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Abstract

To obtain o Euclidean reconstruction from images
the cameras have to be calibrated. In recent years dif-
ferent approaches have been proposed to avoid explicit
calibration. The problem with these methods is that
several parameters have to be retrieved at once. Be-
cause of the non-linearity of the equations this is not
an easy task and the methods often fail to converge.

In this paper a stratified approach is proposed which
allows to first retrieve the affine calibration of the cam-
era using the modulus constraint. Hawving the affine
calibration it is easy to upgrade to Euclidean. The im-
portant advantage of this method is that only three pa-
rameters have to be evaluated at first. From a practical
point of view, the major gain is that an affine recon-
struction is obtained from arbitrary sequences of views,
whereas so far affine reconstruction has been based on
pairs of views with a pure translation in between.

A short illustration of another application is also
giwen. Once the affine calibration is known, the con-
straint can be used to retrieve the Euclidean calibration
in the presence of a variable focal length.

1 Introduction

Several researchers have shown the possibility of cal-
ibrating a camera from correspondences between sev-
eral views of the same scene. These methods are based
on the rigidity of the scene and on the constancy of
the internal parameters. Faugeras et al [3] extracted
two quadratic constraints in the five unknown internal
parameters for each pair of views. Solving these equa-
tions needs high accuracy computations. The num-
ber of potential solutions grows exponentially with the
number of views which makes this method intractable

*IWT fellow (Flemish Institute for the Promotion of
Scientific-Technological Research in Industry)

for a large number of views. Recently Zeller et al [14]
proposed a more robust method to solve these con-
straints. Heyden [6] came up with a variant of this
approach. An alternative method was proposed by
Hartley [5] who solved for the eight unknowns of the
affine and Euclidean calibration at once. This method
worked better with a large number of views but fails
to converge if the initialization is not near to the fi-
nal solution which is not easy to guarantee in an eight
parameter space.

This problem prompted a stratified approach, where
an affine reconstruction is obtained first and used as the
initialization towards Euclidean reconstruction. Such
a method has been proposed by Armstrong et al [1]
based on the work of Moons et al [8].

Also in this paper a stratified approach is given
which first retrieves the affine calibration of the cam-
eras using the modulus constraint and then uses ad-
ditional constraints to upgrade the calibration to Eu-
clidean. The advantage of this method compared to
Hartley’s is that the non-linear minimization only takes
place in a three dimensional parameter space which
means in practice that we can always converge to the
optimal solution. Armstrong’s method requires a pure
translation which might be difficult to achieve with a
hand-held camera, for instance. Allowing general mo-
tions is thus one of the main advantages of the method
proposed in this paper.

The modulus constraint can also be used in another
way. Having the affine calibration it is possible to re-
trieve a varying parameter. The method to cope with
a varying focal length is briefly outlined in this article
(for details see [9]).

2 Euclidean, affine and projective cam-
eras

In this paper a pinhole camera model will be used.
The following equation expresses the relation between



image points and world points.
Aikmix = PrM; (1)

Here Py, is a 3 x 4 camera matrix, m;, and M; are col-
umn vectors containing the homogeneous coordinates
of the image points resp. world points, A;p expresses
the equivalence up to a scale factor.

Now the camera model of Equation (1) will be spe-
cialized to the case where the Euclidean calibration
is known. From there the affine and projective case
and the relations between all these strata will be high-
lighted.

The projection matrices of the same Euclidean cam-
era for different views can be represented as follows

Pp =
Pgr, =

MK ([1]0]
MK [Rk| — Rktk] (2)

with K the calibration matrix, with R and t; repre-
senting the orientation and position with respect to the
first camera and with \; a random scale factor because
a projection matrix is only defined up to scale. K is
an upper triangular matrix of the following form:
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with r, and r, the pixel dimensions, u = (ug,u,) the
principal point and s a skew factor (see for example [5]).
Having only an affine calibration of the cameras
means that one doesn’t know what the calibration ma-
trix K is. Therefore the most evident choice is to take
P 41 = [I|0]. This determines all 12 degrees of freedom
of the affine transformation except for a global scale
factor (which will appear as o in the following equa-
tions). The affine projection matrices can be obtained
from the Euclidean ones by the following transforma-
tion:

K! o
=[5 0] (@
This yields the following affine projection matrices
Ps1 = A [I]0]
Par = M [KRkK_1| — oKRyty] . (5)

From these equations one can notice that the left 3 x 3
part of the matrices P 44 —which is the infinity homog-
raphy Hipoo (see [1])— is conjugated to the scaled rota-
tion matrix A\yRy and hence all eigenvalues must have
equal moduli (=Ag). This is the modulus constraint
which will be used further on.

What can be retrieved by a weak calibration are
projection matrices which are defined up to a projec-
tive transformation [12, 2, 4, 13]. Choosing Ppy = [1/0]

only fixes 11 of the 15 degrees of freedom of the pro-
jective transformations. Besides the global scale factor
o three more parameters are free (a = [a1 a2 ag] in the
following equations). To go from projective camera
matrices to affine camera matrices the following trans-
formation can be used:

. I 0
Py =PprTap with Typ = |: a 1 :| . (6)

Such a transformation boils down to picking a different
plane as the plane at infinity. The infinity homography
H_,1x can be retrieved as follow:

Hiro =Pps [ ; ] . (7

3 The modulus constraints for affine
calibration

In this section it will be demonstrated how projec-
tive cameras can be upgraded to affine cameras by the
use of the modulus constraint. The projective camera
matrices can be retrieved using methods described in
the literature (see for example [12]). These are related
to the affine ones by Equation (6). On the other hand
the affine cameras are also related to the Euclidean
ones through Equation (5), leading to the modulus con-
straint. This means that the modulus constraint must
be valid for the affine camera matrices given in Equa-
tion (6) and thus can be used to determine a, i.e. to
position the plane at infinity. To make the constraint
explicit we write down the characteristic equation of
Hiroo:

det (Higoo — AI) = aX® + A2 +cA+d=0. (8)

In the previous equation a, b, ¢, d are first order polyno-
mials in aq,as and az. The modulus constraint imposes
that the roots of Equation (8) |A1| = |A2| = |A3| (= k).
This constraint is not easy to impose, but the following
constraint can be derived from it:

ac® = bd (9)

Filling in a, b, ¢,d in Equation (9), one obtains a 4t" or-
der polynomial equation in a1, a9,as. In fact one gets
such a constraint for any camera except the first (refer-
ence) camera. The unknowns ai, a2, as being the same
for all cameras, one can find a finite number of solutions
for four cameras. For more one will in general only
have one solution. A solution to these equations can
for example be found by using a Levenberg-Marquardt
algorithm. In practice once a solution is found it can
be checked for the modulus constraint, which is more
stringent than Equation (9). Most often this yields
only one possible solution even for only four views.



4 Euclidean calibration from affine

To upgrade the reconstruction to Euclidean the cam-
era calibration matrix K is needed. Euclidean self-
calibration is mostly obtained by localizing Q;i =
KK ', the dual of the image of the absolute conic [5].
The absolute conic lays in the plane at infinity and is
fixed under a rigid motion. These characteristics yields
the following constraints for

Q0 = Hiroo Q2 Hij o (10)

To avoid scale factors in the above equation Hjjeo
should be scaled to obtain det Hi;o = 1. K can be
obtained from €2;! by Cholesky factorization.

5 Another application: Euclidean cali-
bration with a variable focal length

The modulus constraint can also be used for other
purposes than affine calibration. A more complete de-
scription of this method can be found in [9]. The con-
straint depends on two conditions: the affine calibra-
tion and the constancy of the internal parameters. For
each view except the first we get a valid constraint.
This means that instead of “spending” the constraint
on solving for affine calibration one can in the tradi-
tional scheme —where such calibration amounts from
translation between the first two views— use the con-
straint to retrieve one changing parameter for each sup-
plementary view. The most practical application is to
allow the focal length to vary.

The first step is to model the effect of changes in fo-
cal length. These changes are relatively well described
by scaling the image around the principal point » which
can be expressed as follow:

1 0 (f7t=1)u,
Mg = Kfm,'k with Kf = 8 (1] (f_lfjll)uy
(11)

with m;; the points that one would have seen without
change in focal length, my_, the image points for some
relative focal length f, Ky being the transformation
between both.

The first thing to do is to retrieve the principal point
u. Fortunately, this is easy for a camera with variable
focal length, u being the only fixed point when vary-
ing the focal length without moving the camera. The
affine camera calibration can for example be retrieved
from two views with a different focal length and a pure
translation between the two views, using the method
described in [9].

From that point on we can use the modulus con-
straint to retrieve the focal length for supplementary
views. This makes it possible to transform each image
back to a normalized image (by canceling the change
in focal length). From there one can use the method
described in section 4 to get a full Euclidean calibra-
tion.

The modulus constraint is only valid for a normal-
ized affine camera. By normalized it is meant that the
change in focal length has been canceled. Stated differ-
ently the modulus constraint must be valid for a camera,
matrix Pagy = KJTIP Ak- Writing down the charac-
teristic equation we get an equation like Equation (8).
Substituting the obtained coefficients in Equation (9)
we obtain a 4" order polynomial in f:

asft+azfP +asfP+aif+ag=0 (12)

This gives 4 possible solutions. It can be proven that if
f is a real solution, then — f must also be a solution!.
Imposing this to Equation (12) yields the following re-
sult:
aq
=,./= . 13

=y (13)
Now that we have retrieved f we can use K;l to get
normalized images and cameras. Then we can simply
use the method described in section 4 to get a Eu-
clidean calibration.

6 Experiments

In this section some results of self-calibration are
given, both for the general motion method and the
method allowing a variable focal length. For the first
method experiments on synthetic data are presented.
Results are compared with Hartley’s [5]. The method
is shown to work properly in the presence of realis-
tic amounts of noise. For the second method results
obtained from real data are shown. A 3D reconstruc-
tion of a scene is given which exhibits the Euclidean
attributes of the real scenes (i.e. right angles, ...).

6.1 Experiment with general motion

For the method applicable with general motion —
in particular affine reconstruction without relying on
translation — two experiments will be presented here.
One with a small number of views and one with a larger
number of views.

IThis is because the only constraint imposed is the modulus
constraint (same modulus for all eigenvalues). A mirroring of
the scene does not change the modulus of the eigenvalues, only
the sign. Changing the sign of f has the same effect.



Noise | uy Uy rt | skew | rpt/rt
- 500.0 | 400.0 | 1000.0 | -5.00 0.9000
0.0 494.9 | 402.1 | 1035.2 | -16.11 | 0.8889
0.5 490.6 | 402.2 | 1058.3 | -23.30 | 0.8812
1.0 475.0 | 403.4 | 1152.0 | -59.65 | 0.8491
2.0 458.3 | 410.5 | 1180.3 | -49.99 | 0.8372
4.0 438.6 | 396.4 | 1360.7 | -97.95 | 0.7856

Table 1. Calibration results for 4 views

For both experiments the scene consisted of 50
points randomly scattered in a sphere of radius 1 unit.
The cameras were given random orientations and were
placed at varying distances from the center of the
sphere at a mean distance from the center of 2.5 units
with a standard deviation of 0.25 units. They were
placed in such a way that the principal rays of the
cameras passed through randomly selected points on
a sphere of radius 0.1 units. The calibration matrix
was given known values to be able to assess the qual-
ity of the calibration afterwards. Normally distributed
noise with different standard deviations was added to
the image projections of the scene points to analyze the
robustness of the method to noise. This experimental
setup is the same as the one used by Hartley [5] with
15 views. To ease the comparison the same layout was
used for the results.

The first experiment was carried out on 4 views?.
The results can be seen in Table 1. For the meaning of
the parameters the reader is referred to Section 2. The
first line gives the exact values, subsequent lines give
the results obtained with different levels of noise. One
can see that even for serious amounts of noise quali-
tatively good results can be obtained. These can not
immediately be compared to Hartley’s because he used
another experimental setup and only 3 views, but still
the degradation of the calibration seems to be much
smaller than with his method for a small number of
views. Because of the low dimensionality of the param-
eter space convergence was easily obtained without the
need for any prior knowledge that would allow to start
near the final solution.

The second experiment is the same as the previous
one, but carried out on 15 views. Having a large num-
ber of views gives a lot of redundancy which allows a
more precise calibration. This can be seen from the re-
sults of Table 2 which are significantly better than the
ones from Table 1. The results are comparable with
Hartley’s although somewhat less precise for higher lev-
els of noise. This is probably due to the fact that at
the moment only linear methods were used to compute

24 views being the minimum to retrieve the Euclidean cali-
bration using this technique

Noise | ug Uy ryt | skew [ r7t/rt
0.0 500.0 | 400.0 | 1000.0 | -5.00 | 0.9000
0.5 502.0 | 401.1 | 1000.9 | -5.10 | 0.9000
1.0 499.3 | 398.3 | 9979 | -5.74 | 0.8992
2.0 501.6 | 397.8 | 978.0 1.37 0.9044
4.0 495.2 | 410.2 | 960.3 | -8.24 0.8902

Table 2. Calibration results for 15 views

Figure 1. The 3 images that were used to build a
Euclidean reconstruction. The camera was trans-
lated between the first two views (the zoom was
used to keep the size more or less constant). For
the third image the camera was also rotated.

the projective reconstruction.
6.2 Experiment with variable focal length

Here some results obtained from a real scene are pre-
sented. The scene consisted of two boxes and a cup.
The images that were used can be seen in Figure 1. The
scene was chosen to allow a good qualitative evaluation
of the Euclidean reconstruction. The boxes have right
angles and the cup is cylindrical. These characteristics
must be preserved by a Fuclidean reconstruction, but
will in general not be preserved by an affine or projec-
tive reconstruction.

First a corner matcher was used to extract point
correspondences between the three images. From these
the method allowing varying focal lengths was used to
obtain a Euclidean calibration of the cameras. Subse-
quently, an algorithm [11] was used to compute dense
point correspondences. These were used to build the
final 3D reconstruction using the previously recovered
calibration.

Figure 2 shows two views of the reconstructed
scene3. The left image is a front view, the right im-
age a top view. Note especially from the top view,
that 90° angles are preserved and that the cup keeps
its cylindrical form which is an indication of the quality
of the Fuclidean reconstruction.

3We preferred shading to the projection of the original texture
on the model because this gives a better impression of the 3D
structure.
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Figure 2. front and top view of the reconstruction.

7 Conclusion and further work

In this paper the modulus constraint was proposed
as a new constraint for self-calibration. An impor-
tant result is the ability to obtain an affine calibration
from a single moving camera undergoing general mo-
tion (i.e. not restricted to pure translation as in Moons
et al [8]). From there on it is easy to get a Euclidean
reconstruction. In contrast to the methods of Faugeras
et al [3] and Hartley [5], this method has the advan-
tage of requiring a non-linear optimization in only three
variables which reduces convergence problems. Results
seems to be better than Hartley’s on short sequences
and comparable on longer ones. Another possibility
offered by the modulus constraint is Euclidean calibra-
tion in the presence of a varying focal length. This was
briefly discussed and the feasibility was demonstrated
by an experiment on real data. More details can be
found in [10].

Some further work is required to get a more robust
implementation of the methods presented in this pa-
per. Better results can be expected by using non-linear
refinement of the projective cameras which were used
as a starting point for the presented methods. Also a
combination of different methods could help. It is also
needed to investigate if the modulus constraint could
yield an affine calibration using only three images.
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