
PIXHAWK: A System for Autonomous Flight using Onboard Computer

Vision

Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer and Marc Pollefeys

Abstract— We provide a novel hardware and software system
for micro air vehicles (MAV) that allows high-speed, low-latency
onboard image processing. It uses up to four cameras in parallel
on a miniature rotary wing platform. The MAV navigates based
on onboard processed computer vision in GPS-denied in- and
outdoor environments. It can process in parallel images and
inertial measurement information from multiple cameras for
multiple purposes (localization, pattern recognition, obstacle
avoidance) by distributing the images on a central, low-latency
image hub. Furthermore the system can utilize low-bandwith
radio links for communication and is designed and optimized to
scale to swarm use. Experimental results show successful flight
with a range of onboard computer vision algorithms, including
localization, obstacle avoidance and pattern recognition.

I. INTRODUCTION

We present a novel small rotary wing hardware and

software system design capable of autonomous flight using

onboard processing for computer vision. Our system (Fig.

1) is a micro air vehicle that can be operated in- and

outdoors in GPS-denied environments. Our key contribution

is a lightweight system design pattern which better suits

micro air vehicle applications than larger robotic toolkits

geared towards ground robotics. The presented software and

hardware system is an open-source research platform which

enables full onboard processing on a micro air vehicle. In

contrast to previous research, it allows the vehicle to be nav-

igated fully autonomously without any radio link or external

processing device. The system design allows to utilize up

to four cameras (for example as two stereo camera pairs)

for localization, pattern recognition and obstacle avoidance.

Cameras and inertial measurement unit (IMU) are hardware

synchronized and thus allow tight vision-IMU fusion. We

show the validity of the system design with real flight results

in the final section.

A. Onboard Processing

Current micro air vehicle research systems are using

either GPS/Inertial Navigation System (INS) navigation on a

microcontroller or computer vision and laser ranging using

off-board processing for localization and maneuvering. Off-

board processing effectively makes the MAV dependent on

the external processing unit and severely limits the safety

and operation range of the vehicle. In addition, the physical

wireless bandwidth limits the number of vehicles which can

Lorenz Meier is master student with the Computer Vision and Geometry
Lab, ETH Zurich, 8092 Zurich, Switzerland lm@student.ethz.ch

P. Tanskanen, F. Fraundorfer and M. Pollefeys are with the Computer
Vision and Geometry Lab, ETH Zurich, 8092 Zurich, Switzerland
{petri.tanskanen, friedrich.fraundorfer,
marc.pollefeys}@inf.ethz.ch

Fig. 1. PIXHAWK Cheetah Quadrotor

operate in parallel. Therefore the swarm size is physically

limited to a very few vehicles. This fundamental limitation

can be addressed by onboard computer vision. Up until

now only larger systems (20 - 100 kg all-up weight) have

processed images for vision-based localization onboard. Our

system brings the multi-process architecture and onboard

processing capabilities from the 20-100 kg range to vehicles

around 1 kg liftoff-weight. In contrast to systems using

local stabilization approaches on specialized microcontroller

hardware (Parrot ARDrone), the system is geared towards

global localization and autonomous exploration of unknown

environments using stereo vision. The presented initial re-

sults show that our system consumes at 30 Hz frame rate

only 10 % of the maximum CPU load (5 ms processing

time per frame) for autonomous marker based flight and 40-

60 % load (20 ms processing time per frame) for stereo-based

obstacle avoidance and pattern recognition, which leaves

enough capacity for future work, including simultaneous

localization and mapping.

B. Time Base for Computer Vision

GPS and, to a large extend, laser based systems can

offer a deterministic processing time to fuse the sensor

data into a localization. Computer Vision in contrast has

varying and in comparison often longer processing time

depending on the image content. Therefore the estimation

and control steps cannot depend on a fixed interval length ∆t

and a fixed processing delay ∆p. Instead they must use the

actual timestamp of all measurements to calculate the correct

intervals. Therefore all information in our system is times-

tamped with microseconds resolution. The system guarantees

correct time information (stamp and predict design pattern)



instead of guaranteeing a fixed interval. It also relaxes the

timing constraints for the computer vision algorithms; thus

allowing more complex approaches which can deal with

larger environments.

C. Related Work

Current MAV research is using either GPS/INS navigation

on a microcontroller ([7], [6]) or computer vision/laser rang-

ing and offboard processing. Until now, only larger systems

processed images onboard. Conte [3] et al. processed visual

odometry at 4 Hz on an Yamaha RMAX helicopter UAV

with over 20 kg payload (94 kg maximum total weight)

and 3.6 m diameter, but did not use the output for flight

control. In the MAV domain previous onboard processing

approaches ([4]) used simple optical flow mouse sensors

to locally stabilize the position and to do simple obstacle

avoidance. Other approaches used laser scanners and cameras

but did not process the data/images onboard. The system of

[1] uses an Asctec Pelican Quadrotor with Hokuyo URG

line scanner and onboard Intel ATOM processor to collect

laser scan data and camera images for off-board processing.

This data is sent to an off-board notebook for processing

the actual localization. The outdoor system of [7] uses an

analog TV camera for object tracking and GPS/INS for

position control. The work of [2] et al. demonstrated visual

localization using a camera on a USB tether cable and

processing on a notebook. The STARMAC quadrotor [6] has

a PC104 form factor onboard computer, but does not utilize

it for vision processing due to limited performance.

II. COMPUTER VISION FRAMEWORK

Following the well-known principle of stereo cameras,

to estimate the metric distance in 3D, two images with a

known baseline (distance of the camera centers) are needed.

Therefore the PIXHAWK quadrotor has a setup of 2x2

cameras in two stereo setups, pointed down and front with

5 cm baseline. All four cameras are triggered from the

onboard inertial measurement unit. Computer vision allows

to extract both the 3D geometry of the environment as well

as its texture/appearance. Therefore multiple algorithms are

necessary to extract all information of an image, leading

to the need to distribute the images to multiple algorithms

in multiple processes. Previous approaches ([1], [2]) did

not have the possibility to run camera interface and image

processing pipelines separated. The central image hub dis-

tributes the combined images and IMU information to all

connected computer vision algorithms, including localization

and pattern recognition algorithms.

A. Vision-IMU Combination

As the trigger system supports both monocular and stereo

setups, any localization approach that uses one or two

cameras can receive the vision-IMU data and process it.

The attitude (roll, pitch, yawspeed) is available as part of

the image metadata. This allows to speed up the localization

algorithms, either by providing an initial guess of the attitude

or in closed form as direct contribution to the localization. In

case of the 3-point algorithm [5], the calculation steps for the

triangulation are significantly simplified when substituting

parts of the calculation by IMU roll and pitch, which

speeds up RANSAC (see Fig. 2 for the geometric relation).

For any non-global vision based localization approach IMU

information can provide the gravity vector and heading as

global reference. This property is important when local

vision information is used as controller input.

Fig. 2. Relation of gravity vector and camera angles

III. AERIAL ROBOTICS MIDDLEWARE

Several toolkits for larger unmanned ground, surface and

air vehicles have been widely used in research. Micro air

vehicles with significant or complete onboard processing

are a rather new development, though. Existing toolkits for

ground robotics include ROS, CARMEN and CLARAty.

The communication architecture significantly blocks ground

robotic toolkits to be adapted on small-scale flying plat-

forms. All toolkits assume TCP/IP or UDP network links,

such as IEEE 802.3 Ethernet and IEEE 802.11a/b/g/n WiFi.

However, MAV onboard-networks typically include several

devices connected via serial links. As these toolkits do

not scale down to this link type, every packet has to be

transcoded by bridge processes, leading to unnecessary effort

and system complexity. Therefore we propose a new commu-

nication protocol and architecture that can be transparently

used on different hardware links and minimizes the system

complexity.

Fig. 3. PIXHAWK Middleware Architecture Layers

The PIXHAWK robotics toolkit is based on a lightweight

protocol called MAVLink, which scales from serial to

UDP links. It serves also as communication protocol be-

tween flight computer (pxIMU) and onboard main computer

(pxCOMex/pxOvero). This is also important for the safe



operation of any robotic aircraft, as a human operator should

always be able to intervene. The typical 30-100 m range of

WiFi does not generalize to most outdoor applications, which

makes a communication architecture scaling down to radio

modems also desirable for the off-board communication.

As shown in Figure 3, the PIXHAWK Linux middleware

consists of several layers. This architecture allows to use

the different base communication layers (ROS and LCM)

and provides a convenient high-level programming interface

(API) to the image distribution server. MAVLink messages

from the IMU and the ground control station can also be

directly received in any process.

A. MAVLink Protocol

Our MAVLink protocol is a very lightweight message

marshalling protocol optimized for micro air vehicles. It

has only 8 bytes overhead per packet, allows routing on

an inter-system or intra-system level and has an inbuilt

packet-drop detection. Due to the low overhead, it is both

suitable for UDP and UART/radio modem transport layers.

The efficient encoding also allows to execute the protocol

on microcontrollers. These properties allowed building a ho-

mogenous communication architecture across the PIXHAWK

system. MAVLink has been already adopted by a number of

other systems (pxIMU autopilot, ArduPilotMega autopilot,

SLUGS autopilot, UDB autopilot). The MAVLink sentences

are generated based on an XML protocol specification file

in the MAVLink format. The code generator ensures well-

formed messages and generates C89-compatible C-code for

the message packing and unpacking. This allows fast and

safe extensions and changes to the communication protocol

and ensures that no implementation errors will occur for new

messages. Our current implementation supports the use of the

lightweight communication marshalling library (LCM) or the

Robot Operating System (ROS) as transport layers.

IV. VEHICLE DESIGN

The PIXHAWK Cheetah quadrotor design was built from

scratch for onboard computer vision. Beside the commercial-

off-the-shelf (COTS) motor controllers and cameras all elec-

tronics and the mechanical frame is our custom design. First

the payload, consisting of the pxCOMEx processing module

and four PointGrey Firefly MV USB 2.0 cameras, was

selected. The system design then followed the requirements

of onboard computer vision.

A. Electronics

The onboard electronics consists of an inertial measure-

ment unit and autopilot unit, pxIMU, and the onboard

computer vision processing unit, pxCOMEx.

1) Autopilot Unit: The pxIMU inertial measurement

unit/autopilot board (Fig. 4) provides 3D linear acceleration

(accelerometer, ±6g), 3D angular velocity (±500 deg/s), 3D

magnetic field (± milligauss), barometric pressure (130-1030

Hectopascal (hPa)) and temperature. The onboard MCU for

sensor readout and sensor fusion as well as position and

attitude control is a 60 MHz ARM7 microcontroller. It can

Fig. 4. pxIMU Inertial Measurement Unit

be flashed via an USB bootloader and stores settings such

as PID parameters in its onboard EEPROM. It provides the

required I2C bus to the motor controllers and additional

GPIOs, ADC input and other peripherals. It is interfaced via

UART to the computer vision processing unit and it operates

at a maximum update rate of 200-500 Hz.

2) Processing Unit: The processing unit it the core piece

of the system and consists of a two-board stack. The px-

COMEx base board provides the USB and UART periph-

erals to interface machine vision cameras, communication

equipment and the pxIMU module. It can accept any micro

COM express industry standard module. Currently, a Kontron

etxExpress module with Intel Core 2 DUO 1.86GHz and 2

GB DDR3 RAM is used, but future upgrade options include

Intel i7 CPUs. It has 4x UART, 7x USB 2.0 and 1x S-ATA

2.0 peripheral options. The typical onboard setup consists of

4x PointGrey Firefly MV monochrome, 1x USB 2.0 802.11n

WiFi adapter and 1x S-ATA 128 GB SSD with more than

100 MB/s write speed. The pxIMU unit, the GPS module

and the XBee radio modem are connected via UART to the

processing unit. With a weight of 230 g including cooling

and only 27 W peak power consumption, the processing unit

can be easily lifted by a wide range of aerial systems, not

limited to the quadrotor presented here.

B. Mechanical Structure and Flight Time

Our custom mechanical design effectively protects the

onboard processing module in case of a system crash and

the fixed mounting of the four cameras allows inter-camera

and camera-IMU calibration. As the processing board and

four cameras represent a relatively large payload of 400 g

for the small diameter of 0.55 m (0.70 m for the larger

version) of the quadrotor, the overall system structure has

been optimized for low weight. It consists of lightweight

carbon sandwich material with carbon fiber base plates and

an inner layer made of Kevlar in shape of honeycombs.

Each of the four motors with 8” propeller contributes a

maximum of 452g thrust, enabling the system to lift 400g

payload at a total system weight of 1.00–1.20 kg, including

battery. This allows a continous flight time of 7-9 minutes

with 8” propellers and 14-16 minutes with 12” propellers.

The propulsion consumes 150-180W for hovering, while the

highspeed onboard computer consumes only 27 W peak.

Therefore flight time is governed by the weight of the system.



V. LOCALIZATION AND FLIGHT CONTROL PIPELINE

The localization and flight control pipeline is only one

of the several onboard pipelines. As the PIXHAWK mid-

dleware provides a precise time base, a standard textbook

estimation and control pipeline already performs well for

autonomous flight. The overall pipeline, including camera

interfacing and communication, consumes only 10–15 % of

the total CPU power. Other implemented pipelines are stereo

obstacle avoidance and planar pattern recognition. Individual

pipelines can be activated / deactivated at runtime and

individual pipeline components can be replaced by different

algorithms without changes to the overall system. Fig. 5

illustrates the data processing and information flow from

image capture to motor control output.

Fig. 5. Vision-guided Control Pipeline

A. Vision-IMU Synchronization

As the vision-IMU fusion depends on measurements from

a known timebase, the image capture is controlled by the

inertial measurement unit using a shutter signal. The IMU

also delivers the current roll, pitch and yaw estimate at the

time of image capture with the shutter time to the vision

pipeline. Images are transmitted over USB to the camera pro-

cess, while the IMU measurements and the shutter timestamp

are delivered through a serial interface. Image transmission

from camera to main memory via USB takes approximately

16 ms, the transmission of the shutter timestamp from IMU

to main memory via serial/MAVLink takes approximately

1–3 ms. As it is guaranteed that the IMU data arrives earlier

than the image, the camera process can always deliver the

full vision-IMU dataset at once to the localization process.

B. Vision based Localization

The initial flight tests were conducted using a marker

based approach with an adapted implementation of

ARToolkit+ [8] for the localization. The marker positions

are encoded in a global world map with the 6D position and

attitude of each marker. By extracting the marker quadrangle,

the global marker position can be estimated by calculating

the homography on the four corner points of the quadrangle.

The correct orientation on the quadrangle plane and the

marker ID is encoded by a 2D binary code inside each

marker. An example of a larger marker setup is shown in

Fig. 6. However, the system itself is not depended on this

particular approach – any kind of localization algorithm can

be used.

C. Outlier Removal

The data is filtered with a Kalman filter in the next

step, which implies that the filter is parametrized with the

Fig. 6. Figure-8 setup at IMAV 2010 competition

error model of the computer vision approach. As IMU and

vision both estimate the 3 degree of freedom attitude of the

helicopter, this redundant data can be used to detect and

remove position outliers produced by the localization step.

Any erroneous vision measurement will not only contain a

wrong position estimate, but also wrong attitude estimate

because of the projective dependency of position and attitude.

Position outliers can therefore be rejected based on the

comparison of roll and pitch estimates from the IMU and

from the visual localization.

D. Discrete Kalman Filtering

The remaining data is more conformant to the normal

distribution, and allows the use of a simple discrete Kalman

filter. As the dynamics of a quadrotor are only loosely

coupled in x, y and z direction, the dynamics can be

modelled as three independent dimensions. As the yaw angle

is of much better accuracy and resolution in indoor settings

from computer vision than from a magnetometer (due to

iron structures in the building), the yaw angle is taken as

the fourth independent dimension for filtering. Given this

quadrotor dynamic model, the Kalman filter is designed as

a block of 4x 1D Kalman filters with position and speed as

states. The Kalman filter assumes a constant speed model,

and takes position as input. The estimated velocity is critical

to damp the system, as the only physical damping is the air

resistance on the horizontal plane, which is not significant at

the typical hovering or low-speed conditions. The states of

the four Kalman filters are:

xk =

[

x

ẋ

]

yk =

[

y

ẏ

]

zk =

[

z

ż

]

ψk =

[

ψ

ψ̇

]

We try to estimate the current state of the vehicle xk,

which is modeled by

xk = A · xk−1 + wk−1.

Where the dynamics matrix A models the law of motion,

xk−1 is the previous state and wk−1 the process noise.

This motion is measured at certain time steps, where the

measurements are expressed as the gain H times the current

state plus the measurement noise v.

zk = H · xk + vk

The speed in the model will therefore only be changed

by measurements and then again assumed constant during



prediction. From this formulation it is already obvious that

varying time steps can be handled by the filter as long

as they are precisely measured. As this filter does not

include the control input matrix B, the filter is assuming

a constant speed model, which is a valid approximation if

the filter update frequency is fast enough with respect to

the change of speed of the physical object. Because the

PIXHAWK system provides a precise timebase, the filter

uses the measured inter-frame interval as time difference

input ∆t. It is using the standard Kalman prediction-update

scheme. If measurements are rejected as outliers, the filter

only predicts for this iteration and compensates in the next

update step for the then longer time interval. This allows the

system to estimate its egomotion for several seconds without

new vision measurements.

E. Position and Attitude Control

As already pointed out, the x, y, z, yaw motion can be

modeled as independent. Thus, it is possible to control the

quadrotor’s x- and y-position with the angle of attack of

the collective thrust vector by setting the desired pitch angle

for x and the desired roll angle for y. The z-position can

be controlled with the component of the collective thrust

collinear to the gravity vector. The yaw angle finally can be

controlled by the difference of rotor drag of the clockwise

(CW) and counter-clockwise (CCW) rotor pairs. As the

previous step contributed a smoothened position and speed

estimate with little phase delay, no model-driven/optimal

control is needed to account for the missing direct speed

measurement. The controller can thus be designed as a

standard PID controller, implemented as four independent

SISO PID controllers for x, y, z, and yaw. Attitude control

was implemented following the standard PID based attitude

control approach for quadrotors using one PID controller for

roll, pitch and yaw each. The craft is actuated by directly

mixing the attitude control output onto the four motors.

VI. OPERATOR CONTROL UNIT

The design paradigm presented in this paper shows a clear

separation of the onboard autonomy system and the off-board

operator control. As the MAV is not any more a remote

sensor head, no sensor data needs to be transmitted to the

ground control station for autonomous flight. It is therefore

desirable to reduce the communication and operator load and

only send abstract system information such as remaining

fuel/battery and position. The QGroundControl application

allows to represent multiple vehicles. The map view from

Fig. 7 shows the aerial map view.

VII. EXPERIMENTAL RESULTS / FLIGHT

Fig. 8 shows flight results using artificial marker based lo-

calization. The plot shows a flight around a rectangular path.

The two perpendicular movements are autonomous startoff

and landing. The right vertical trajectory is the open-loop

liftoff. As initially no computer-vision based localization is

available, the helicopter runs an open-loop maneuver until it

has 0.5 m altitude. The left vertical path is the autonomous

Fig. 7. QGroundControl Operator View with map and detected patterns

landing after a short period of hovering on a spot. The plot

shows a section of the Figure-8 setup of the International

Micro Air Vehicle Competition 2010, which is also depicted

in Fig. 6. A video of a similar flight can be viewed at

http://pixhawk.ethz.ch/videos/.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Y position (meters)

X position (meters)

Z
 p

o
s
it
io

n
 (

m
e

te
rs

)

Fig. 8. Trajectory of an autonomous flight using ARToolkit localization
including takeoff and landing

As our system is modular, we can also easily replace the

ARToolkit-based localization with other methods for position

control. Fig. 9 shows a trajectory resulting from a flight

using a Vicon motion capture system. The localization is

very precise (< 1mm error) at a maximum rate of 250 Hz.

We use a low latency wireless link to transfer the current

position computed by the motion capture system to the

helicopter. The flight trajectory contains autonomous takeoff

and landing, as well as several yaw rotations and an obstacle

avoidance reaction (overlapping parts of the trajectory on top

of the figure). The onboard view of the helicopter during

this flight is shown in Fig. 10. This illustrates the flexibility

and scalability of the system, as these experimental results

include onboard stereo depth estimation, dynamic obstacle

avoidance and pattern recognition operating in parallel on the

onboard computer. Although sensors delivering a depth map




