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Abstract

This paper studies the problem of estimating the sub-frame temporal off-
set between unsychronized, non-stationary cameras. Based on motion trajec-
tory correspondences, the estimation is done in two steps. First, we propose
an algorithm to robustly estimate the frame accurate offset by analyzing the
trajectories and matching their characteristic time patterns. Using this result,
we then show how the estimation of the fundamental matrix between two
cameras can be reformulated to yield the sub-frame accurate offset from nine
correspondences. We verify the robustness and performance of our approach
on synthetic data as well as on real video sequences.

1 Introduction

In this work we present a method to find the subframe-accurate time offset between two
or more recorded video sequences recorded by unsychronized, non-stationary cameras.
We address the problem of identifiying the time relation between recorded sequences
without the need to invade the scene to use special cameras. Main application of the
method is multi-view video acquisition. Most multi-view processing algorithms rely on
the assumption that the video sequences are temporally synchronized e. g. stereo vi-
sion, visual hull estimation and viewpoint interpolation algorithms. Synchronicity can
be achieved by hardware synchronization of the recording cameras. While this is feasible
for laboratory or studio situations, it reduces the applicability of these methods in outdoor
environments. Computing the subframe-accurate time offset between unsynchronized
non-stationary cameras is necessary to apply multi-video algorithms to a wider range of
scenes.

Our method is based on tracking feature points and the resulting trajectories. It is
divided into two steps. First, we find the time offset up to per-frame accuracy by extracting
salient points of trajectories and matching their time patterns. This is possible already with
only one single trajectory. Camera viewing angle differences of up to 90 degrees can be
handled, as long as the tracked feature points are visible in both sequences. Using this
coarse alignment, we can reformulate the estimation of the fundamental matrix to directly
find the time offset of the non-stationary cameras to subframe accuracy. The remainder of
the paper is organized as follows: The next section summarizes previous work. Section
3 formalizes the problem, in Section 4 our approach to compute the per-frame accurate
time shift is presented. In Section 5 we describe how sub-frame accuracy is achieved.
Experiments and results on synthetic data with ground truth and real world sequences are
presented in Section 6.



2 Related Work

Over the last years, the problem of finding the temporal offset between multiple video
sequences of one scene recorded with unsychronized video cameras has been addressed
by many researchers. The proposed approaches can be roughly classified in two categories
depending on the goal of achieving frame or sub-frame accuracy.

[1] and [2] are examples for algorithms limited to the detection of the integer frame
offset between unsychronized cameras. In [1], points with spatio-temporal variations are
detected in the video sequences and are described as a temporal distribution. As the
dynamics of the scene are caught in both cameras, their distributions are similar and the
temporal difference between the sequences can be calculated through an alignment. In
[2], the movement of the objects is analysed and compared, which allows to synchronise
camera streams of different scenes as long as they have the same dynamic.

In contrast, [3] and [4] achieve sub-frame accuracy by calculating the fundamental
matrix of the cameras and by evalutating it afterwards on the basis of correspondences
between trajectories of moving objects. While [3] proposes to use three cameras and to
calculate the trifocal tensor, [4] just needs two. [5] extends RANSAC-based approaches
to recover either a homography or fundamental matrix from putatively matched spatial
features in two images. The matches are then used to compute the frame offset. These
approaches are however limited to stationary or jointly moving cameras. In [6] an iter-
ative algorithm is presented using 3D phase correlation based on a projective geometry
constraint. For this purpose, the simplified assumption is made that the centres of the cam-
eras are comparative close to each other and, therefore, parallax can be neglected. In [7]
an apporach of calculating the epipolar geometry of dynamic silhouettes for temporally
calibrating camera networks is presented.

However, to the best of our knowledge, no methods that explicitly deal with indepen-
dently moving cameras have been proposed so far.

3 Problem Formulation

Let �pt = (xt ,yt ,) and �p′τ = (x′τ ,y′τ ) be two spatio-temporal points in the input video se-
quences S and S′ respectively, where S denotes the reference sequence and S ′ the second
sequence. Let further (xt/yt) and (x′τ/y′τ) be pixel coordinates of the images taken at the
reference time t of the reference camera and the intern time τ of the second camera. As-
suming that �pt and �p′τ are a corresponding point pair, the temporal misalignment is given
as Δt with

t + Δt = τ. (1)

The relative camera positions are unknown, and changing over time as the cameras
are allowed to move separately, but can be described at the time t using the fundamental
matrix Ft . Applying (1) to the definition of the fundamental matrix yields

(�p′t+Δt)
T Ft �pt = 0 (2)

where �p and �p′ are a corresponding point pair and p ′T is the transposition of p′.



While single image matching contain no information of the temporal shift, tracking
points over multiple frames and reconstructing their moving trajectories allows to com-
pare point correspondences on a temporal aspect. Hence let T�p = {�pt ,�pt+1, ...,�pt+k} be
the trajectory resulting in tracking �pt over k frames and let Γ and Γ’ be the sets of all
trajectories in the sequences S and S ′ respectively. In this paper we assume Γ and Γ’ as
well as the correspondences between their trajectories to be known. They can be obtained
using standard algorithms as the Kanade-Lukas-Tomasi feature tracker ([8] and [9]). Fur-
ther we expect the camera motion to be smooth and slow compared the object movement
and the recorded scene is supposed to contain linear and non-linear object motion.

4 Frame-accurate Temporal Alignment

Our first step in achieving an exact estimation of the temporal offset between two video
sequences is to estimate the integer time shift from correspondences between motion tra-
jectories. Since we are recording the same dynamic scene with both cameras, we expect
to catch the same movement in both video sequences. But rather than matching the tra-
jectories directly, which is hard to achieve if the cameras are moving independently, we
focus only on interest points extracted from the trajectories. Our goal is to find the interest
points that represent best the temporal information from these trajectories while achiev-
ing maximal view-independence. The frame-accurate temporal misalignment can then be
robustly estimated by finding the best alignment between these representations.

The extraction of the interest points needs to be robust and largely view-independent,
as we want in both camera sequences the same points to be extracted. Hence a naive
approach, e. g. choosing the points depending on time derivatives, is problematic as such
values of corresponding trajectories will grow very dissimilar with increasing view an-
gle differences and different camera motion. From our analysis of these trajectories we
concluded that the points located at extremal points on the trajectories represent motion
cues that can be found in the other sequences as well. Especially, points that build the
basis for a linear approximation of a motion trajectory fulfill this criterion. Interestingly,
we can resort to an algorithm from a different domain to find these points. The recursive
Douglas-Peucker-Algorithm [10] provides a robust simplification of vector lines which
is used to scale down coastlines in geographic maps. Applied to trajectories Algorithm
1 results in the points we are interested in as can be seen in Figure 1. Here the motion
trajectory of a bouncing ball is reduced to a linear approximation, yielding the interest
points at the extremal positions. Depending on a scale parameter ε different degrees of
simplification can be achieved.

Algorithm 1 Douglas-Peucker-Algorithm for extracting motion interest points
Require: Trajectory T , scale parameter ε .

1: Connect the first and the last point (�pstart and �pend) of T with a straight line l.
2: Determine the point �pmax of T with the highest distance d to l.
3: If d > ε recursive start the algorithm with the partial trajectories {�pstart ...�pmax} and

{�pmax...�pend}. Else �pstart and �pend are motion interest points.

Since we are interested the temporal offset we do not need the spatial position of the
interest points and even want to drop this information to increase view independence.



Figure 1: 2D motion trajectory of a bouncing ball from a single camera. The extraction of
interest points on the trajectory can be computed using the Douglas-Peucker-Algorithm.

Thus, we represent the trajectories as binary codes allocating every found motion interest
point on the trajectory with a one and the remaining with a zero (cf. Figure 2). These
representations of the trajectories can then be easily be matched using common robust
string alignment algorithms. We implemented an adapted Needleman-Wunsch-Algorithm
[11] to compute this match (cf. Algorithm 2).

Figure 2: Trajectory representation as a binary code, with a one representing an extracted
interes point and a zero for the remaining points.



Algorithm 2 String Alignment Algorithm

Require: 2 binary codes B,C with |B| = m and |C| = n.
1: Construct a m · n table T as follows: T (i, j) = B(i) xor C( j) (with xor the binary

exclusive or).
2: Assign to every diagonal its sum divided by its length as an error measure.
3: Let (i0, j0) be the first element of the diagonal with the lowest error value, the time

shift between the cameras is given as i0 − j0 (depending on which camera is ahead,
this can be a positive or negative value).

4: As for increasing i0 (or j0, one of them has always to be zero) the length of the diag-
onals is decreasing avoiding accurate results, it is required to assure a minimal length
of the diagonals (which means a minimal temporal overlap of the two sequences).

Already a single trajectory contains enough information to compute the frame ac-
curate solution. If in practice the tracking results are not reliable, one can use more
trajectories and apply a RANSAC [12] approach to eliminate outliers.

5 Achieving subframe accuracy

Using the previously computed frame-accurate temporal offset, corresponding trajectories
can already roughly synchronized. But as they are recorded with uncalibrated cameras,
there is in general also a subframe offset. Let T and T ′ be such a pair of synchronized
trajectories with no integer time shift, then we assume �pt and �pt+1 of T to be the neigh-
boring points in time to �p′

t on T ′ and so T to be slightly ahead to T ′. Further, we assume
that a point �pt+a for 0 ≤ a < 1 can be sufficiently accurately approximated by

�pt+a = (1−a) �pt +a �pt+1. (3)

Note, that the motion vector �pt+1 −�pt can be a combination of linear object and linear
camera motion. Substituting �pt+a for �p in (2) yields

�p′Tt F ((1−a)�pt +a�pt+1) = 0 (4)

with 0 ≤ a < 1 and F an unknown fundamental matrix. Thus, (4) can be reformulated
using f , the corresponding vector containing the nine unknown entries of F in descending
order, to

M(a) f = 0 (5)

with M(a) a 9×9 matrix in only a single free variable a. As for the correct temporal
off-set there must exist a solution to the above equation, the following constraint needs to
be satisfied

det(M(a)) = 0 (6)

which corresponds to a degree six polynomial in a (as only the first two coordinates of �p t

are a function of a). For the case of no motion or only camera motion, there is no unique
solution for a since the equation holds for all a ∈ [0 . . .1). The solution for this will be
unique if the trajectories result of at least two independent motion. This is for example
the case for a static background and a moving foreground, two different objects with



independent motion or a non-linear deforming object. Hence solving (5) for a provides
a direct estimation of Δt in one single step under the assumption that object and camera
motion can be linearly approximated between two consecutive frames.

In practice due to noise and tracking errors, the solutions are more robust the more
independent the motions are. To measure this indepence we calculate the fundamental
matrix within the considered two steps of each camera. The larger the residual error the
better this independence assumption will be fulfilled. Repeating this approach for these
time points results in a distribution over [0...1) of possible time shifts where the real time
shift is expected to be the mean shift. For the case that more than one solution for a lies
in the requested interval [0 . . .1), or none at all, the iteration will be dropped. If most of
the iterations yield no result in the given interval, it indicates that our first assumption
of T being temporally ahead is wrong. Repeating the calculation for �p ′

t and �p′t+1 as the
neighoring points in time of �pt will then result in the correct time shift.

6 Results

We have applied our synchronisation method to various video sequences, both synthetic
and real camera data to demonstrate the robustness and applicability of this approach.

For generating synthetic data we used 3-dimensional trajectories of tracked markers
on moving people provided by the Carnegie Mellon University [13] and then calculated
the perspective projection for different camera views. This enabled us to freely specify
camera positions and orientations as well as the exact time shift and thus to compare the
maintained results with ground truth. As these 3-dimensional trajectories were also mea-
sured from real world scenes, the received data is not free of noise and, for a nonintegral
temporal offset between the generated views, also the projected 2-dimensional trajectories
are not noise free.

As expected, the robustness of the results depends on the length of the considered
trajectory as well as on the baseline of the generated views: a longer trajectory provides
more information simplifying the computation whereas a wider baseline hinders finding
the correct alignment. Figure 3 illustrates this relation using only one trajectory for eval-
uation: in the green area our algorithm for finding the frame-accurate offset provides a
correct estimation and fails in the red one. In these test cases we chose ε in such a way that
no more than fifty and not less that five percent of the points in the trajectory were con-
sidered as points of interest. Summarizing the results, one can expect to find the correct
solution for image sequences with a length of 100 or more frames for baseline differences
up to 45 degrees and even up to 90 degrees for longer trajectories.

For an evaluation of the subframe accurate temporal difference we chose an angle of
20 degrees between the cameras and a time shift of 0.4 frames. The results can be seen in
Figure 3. The median of the distribution of possible time shifts was 0.3999 and the mean
value was 0.4031 with a variance of 0.0062, both according to ground truth.

In our first experiment with real data we recorded a dancing woman with a set of four
stationary, but uncalibrated, cameras. The cameras were placed around the scene next
to each other with an angle of 15 degrees to their respective neighbours (so the angle
between the first and the last camera were 45 degrees) as can be observed in Figure 4(a).
The utilizied pair of trajectories was obtained by using a pyramid Lucas-Kanade feature
tracker [8] and had a length of 100 frames each. We only evaluated a pair of two cameras



Figure 3: Left: the coherence between trajectory length and camera baselines. Right: his-
togram of the estimated possible subframe-accurate time shifts with a distinct maximum
at 0.40, in accordance with ground truth.

at once but for different values for ε changing the amount of points being extracted. The
results are shown in the histograms in Figure 4(b). In Figure 4(c) four frames with the
correct temporal shift are shown.

Computing the offsets for all pairs of cameras, we found that the results are consistent
as the sum of all offsets is zero as can be seen in Figure 5. Our second experiment
is an outdoor scene with two moving, handheld cameras recording a trial biker. The
sequences we used for synchronisation were of 100 frames length. We used only one pair
of corresponding trajectories. The obtained time shift of 6 frames is according to ground
truth, as can be seen in Figure 6, and shows that our algorithm is unaffected of the camera
movement.

For testing the algorithm on subframe accuracy we recorded with one moving hand-
held and one stationary camera, a single throw of a ball as here the ground truth can at
least roughly be estimated. The manual estimated time difference was 0.8 frames. The
obtained derivation of possible time shifts had its peak at 0.7681, conforming to the esti-
mated ground truth, and a variance of only 0.0019 frames and can be therefore regarded
as stable. Notice that the variance was even lower than the variance using our synthetic
data as the synthetic data contained less linear motion. The trajectories used for this es-
timation were of 89 frames length but only 10 frames fulfilled the additional robustness
constraint as discussed in Section 5.
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