabularies V1 and V2, which is accelerated

using a kd-tree. Thus, using an inverted multi-index not only

reduces the memory requirements but also accelerates the

visual word assignments. Each landmark descriptor is assigned

to its closest word from V . For each feature that should be

matched against the model, the X nearest words from each

vocabulary are found. From the product of these two sets of

words, the feature descriptor is matched against all landmark

descriptors stored in the nearest Y words. When using product

quantization, one product quantizer is learnt for each word

from V1 and V2 to encode the residuals between the word and

the assigned descriptors.

A. Covisibility Filtering and Pose Recovery

Often, fewer than 10% of all features found in the current

frame have a corresponding landmark [41]. Most of the wrong

matches can be eliminated by a threshold on the maximal

descriptor distance or Lowe’s ratio test [28]. However, some

correspondences will still pass these tests, causing problems

during camera pose estimation since RANSAC’s run-time

increases exponentially with the outlier ratio [14].

A popular strategy to filter out wrong matches is to em-

ploy the covisibility relation between the different landmarks

[25, 48, 42]. For example, only matches whose landmarks

form clusters in the covisibility graph [48, 42] are kept.

Covisibility filtering works well on large models since wrong

matches tend to be randomly distributed all over the scene.

However, it is less effective for smaller scenes where a larger

fraction of landmarks is covisible. Lynen et al. [29] proposed

an algorithm that works well for both small and larger models,

but is currently limited to offline processing of datasets. Due to

the the simplicity and efficiency as well as the ability to run

online we use the covisibility filter from [42]: A 3D model

defines a undirected, bipartite visibility graph [26], where the

two sets of nodes correspond to the database images and the

3D landmarks in the map. A landmark node and a image node

are connected if the landmark is visible in the corresponding

database image. The landmarks from a given set of 2D-3D

matches and their corresponding database images then form

a set of connected components in this visibility graph. The

covisibility filter from [42] simply removes all matches whose

3D point does not belong to the largest connected component.

These correspondences are then used to estimate the camera

pose in a few milliseconds by applying a 3-point solver [14]

inside a preemptive RANSAC [10] loop. Afterwards, the pose

is refined by applying the direct least squares PnP solver [19]

on all inlier correspondences.

V. LOCAL POSE TRACKING

The pose of the platform is tracked in real time using a

visual-inertial sliding window estimator with on-the-fly feature

marginalization similar to the work of Mourikis et al. [33]. The

temporally evolving state in this estimator is given by

xE = (LP I
LvI bg ba) , (3)

where LP I denotes the pose of the platform as the coordinate

transformation of the IMU frame of reference w.r.t. the local

SLAM frame of reference. The translational velocity estimate

of the IMU frame w.r.t. the local SLAM frame is denoted as
LvI . bg , ba ∈ R

3 denote the estimate of the time varying

gyroscope and accelerometer bias, modeled as random walk

processes driven by the zero-mean, white, Gaussian noise

vectors nbg and nba.

Besides the evolving state xE , the full estimated state x̂k at

time k also includes the position and orientation of N cameras

which form the sliding window of poses [33]:

x̂k = (x̂E
LPC1

· · ·
LPCN

) . (4)

Here, LPCi
, i = 1 . . . N , denote the estimates of the pose of

the ith camera.

Using measurements from the IMU increases robustness and

accuracy while providing a metric pose estimate. At the same

time, the proper marginalization of past measurements [12,

45, 35, 24] is key to obtain a smooth pose estimate. This

is particularly relevant when including measurements to the

global model which are often not in perfect agreement with the

locally observed structure, e.g., due to moving objects during

model creation or drift in the local pose estimates.

A. Global Updates to the Local State Estimation

In order to boot-strap the localization system, descriptors

from the keyframes of the local SLAM system are matched

against the model as described in Section IV. Once an estimate

of the pose GPC of the camera w.r.t. the global model is

available, the frame of reference of the local SLAM system is

aligned with the global map using the relative transformation

from global model to local SLAM frame of reference GPL:

GPL = GPC ⊗
CP I ⊗

IPL (5)
IPL = LP−1

I . (6)

Here, ⊗ denotes the transformation composition operator.

Using the computed transformation GPL, the estimator state

and covariance are transformed to be with respect to the

global frame of reference. We project this transformation

along the direction of gravity, assuming that the global map

is gravity aligned via including IMU measurements into the

optimization.

Once the frame of reference of the local SLAM system is

aligned with the global frame of reference, 2D-3D matches

that are inliers to the global pose estimate can be directly

used to update the estimator. There are existing approaches

which include information from the global model into the local

optimization such as the algorithm by Middelberg et al. [32]

and Ventura et al. [52]. Ventura et al. [52] use a transformation

calculated by a server to transform points from the global

coordinate system to the local frame of reference. By applying

this transformation, the non-linear refinement, which is subse-

quently carried out, cannot improve the alignment beyond the

errors contained in the transformation estimate provided by the

server since this transformation is not part of the error-term.

In the algorithm proposed in this paper, every associated

2D-3D match provides a measurement of the form

z
(j)
i =

1
Cizj

[
Cixj
Ciyj

]

+ n
(j)
i , (7)

where [Cixj
Ciyj

Cizj]
T = Cipj denotes the position of the

jth 3D point expressed in the frame of reference of camera

i. To obtain the residual for updating the EKF, we express

the expected measurement ẑ
(j)
i as a function h of the state

estimate x̂k and the position of the landmark Gpℓ expressed

in the global frame of reference:

r
(j)
i = z

(j)
i − ẑ

(j)
i = z

(j)
i − h(Gpℓ,

GPCi
) . (8)

By linearizing this expression around the state estimate we

obtain (See [33] Eq. (29) for details.):

r
(j)
i ≃ H

(j)
GLi

(xi − x̂i) + n(j) . (9)

Here, H
(j)
GLi

denotes the global landmark measurement Jaco-

bian with non-zero blocks for the pose of camera i.
When querying the map, it is not unusual to retrieve

hundreds of matches from the image to the global map. To

reduce the computational complexity of updating the estimator,

all the residuals and Jacobians r = H(x− x̂)+n are stacked

to apply measurement compression [33]. More specifically, we

apply a QR-decomposition to H:

H =
[
V 1 V 2

]
[
TH

0

]

, (10)

where TH is an upper triangular matrix and V 1, V 2 are

unitary matrices with columns forming the basis for the range

and the nullspace of H , respectively. This operation projects

the residual on the basis vectors of the range of H , which

means that V 1 extracts all the information contained in the

measurements. The residual from Eq. (9) can then be rewritten

as [
V T

1 r

V T
2 r

]

=

[
TH

0

]

(x− x̂) +

[
V T

1 n

V T
2 n

]

. (11)

After discarding V T
2 r in Eq. (11) since it only contains noise,

we obtain the compressed residual formulation

rn = V T
1 r = TH(x− x̂) + nn with nn = V T

1 n . (12)

Using Givens rotations, the residual rn and the upper trian-

gular matrix TH for L matches can be computed efficiently

in O((6N)2L) [33].

The MSCKF algorithm [33] processes a feature-track as

soon as the track is broken or the entire window of keyframes

is spanned by the track. In our local SLAM system, these

completed tracks are used to triangulate landmarks and the

resulting 3D points are then used to update the estimator.

Since we are using the same visual features for frame-to-

frame tracking and global localization, we can use a match

between the 3D model and a feature from a single frame to

identify the corresponding feature track. This information can

now be used to form a constraint to the 3D model that involves

all keyframes that are spanned by the corresponding feature

track. We found that forming a constraint which involves all

key-frames which are part of the track gives a lower tracking

error than performing single camera updates [33]. To avoid

double counting information, care must be taken that feature

measurements are used to either formulate a constraint in the

local SLAM or to the 3D map, but not both.

For memory reasons the global model only stores the

marginal covariance for each 3D landmark, which we use to

formulate the measurement uncertainty of the update. We want

to emphasize that by applying the update in this way, we are

correlating the state estimate with the map in the same way

that this was done by Mourikis et al. [33]. We see the improve-

ments that can be achieved by avoiding this correlation as part

of future work. During stationary phases, image features are

repeatedly matched to the same 3D landmark. In order not to

reuse information multiple times, we thus have to keep track

which landmarks have already been used for updates.

VI. EXPERIMENTAL EVALUATION

In the following, we evaluate the proposed system and its

different components. After explaining how the datasets used

for experimental evaluation were obtained, we first analyze

each of our system’s components (global localization and local

pose tracking) before evaluating the full system.

matching time [ms]
0 50 100 150 200 250

||p
er

r||
[m

]

0

0.05

0.1

0.15

0.2

0.25

kd-tree
Inverted Multi-Index
Inverted Index

matching time [ms]
0 50 100 150 200 250

|r
an

sa
c

in
lie

rs
|

0

50

100

150

200

Fig. 3. Evaluation of different matching strategies: (Left) Position error of the global pose estimates computed from the 2D-3D matches
established by each strategy. (Right) The number of inlier matches consistent with the estimated poses. The x-axis in both plots denotes the
time required to compute the matches. Each point in the plots corresponds to a single pose estimate performed in the test sequence.

Fig. 4. Comparison of different parameters for product quantization with the inverted multi-index: (Left) Position error of the global pose
estimates computed from the found 2D-3D matches. (Right) The number of inlier matches consistent with the estimated poses. The x-axis
in both plots denotes the time required for finding the matches and each point in the plots corresponds to a single pose estimation attempt.
PQ-10-16-5 denotes a product quantization variant that splits each descriptor into 10 parts, uses 16 cluster centers per part, and requires 5
bytes to store the quantized descriptor. The colored dots denote the median values for each variant

A. Data Acquisition

We build a model from a single run through a city center

using the technique described in Section III. The resulting

3D model consists of 703,362 3D points associated with

3,213,618 descriptors, reconstructed from a trajectory of 1.44

km. We apply the model compression scheme discussed in

Section III-A such that at least 15 of the selected landmarks

are visible in each of the 4,212 keyframes. The compres-

sion scheme reduces the global map to 82,149 points with

471,296 descriptors, reducing the memory requirements from

136.7 MB to 19.8 MB.

We also record an additional dataset for evaluation of the

algorithms where we perform moderate view-point changes.

We obtain a ground truth trajectory by using the batch loop-

closure algorithm of Lynen et al. [29] to find candidate

2D-3D matches for each frame in the evaluation sequence.

These candidates are then filtered using spatial verification

(c.f . Section IV-A) before we associate the observations from

the evaluation dataset with the model landmarks. Finally we

run a full-batch visual-inertial bundle adjustment (BA) (c.f .

Section III) to align the evaluation trajectory with the model.

After alignment, the poses of the evaluation trajectory are used

as ground truth. The experiments where done on an Intel i7

(4980HQ) with 2.8 GHz and on a NVidia Tegra K1 powered

mobile device. Table I compares timings for all parts of the

pipeline for both architectures. For simplicity the remaining

timings in the paper were obtained on the Intel i7. A video of

the system localizing in real-time from a 1.4 km long model

as well as from forward motion on a 500 m trajectory can be

found in the supplementary material.

TABLE I
TIMING COMPARISON OF SEARCH AND OPTIMIZATION STEPS IN THE

PROPOSED APPROACH FOR INTEL I7 AND NVIDIA TEGRA K1 CPUS FOR

AN INDOOR NAVIGATION DATASET.

Feat.det. Kd-tree Inv.Mult.Idx. Opt. of [32] EKF upd.

i7 7 ms 12 ms 3 ms 134 ms 2.5 ms
K1 34 ms 80 ms 26 ms 560 ms 9 ms

B. Global 2D-3D Matching

We first evaluate different approaches for establishing 2D-

3D matches between the current keyframe and the global map.

We compare using a kd-tree [13] (as in [25, 49]), a normal in-

verted index (as in [41, 42]), and an inverted multi-index. The

inverted index is built using a visual vocabulary with 50,000

words while two vocabularies containing 1,000 words each

are used for the inverted multi-index, i.e., the inverted multi-

index generates a product vocabulary with 1 million words.

Both methods consider the landmark descriptors assigned to

the 10 nearest words for nearest neighbor search.

Fig. 3 compares the localization accuracy, measured as the

Euclidean distance between the ground truth and the calculated

pose, the matching times, and the number of inlier matches

after spatial verification for each method. Compared to the

normal inverted index, the finer quantization induced by the

inverted multi-index leads to faster search times since fewer

landmark descriptor are stored per word. In contrast to the kd-

tree, the inverted multi-index does not need to perform back-

tracking (which often accounts for a large part of the search

time), leading to faster search times. The larger variation in

search times for the inverted index is caused by the fact

that some words contain much more descriptors than others,

TABLE II
THE DIFFERENT PRODUCT QUANTIZATION VARIANTS USED IN

SECTION VI-C. THE NUMBER OF BYTES REQUIRED TO STORE A

DESCRIPTOR DEPENDS ON THE NUMBER OF PARTS MPQ AND THE

NUMBER kPQ OF CLUSTER CENTERS USED FOR EACH PART. THE

RESULTING MODEL SIZE INCLUDES 962 KB FOR THE LANDMARK

POSITION AND COVISIBILITY INFORMATION. THE LAST COLUMN

SPECIFIES THE MEMORY OVERHEAD FOR STORING THE QUANTIZERS.

MPQ kPQ Bytes per descriptor Model Size [MB] Overhead [MB]

2 256 2 2.72 9.8

2 16 1 2.28 0.6

10 16 5 4.08 0.6

10 4 2.5 2.96 0.15

a common effect caused by k-means clustering. As evident

from Fig. 3(right), using the inverted multi-index results on

average in fewer inlier matches than provided by the other

two search structures. Yet, this does not translate to a worse

localization accuracy (c.f . Fig. 3(left)). Based on the results,

we recommend using an inverted multi-index instead of one

of the two search structures that are commonly used for large-

scale localization.

C. Global Matching with Product Quantization

The previous experiment used the original 10 dimensional

descriptors. Thus, we next evaluate the impact of using quan-

tized descriptors on the matching performance. We use the

inverted multi-index and train a product quantizer for each

word from each of the two individual vocabularies used by

the index. We evaluate different combinations of MPQ, the

number of parts each descriptor is split into, and kPQ, the

number of cluster centers used for each part. Table II specifies

the settings used as well as the resulting model sizes and the

memory overhead required for storing the quantizers. Setting

MPQ = 10 denotes that the original descriptor is split into

10 parts. This means that we train 5 vocabularies for each

word in the individual vocabularies of the multi-index, each

containing only a single dimension of the original descriptor.

For MPQ = 10 and kPQ = 16, we store 80 floating point values

for each word from both individual vocabularies. Thus, 0.15

MB are needed to store the cluster centers of all 2000 words.

As can be seen from Table II, using product quantization

enables us to drastically reduce the memory consumption of

the global map from 136.7 MB to between 2.28 MB and 4.08

MB. Notice that for the setting MPQ = 2 and kPQ = 256, it

is cheaper to store the map than storing the cluster centers of

all product quantizers.

Fig. 4 compares the matching performance obtained when

using product quantization vs. using the original descriptors.

As can be seen, using product quantization instead of the

original descriptors leads to finding fewer matches and thus

fewer correspondences that pass RANSAC-based pose esti-

mation. In addition, it happens more often that not enough

matches for applying pose estimation are found. Nevertheless,

we observe only a small difference in the resulting localization

error especially since our robust local SLAM is able to

bridge periods without updates from the global model (See

Section VI-D and Fig. 5). Given that the search times are

TABLE III
COMPARING THE PROPOSED EKF-BASED ESTIMATOR UPDATE WITH

SLIDING WINDOW BUNDLE ADJUSTMENT (BA): WE REPORT THE MEAN

TIME t-up REQUIRED TO UPDATE THE ESTIMATOR BASED ON THE GLOBAL

2D-3D MATCHES AND THE MEAN POSITION ||p̄err|| AND ORIENTATION

ERROR ||θ̄err|| OF EACH METHOD (INCL. STD-DEV.). FOR SLIDING

WINDOW BA, WE EXPERIMENT WITH USING DIFFERENT NUMBERS OF

KEYFRAMES IN THE WINDOW (FIRST NUMBER) AND DIFFERENT NUMBERS

OF BA ITERATIONS (SECOND NUMBER).

t-up [ms] ||p̄err|| [m] ||θ̄err|| [deg]

EKF 2.9± 1.5 0.17± 0.12 0.32± 0.16

BA-10-10 163.0± 43.0 0.13± 0.15 0.41± 0.17

BA-10-5 138.8± 36.5 0.12± 0.14 0.58± 0.15

BA-5-10 100.3± 31.9 0.11± 0.13 0.53± 0.15

BA-5-5 77.6± 31.6 0.12± 0.14 0.57± 0.10

BA-5-2 38.6± 14.4 0.14± 0.16 0.54± 0.16

comparable, we thus recommend using product quantization

due to the significant decrease in memory consumption.

D. Local Pose Tracking

Next, we evaluate the pose tracking quality achieved with

our state estimator that directly includes global 2D-3D matches

as EKF updates. We are interested in the position and orien-

tation accuracy of our system, as well as the smoothness of

the computed trajectories, and the time required for the state

updates. We compare our system to an implementation of [32]

since it is the best performing algorithm currently available for

mobile device localization. This system performs local SLAM

using a sliding window BA which optimizes only local param-

eters and keeps the global model fixed. To further improve its

performance and allow a fair comparison we included IMU

constraints in the BA and use the Ceres [1] solver which

exploits the structure of the problem. Furthermore we eval-

uate different parameter settings for the BA-based methods.

Table III compares our method against the implementation of

[32] in which both estimators are fed with the exact same data

and the same constraints to the map. For every camera frame,

we evaluate the error between the estimated pose and the

ground truth as the Euclidean distance between the positions

and the disparity angle in orientation. As evident from the

table, our EKF-based approach achieves a positional accuracy

similar to the best-performing BA approach while offering

a more accurate estimate of the camera orientation. At the

same time, our approach is more than one order of magnitude

faster than the most efficient BA variant. While BA is typically

run in a separate thread to avoid blocking pose tracking [32],

the proposed EKF-based estimator is efficient enough to be

directly run on each frame.

Fig. 6 shows that even though both approaches offer a

similar mean pose accuracy, our estimator achieves a much

better temporal consistency. We capture this measure by

comparing the change in the error between ground truth and

estimate for position and orientation. Avoiding discontinuities

in pose tracking is a vital property for obstacle avoidance and

robot control, where large pose jitter can cause problems when

determining a path that prevents a collision.

distance travelled [m]
0 50 100 150 200 250 300 350

||
 e

rr
o
r

||
 [
m

]

0

0.1

0.2

0.3

0.4 Inverted Multi-Index
PQ-2-16-1
PQ-2-256-2
PQ-10-4-2.5
PQ-10-16-5

histogram
0

0.1

0.2

0.3

0.4

distance travelled [m]
0 50 100 150 200 250 300 350

||
 e

rr
o
r

||
 [
d
e
g
]

0

0.5

1

1.5

histogram
0

0.5

1

1.5

Fig. 5. Comparison of the position and orientation error for different parameters of the product quantization and the inverted multi-index:
(Top) Position and (bottom) orientation error of the global pose estimates compared with the ground-truth over the distance travelled. It is
worth noting that even though the product-quantized descriptors require significantly less memory than the original descriptors, the final error
on the pose estimate is only marginally influenced. Again, PQ-10-16-5 denotes a product quantization variant that splits each descriptor into
10 parts, uses 16 cluster centers per part, and requires 5 bytes to store the quantized descriptor.

distance travelled [m]
0 50 100 150 200 250 300 350

∆
 p

e
rr
 [
m

]

-0.2

-0.1

0

0.1

0.2

Model Based EKF Update

distance travelled [m]
0 50 100 150 200 250 300 350

∆
 p

e
rr
 [

m
]

-0.2

-0.1

0

0.1

0.2

Sliding Window BA (5K, 5I)

Fig. 6. Compared to a sliding window bundle adjustment approach
similar to [32], the proposed direct inclusion of the global 2D-3D
matches into EKF gives significantly smoother trajectories as evident
from the difference in the pose error between subsequent frames.

E. Failure due to Aggressive Compression

Increasing the compression ratio of a model has two differ-

ent effects on the localization performance. If too little points

are being matched to a given frame, the initial alignment

of the local SLAM can be inaccurate or fail. On the other

hand if the model is too compressed only few matches pass

the RANSAC outlier rejection. Given our robust local SLAM

however it is sufficient to localize against the global map only

sporadically without much impact on the overall accuracy as

shown in Fig. 7 for a forward moving camera. Similar to

[41] we require a minimum number RANSAC inliers before

we accept a localization result (here 10). We found that

such a constraint effectively avoids outlier pose-results being

passed to the estimators. Additional to this outlier rejection

we additionally perform a Mahalanobis distance test on a per

constraint basis. Despite a performance degradation with high

compression rates, the results also show that it is possible to

obtain an accurate trajectory with a compressed map, which

validates our system design (See Fig. 2).

VII. CONCLUSION

In this paper, we have presented a framework for estimating

and tracking the camera pose relative to a global 3D map.

Model and descriptor compression enables our system to

reduce the memory required to store the global map from

Fraction of original descriptor count
0 0.05 0.1 0.15 0.2 0.25 0.3

A
b

s
o

lu
te

 p
o

s
e

 r
e

c
a

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||
p

e
rr
||
 [
m

]

0

0.1

0.2

0.3

0.4

0.5

Fig. 7. Comparison of pose estimates using a forward facing camera
and a model that underwent different levels of pruning (right). While
the number of successfully recovered poses from p3p decreases for
increased pruning (left), the overall tracking error stays low since
sporadic map-updates are enough to keep the frame of reference of
the local SLAM aligned with the model.

136 MB to about 3 MB without a significant impact on the

accuracy of our pipeline. Using efficient search structures

accelerates global localization against the map as well. In

contrast to current state-of-the-art methods for large-scale

localization, the proposed framework can thus run on a system

with limited computational and memory resources without

relying on an external server. We have proposed a novel

formulation for incorporating the global pose estimates into

a visual-inertial SLAM system. In contrast to state-of-the-art

approaches, which rely on sliding window bundle adjustment,

our method achieves a comparable pose tracking accuracy

while being an order of magnitude or more faster and produc-

ing trajectories with a higher temporal consistency. We have

evaluated each component of our system individually while

also measuring the impact of each stage on the following parts

of the pipeline. The results of our evaluation will be interesting

for everyone working on (scalable) real-time pose estimation

and tracking approaches.

For future work, we plan to accelerate global localization

by integrating knowledge about the system’s current position

into the matching process.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from Google’s project Tango.

REFERENCES

[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

https://code.google.com/p/ceres-solver/.

[2] Alexandre Alahi, Raphael Ortiz, and Pierre Van-

dergheynst. Freak: Fast Retina Keypoint. In Proceed-

ings of the European Conference on Computer Vision

(ECCV), 2012.

[3] Clemens Arth, Daniel Wagner, Manfred Klopschitz,

Arnold Irschara, and Dieter Schmalstieg. Wide Area

Localization on Mobile Phones. In Proceedings of

the International Symposium on Mixed and Augmented

Reality (ISMAR), 2009.

[4] Clemens Arth, Manfred Klopschitz, Gerhard Reitmayr,

and Dieter Schmalstieg. Real-Time Self-Localization

from Panoramic Images on Mobile Devices. In Pro-

ceedings of the International Symposium on Mixed and

Augmented Reality (ISMAR), 2011.

[5] Artem Babenko and Victor Lempitsky. The Inverted

Multi-Index. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2012.

[6] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:

Speeded up robust features. In Computer Vision (ECCV),

2006 IEEE European Conference on.

[7] Michael Bosse and Robert Zlot. Keypoint Design and

Evaluation for Place Recognition in 2D Lidar Maps.

Robotics and Autonomous Systems, 2009.

[8] Mark Cummins and Paul Newman. FAB-MAP: Proba-

bilistic localization and mapping in the space of appear-

ance. The International Journal of Robotics Research,

2008.

[9] Mark Cummins and Paul Newman. Highly Scalable

Appearance-Only SLAM — FAB-MAP 2.0. In Proceed-

ings of Robotics: Science and Systems (RSS), 2009.

[10] David D. Nistér. Preemptive RANSAC for live structure

and motion estimation. In Proceedings of the Interna-

tional Conference on Computer Vision (ICCV), 2003.

[11] Zilong Dong, Guofeng Zhang, Jiaya Jia, and Hujun Bao.

Keyframe-Based Real-Time Camera Tracking. In Pro-

ceedings of the International Conference on Computer

Vision (ICCV), 2009.

[12] Tue-Cuong Dong-Si and Anastasios I Mourikis. Mo-

tion Tracking with Fixed-lag Smoothing: Algorithm and

Consistency Analysis. In Proceedings of the IEEE

International Conference on Robotics and Automation

(ICRA), 2011.

[13] Jan Elseberg, Stéphane Magnenat, Roland Siegwart, and

Andreas Nüchter. Comparison of nearest-neighbor-search

strategies and implementations for efficient shape regis-

tration. Journal of Software Engineering for Robotics,

2012.

[14] M. A. Fischler and R. C. Bolles. Random Sample

Consensus: A Paradigm for Model Fitting with Appli-

cations to Image Analysis and Automated Cartography.

Communications of the ACM, 1981.

[15] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari

Finkel. An Algorithm for Finding Best Matches in

Logarithmic Expected Time. ACM Transactions on

Mathematical Software (TOMS), 1977.

[16] Dorian Galvez-Lopez and J. D. Tardos. Bags of Binary

Words for Fast Place Recognition in Image Sequences.

IEEE Transactions on Robotics and Automation, 2012.

[17] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun.

Optimized Product Quantization. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), 2014.

[18] JA Grunert. Das pothenotische Problem in erweiterter

Gestalt nebst Bemerkungen über seine Anwendungen in

der Geodäisie. Grunerts Archiv fiir Mathematik und

Physik, 1841.

[19] Joel A. Hesch and Stergios I. Roumeliotis. A Direct

Least-squares (DLS) solution for PnP. In Proceedings

of the International Conference on Computer Vision

(ICCV), 2011.

[20] Arnold Irschara, Christopher Zach, Jan-Michael Frahm,

and Horst Bischof. From Structure-from-Motion Point

Clouds to Fast Location Recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2009.

[21] Herve Jegou, Matthijs Douze, and Cordelia Schmid.

Product Quantization for Nearest Neighbor Search. IEEE

Transactions on Pattern Analysis and Machine Intelli-

gence (PAMI).

[22] Herve Jegou, Matthijs Douze, and Cordelia Schmid.

Hamming embedding and weak geometric consistency

for large scale image search. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV). 2008.

[23] Stefan Leutenegger, Margarita Chli, and Roland Yves

Siegwart. BRISK: Binary Robust Invariant Scalable Key-

points. In Proceedings of the International Conference

on Computer Vision (ICCV), 2011.

[24] Stefan Leutenegger, Simon Lynen, Michael Bosse,

Roland Siegwart, and Paul Furgale. Keyframe-Based

Visual-Inertial SLAM Using Nonlinear Optimization.

International Journal of Robotics Research (IJRR), 2014.

[25] Yunpeng Li, Noah Snavely, Daniel Huttenlocher, and

Pascal Fua. Worldwide Pose Estimation Using 3D Point

Clouds. In Proceedings of the European Conference on

Computer Vision (ECCV). 2010.

[26] Yunpeng Li, Noah Snavely, and Daniel P Huttenlocher.

Location Recognition using Prioritized Feature Match-

ing. In Proceedings of the European Conference on

Computer Vision (ECCV). 2010.

[27] Hyon Lim, Sudipta N. Sinha, Michael F. Cohen, and

Matthew Uyttendaele. Real-time Image-based 6-DOF

Localization in Large-Scale Environments. In Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

[28] David G. Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Computer

Vision (IJCV), 2004.

[29] Simon Lynen, Michael Bosse, Paul Furgale, and Roland

Siegwart. Placeless Place-Recognition. In 3D Vision

https://code.google.com/p/ceres-solver/

(3DV), International Conference on, 2014.

[30] Will Maddern, Michael Milford, and Gordon Wyeth.

CAT-SLAM: Probabilistic Localisation and Mapping us-

ing a Continuous Appearance-based Trajectory . Inter-

national Journal of Robotics Research (IJRR), 2012.

[31] Christopher Mei, Gabe Sibley, and Paul Newman. Clos-

ing loops without places. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS),

2010.

[32] Sven Middelberg, Torsten Sattler, Ole Untzelmann, and

Leif Kobbelt. Scalable 6-DOF Localization on Mobile

Devices. In Proceedings of the European Conference on

Computer Vision (ECCV). 2014.

[33] A.I. Mourikis, N. Trawny, S.I. Roumeliotis, A.E. John-

son, A. Ansar, and L. Matthies. Vision-aided inertial

navigation for spacecraft entry, descent, and landing.

IEEE Transactions on Robotics (T-RO), 2009.

[34] Liz Murphy and Gabe Sibley. Incremental Unsupervised

Topological Place Discovery. In Proceedings of the IEEE

International Conference on Robotics and Automation

(ICRA), 2014.

[35] Esha D. Nerurkar, Kejian J. Wu, and Stergios I. Roume-

liotis. C-KLAM: Constrained Keyframe-Based Local-

ization and Mapping. In Proceedings of the IEEE

International Conference on Robotics and Automation

(ICRA), 2014.

[36] Jerzy Neyman and Egon S. Pearson. On the problem of

the most efficient tests of statistical hypotheses. Transac-

tions of the Royal Society of London Series A, 1992.

[37] David Nistér. An Efficient Solution to the Five-Point

Relative Pose Problem. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 2004.

[38] David Nister and Henrik Stewenius. Scalable Recogni-

tion with a Vocabulary Tree. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2006.

[39] Hyun Soo Park, Yu Wang, Eriko Nurvitadhi, James C

Hoe, Yaser Sheikh, and Mei Chen. 3D Point Cloud

Reduction Using Mixed-Integer Quadratic Programming.

In IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 2013.

[40] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic,

and Andrew Zisserman. Object retrieval with large

vocabularies and fast spatial matching. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2007.

[41] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast

Image-Based Localization using Direct 2D-to-3D Match-

ing. In Proceedings of the International Conference on

Computer Vision (ICCV), 2011.

[42] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improv-

ing Image-Based Localization by Active Correspondence

Search. In Proceedings of the European Conference on

Computer Vision (ECCV). 2012.

[43] Torsten Sattler, Tobias Weyand, Bastian Leibe, and Leif

Kobbelt. Image Retrieval for Image-Based Localization

Revisited. In Proceedings of the British Machine Vision

Conference (BMVC), 2012.

[44] Stephen Se, David G. Lowe, and James J. Little. Vision-

Based Global Localization and Mapping for Mobile

Robots. IEEE Transactions on Robotics (T-RO), 2005.

[45] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. Slid-

ing window filter with application to planetary landing.

Journal of Field Robotics, 2010.

[46] Josef Sivic and Andrew Zisserman. Video google: A

text retrieval approach to object matching in videos. In

Computer Vision (ICCV), IEEE International Conference

on, 2003.

[47] Henrik Stewénius, Steinar H Gunderson, and Julien

Pilet. Size Matters: Exhaustive Geometric Verification

for Image Retrieval. In Proceedings of the European

Conference on Computer Vision (ECCV). 2012.

[48] Elena Stumm, Christopher Mei, and Simon Lacroix.

Probabilistic Place Recognition with Covisibility Maps.

In Proceedings of the IEEE/RSJ Conference on Intelli-

gent Robots and Systems (IROS), 2013.

[49] Linus Svarm, Olof Enqvist, Magnus Oskarsson, and

Fredrik Kahl. Accurate Localization and Pose Estimation

for Large 3D Models. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2014.

[50] Tomasz Trzcinski, Vincent Lepetit, and Pascal Fua. Thick

Boundaries in Binary Space and their Influence on

Nearest-Neighbor Search. Pattern Recognition Letters,

2012.

[51] Jonathan Ventura and Tobias Hollerer. Wide-Area Scene

Mapping for Mobile Visual Tracking. In Proceedings of

the International Symposium on Mixed and Augmented

Reality (ISMAR), 2012.

[52] Jonathan Ventura, Clemens Arth, Gerhard Reitmayr, and

Dieter Schmalstieg. Global Localization from Monocular

SLAM on a Mobile Phone. IEEE Transactions on

Visualization and Computer Graphics, 2014.

[53] Andreas Wendel, Arnold Irschara, and Horst Bischof.

Natural Landmarkbased Monocular Localization for

MAVs. In Proceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA), 2011.

	Introduction and Related Work
	System Overview
	Descriptor Extraction and Projection

	Global 3D Model Creation and Compression
	Model Compression

	Localization Against the Global Model
	Covisibility Filtering and Pose Recovery

	Local Pose Tracking
	Global Updates to the Local State Estimation

	Experimental Evaluation
	Data Acquisition
	Global 2D-3D Matching
	Global Matching with Product Quantization
	Local Pose Tracking
	Failure due to Aggressive Compression

	Conclusion

