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Abstract

Self-calibration and critical motion sequences are problems which have received
a lot of attention lately. The key concept for these problems is the absolute conic
which appears as a natural calibration object always present in space. To observe it,
however, self-calibration constraints are needed. In this paper a method to represent
the rather abstract concept of the absolute conic through real geometric entities is
proposed. The main benefit of this approach is that it allows to apply geometric intu-
ition to understand problems related to self-calibration and critical motion sequences.
The image of the absolute conic can be represented as an ellipse in the image. In
this case self-calibration constraints are translated to simple geometric constraints
on this ellipse. Several researchers have recently worked on critical motion sequences
for self-calibration. The problem is however that the obtained results are hard to un-
derstand. Some cases are very hard to grasp intuitively and in an effort to do so the
proposed method was developed. By mapping the problem to real geometric entities,
even the most intricate cases obtained by the previous analyses (often through the
help of automated solving tools) can be understood and visualized. Several of these
cases are discussed explicitly in this paper. Several new insights are also presented.
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1 Introduction

Self-calibration has been an important research topic over the last few years. Since it
became clear that in general projective reconstructions could be obtained from images
acquired with an uncalibrated camera [3, 5], researchers have been looking for ways to
upgrade these reconstructions to metric. This can be achieved by using additional scene,
motion and/or calibration constraints.

One of the most interesting approaches consists of retrieving the metric properties of
the scene by (only) imposing some constraints on the camera intrinsics. This is called
self-calibration and has been an important research topic over the last few years. Many
approaches have been proposed for unknown but constant intrinsic camera parameters
(e.g. [4, 6, 17, 22]). Recently also more flexible approaches that can deal with varying
intrinsic camera parameters, have been proposed [18, 9]. It was shown [18, 10, 12| that in
principle the constraint of rectangular pixels is sufficient to allow for self-calibration.

Self-calibration is, however, not possible for all camera motions. There exist critical
motion sequences (CMS). In these cases self-calibration is unable to achieve a metric re-
construction and some ambiguity remains on the final reconstruction. These CMS clearly
depend on the constraints which are imposed for self-calibration. The extremes being the
case with no constraints for which every motion is critical and the case were all intrinsic
camera parameters are known for which almost no critical motion sequences exist [11].

For constant intrinsic camera parameters a complete analysis was provided by Sturm [19,
20]. An alternative approach was proposed by Ma et al. [15], but this approach is not com-
plete since it only deals with CMS which form subgroups of the Euclidean group. Recently,
some results were also given for varying intrinsic camera parameters [12].

Although most of these analyses are based on geometry, the solutions are obtained as
solutions of systems of equations and can not always be understood intuitively. The prob-
lem is that the absolute conic is a purely virtual entity. In this case our geometric intuition
is only partially valid. Although some critical motion sequences can be perfectly under-
stood using our “real” geometric intuition, other cases can not. In general our geometric
intuition can not be trusted when virtual entities are involved.

In this paper a method is proposed to translate problems of self-calibration and critical
motion sequence analysis from virtual geometric entities to real geometric entities. This
allows us to understand intuitively the results obtained in previous analyses of CMS [19,
20, 11, 12]. It is also very important for further analysis of the problem. As was pointed
out in [11] automated theoretic tools are usefull, but are still far from solving everything.
In addition, the solution is often useless without geometric interpretation.

The paper is organized as follows. In Section 2 some basic concepts are introduced.
Section 3 first describes the concept of virtual cones, then the mapping from the virtual
entities to an equivalent real representation is given. Section 4 discusses more in detail
the image of the absolute conic. In Section 5 it is shown how the analysis of CMS can be
understood based on the new representation. The paper is concluded by Section 6.



2 Background

Some familiarity with the projective formulation of vision geometry is assumed [2, 16].
A perspective camera is modeled through the projection equation m ~ PM where ~
represents the equality up to a non-zero scale factor, M = [X' Y Z 1] represents a 3D world
point, m = [z y 1] represents the corresponding 2D image point and P is a 3 x 4 projection
matrix. In a metric or Euclidean frame P can be factorized as follows

P = KR|[I|-t] where K = fy Uy (1)
1

contains the intrinsic camera parameters, R is a rotation matrix representing the orien-
tation and t is a 3-vector representing the position of the camera. The intrinsic camera
parameters f, and f, represent the focal length measured in width resp. height of pixels,
(ug, uy) represents the coordinates of the principal point and s is a term accounting for the
skew. In general s can be assumed zero. In practice, the principal point is often close to
the center of the image and the aspect ratio ;—Z close to one.

A quadric is defined by the quadratic form M'TQM = 0, where Q denotes a 4 x 4
symmetric matrix and M a homogeneous representation of a 3D-point. The dual concept is
a quadric envelope defined by II"' Q*Il = 0 which contains the planes tangent to the quadric.
For non-singular matrices Q* ~ Q! and the quadric is said proper. Quadrics with no
real points are called virtual. Similar properties exist for the 2D concept which is called a
conic. The image of a quadric is a conic and can be expressed in envelope form as

C*~PQP’ (2)

Projective geometry only encodes cross-ratios and incidence. The affine structure (par-
allellism and ratios of parallel lengths) is encoded by defining the plane at infinity M.
Euclidean structure (lengths and angles) is encoded by a proper virtual conic on II,,. The
simplest way to represent this absolute conic is by its envelope, i.e. a 4 X 4 symmetric
positive semidefinite rank 3 matrix Q7 . In a metric frame Q¥ = diag(1,1,1,0). The null-
space of (27 is the plane at infinity I, and thus 2} I, = 0. The similarities or metric
transformations (i.e. Euclidean plus a global scalefactor) are exactly the transformations
that leave the absolute conic unchanged. The affine transformations leave the plane at in-
finity unchanged. The following abreviations will be used repeatedly throughout the text
(D)AC for (Dual) Absolute Conic and (D)IAC for (Dual) Image of the Absolute Conic.

The AC is the central concept for self-calibration. Localizing the AC in a projective
frame allows to upgrade this frame to a metric one. Since it is invariant to rigid displace-
ments, the IAC is only depending on the intrinsic calibration and not on the extrinsic
parameters (i.e. camera pose). Constraints on the intrinsic camera parameters can thus
be translated to constraints on the IAC. These can then be back-projected to constraints
on the AC. In general it is then possible to single out the absolute conic by combining
sufficient constraints from different views. It was shown that this was possible imposing
only the rectangularity of pixels [18].



Figure 1: Projection cone of a conic

The self-calibration approach can be formulated as follows. If P represents the set of
camera projection matrices for an image sequence and K represents the set of possible
calibration matrices, then the AC, represented by its envelope 27, can be found as the

proper virtual conic for which for every P € P there exists a K € K so that
PO P ~KK' . (3)

The problem is, however, that for a specific set of self-calibration constraint (i.e. con-
straints on the intrinsic camera parameters), not all motion sequences will yield a unique
solution for the AC. In this case the motion sequence is termed critical with respect to
the set of constraints. These sequences are called Critical Motion Sequences (CMS). In
this case an ambiguity will persist on the metric frame.

3 Planar sections of virtual cones

The projection of the absolute conic on the image plane can be described by a projection
cone. The center of this cone is the center of projection of the camera. The intersection
with the plane at infinity is the AC and the intersection with the image plane is the TAC.
In many papers this would be illustrated as in Figure 1.

The problem is however that this cone is a virtual cone. In this case our intuition is
note reliable. Although in some cases these virtual entities exhibit the same properties as
their real counterparts, in other cases our intuition can not be trusted.

For the analysis of self-calibration and CMS it is, however, important to have some
intuition in the geometry of the problem. In this section it is shown that the intersection
of virtual cones with planes can be mapped to an equivalent problem with real entities. In
the latter case, however, geometric intuition can be used reliably. Before introducing this
new representation, some general properties of virtual conics are given.



A virtual cone is described by a 4 x 4 positive semidefinite rank 3 matrix I'. The center
of the cone C corresponds to the nullspace of I', i.e. I'C = 0. The point-equation of the
Euclidean standard form of such a cone is given by the following equation:

1 1 1
Tl (4)

with a, b, ¢ strict positive scalefactors corresponding to the scaling of the cone along the
main axes. Three different types of virtual cones exist. When «a, b and ¢ are equal the cone
is an isotropic cone. The intersection of this cone with an arbitrary plane always results
in a virtual (centered') circle. Note that this behaviour can not be understood in terms of
real cones (cfr. Figure 1). When only two of the three scalefactors are equal the cone is a
circular cone. When all three scalefactors are different the cone is elliptic. For a specific
proper virtual conic ¢ and a point C (not it the supporting plane of the conic), a unique
virtual cone I' can be determined so that it contains ¢ and has C as its center. The inverse,
the fact that a specific cone I' has a unique intersection ¢ with a plane, is obviously also
the true.

The mapping of the virtual ellipse ¢ to the real ellipse R(¢) is defined as follows:

MM = 0 with T’ = diag(

¢ = H'diag(1,1,1)H + R(¢) = H'diag(1,1,-1)H (5)

where H represents an arbitrary 2D affine transformation.
Let us also define the mapping of the virtual cone [ to the family of real ellipsoids
R(T, N):
I' = T'diag(1,1,1,0)T + R(T, \) = T "diag(1,1,1,=A*)T (6)

where T represents an arbitrary 3D affine transformation and A a scale factor which can
vary. Let us also define the ratio of intersection R between a plane and an ellipsoid
as 1 when the plane passes through the center of the ellipse, as 0 when it is tangent and
linearly (with the distance between the planes) in between. This is illustrated in Figure 2

1
1 /2

Figure 2: Illustration of the concept ratio of intersection (R = %)

!By centered it is meant that the point of the plane closest to the center of the cone is the center of
the circle.



Figure 3: Traditional representation of virtual cone intersection with plane and proposed
representation R(L, A).

Theorem 1 The intersection of the imaginary cone I' with plane Tl can be obtained as ¢
corresponding to R(¢) which is the intersection of the ellipsoid R(T', \) where X is deter-
mined so that the ratio of intersection is %

Proof: Let us first prove this for the simple case where I' : X?4+Y?24+ 72 =0andI1: Z = 1:

T:X24V24+22=0 & R(I,V2): X2+V2422=2"

b:X2+Y?2+1=0 © R(¢):X2+Y2+1:\/§2 (7)

All other relative positions of planes and cones can be achieved by applying affine transfor-
mations to the geometric entities defined above. Since tangency, intersections and ratios
of lengths along some line are affine invariants it follows that the mapping is valid for all
imaginary cones and all planes.

Theorem 1 gives a way to represent the intersection of a virtual cone with a plane
through real entities only. This allows the use of geometric intuition. An illustration of
the idea is given in Figure 3.

4 The image of the absolute conic

As was seen in Section 2, one of the key concepts for self-calibration is the TAC. In this
section we will discuss a geometric representation of this entity, both in the image and in
3D space. According to Equations (1) and (2) the IAC is given by

wi, ~PQIPT ~KK' . (8)

The new representation, R(wy), of the IAC is an ellipse. The center of this ellipse corre-
sponds the principal point, for zero skew the axes are alligned with the image axis and for

6



Figure 4: R(ws) and image borders (for standard 35mm camera)

an aspect ratio of one R(wy) is a circle. The inside of the ellipse corresponds to what is
seen through a field-of-view of 90 degrees (45 degrees away from optical axis).

This representation is located in the image and is thus dependend on the way that the
image plane is sampled. It is however also possible to represent the TAC in 3D as an ellipse
located in the image plane. This representation is independent of the parametrization of
the image plane and is always a circle with the center located at the point of the image
plane closest to the center of projection and the radius equal to the distance between the
center of projection and the image plane. This is illustrated in Figure 4. The rectangle
represents the borders of the image for a standard 35mm photocamera.

When there is an ambiguity on the intrinsic camera parameters, an equivalent ambiguity
exist on the TAC and thus also on R(ws). For every potential IAC, represented by R(¢),
a corresponding virtual reprojection cone exist. As seen in Section 3 this cone can be
represented by the family of ellipsoids R(I", ). Depending on the constraints this cone can
also have a constraint form. Fixed intrinsic camera parameters result in a fixed IAC and
thus also in a virtual reprojection cone with a fixed shape. The position and orientation
obviously depend on camera pose.

If some intrinsic camera parameters are known, this immediadely constraints the shape
of the IAC and in some cases also the type of reprojection cone. The different possibilities
are summarized in Table 1. The first column contains the intrinsic camera parameters
which are assumed known. The second and third column give the corresponding type
of TAC resp. reprojection cone. The last column indicates which camera orientations are
possible for a specific reprojection cone keeping the constraints for the IAC satisfied. This
will be useful for Section 5. Some restrictions on the AIC are illustrated in Figure 5 and
Figure 6 for a few representative ambiguities.



known intrinsic type of type of possible

camera parameters R(weo) R, A) orientations
centered circle spheres 3

Fo by, U, 1y, 8 (known radius) (isotropic cone) any (00”)

£ S centered circle circular ellipsoids aligned with

£ B Uy (circular cone) main axis (00)

ks circle ellipsoids (4 x 00)

Y

centered ellipse aligned with

U, Uy, S (axis aligned with image) ellipsoids some axis (8)
ellipse . any opt. axis

S (axis aligned with image) ellipsoids (4 X 00?)

/ ellipse ellipsoids any (00?)

Table 1: Possible types of R(ws) and R(Is, A) with possible orientations for set of known

intrinsic camera parameters.

Figure 5: Representation of representative potential IAC together with image borders for
different types of constraints in the image. Unknown focal length (left), unknown aspect
ratio (middle-left), unknown principal point (middle-right) and fully uncalibrated (right).

C

Figure 6: Same as Figure 5, but for the plane embedded in Euclidean 3D space. In this

case the TAC is always a circle and the image borders are transformed depending on the
intrinsic camera parameters.




5 Critical Motion Sequences

Depending on the motion sequence it can be that the self-calibration constraints do not
provide a unique solution. This obviously also depends on which self-calibration constraints
are used. In this section a general approach to the analysis of critical motion sequences
is given. The goal is not so much to provide a catalogue of CMS, but mainly to be able
to understand intuitively the results that have been obtained before. If a proper virtual
conic satisfies all self-calibration constraints (see Equation (3)) it can be called a Potential
Absolute Conic (PAC). To have a critical motion sequence there should be at least two
PACs (the AC and another one).

The idea is to investigate which motion sequences results in a specific PAC. To analyse
the problem in Euclidean space it is necessary to split it up in PACs in the plane at infinity
and PACs out of the plane at infinity.

5.1 In the plane at infinity

In this case the problem is relatively simple. If the PAC is embedded in the plane at infinity
the homography transforming the potential IAC to the PAC is simply the rotation matrix
representing the orientation of the camera. Without loss of generality the world frame
can be aligned with the first view, yielding the identity transformation for the first infinity
homography. Therefore the PAC must itself satisfy the self-calibration constraints imposed
on the TAC. The PAC can be seen as a 3D ellipsoid on which the rotations representing
the different poses of the camera can act.

In this case there are no problems to understand —and even derive— intuitively all the
possible cases. Therefore, no further attention will be paid to these cases in this paper.

5.2 Out of the plane at infinity

In this case the problem is more complicate. The problem can however be separated in two
parts. First, for a specific PAC, the possible virtual projection cones are determined. This
is equivalent to determining the possible positions for the camera. Then, for each cone the
possible camera orientations have to be determined.

To get an intuitive handle on this problem the results of Section 3 can be applied. As
was seen in Table 1, for some types of constraints there are constraints on the possible
virtual cones. More precisely, this is the case for when all parameters are known, in which
case the cone is an isotropic cone, and for the case that all parameters but the focal length
are known, in which case the cone should be a circular one. For other constraints the
type of the reprojection cones can not be determined beforehand. If all intrinsic camera
parameters are fixed, then also the reprojection cone is fixed.

Note that when the cone is unrestricted, it is possible to draw the conclusion that very
many CMS exist. This is made more explicit in the following proposition.

Proposition 1 If the focal length and the aspect ratio or principal point are unrestricted,



then for every possible proper virtual conic ¢ there exist a critical motion sequence which
contains every point M.

No explicit proof is given here, but the proposition can be understood as follows. For every
¢ and a virtual projection cone with center M can be constructed. Since for the specified
constraints the shape of the projection cone of a PAC is not restricted (as seen in Table 1),
I' is valid and several camera orientations will satisfy the self-calibration constraints. This
proposition illustrates the complexity of the critical motion sequence problem when only
a restricted number of constraints are at hand.

Before developing some specific examples, there are still a few general remarks to be
made. It is important to note that a solution which involves R(I', \) which are not spheres,
suppose wrongly estimated intrinsic parameters. In fact the excentricity of R(I', A) for the
different views is a measure of the miss estimation. Inversely, if some bounds on the
intrinsic camera parameters are available, this also bounds the possibility for potential
R(T,\) to deviate from spheres. This means that in the following examples the limiting
position of the CMS for very elongated/flatened ellipsoids can immediately be discarded
since they would involve unrealistic intrinsic camera parameters. Note also that for the
orientation of the camera to deviate from the main axis of the ellipsoid a miss estimation
of the principal point must be involved. In practice the feasible orientations can thus be
restricted to cones with opening angles of a few degrees around the main axis of R(T, \).

Another interesting remark is that some critical cases can be disambiguated, because
they would involve violation of the ordering/cheirality constraints [7, 13]. This is for
example the case for the first ambiguity that will be discussed in the following section.

5.3 Some examples

It is outside the scope of this paper to give a full analysis of the possible critical motion
sequences. However, in this sectios a few examples are given. We refer to the work of
Sturm [19, 20, 21], Kahl and Triggs [11] and Kahl [12] for more complete discussions.

A first simple case is the case where all intrinsic camera parameters are known. In this
case the ellipsoids are spheres. In the plane at infinity, obviously, only the absolute conic
itself satisfies this constraint. Outside of it only one conic is a potential absolute conic.
This case is illustrated in Figure 7. Note that in this case the orientation of the camera is
arbitrary.

A more complicated case occures when fixed but unknown intrinsic camera parameters
are assumed. Here only the most obscure case of a finite ellipse as potential absolute conic
will be described. Note that in the original paper of Sturm [19] the number of potential
camera positions was restricted to 8. This error was however corrected in [20] where the
possible camera locations were extended to a degree 12 curve. No effort, other than plotting
a numerically evaluated example, was made to explain this motion. This illustrates the
complexity of the problem and the importance to be able to understand intuitively the
solutions.

Starting from an ellipse R(¢) with axes length (a, b) and a vertex C, R(I', A) is uniquely
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Figure 7: Potential absolute conic, represented by the circle R(¢) in plane II, for all
intrinsic parameters known.

determined. Since the size does not matter, this family of ellipsoids is characterized by the
ratio of the lengths (A4, B, C) of the axes. Assume that A > B > C and a > b, then the
following inequality can be verified § < 2 < 1. It is now easy to show that besides the 8
symmetrical positions, 8 additional solutions can easily be found in the planes containing
the main axes of the ellipse R(¢#) and which are orthogonal on it. Placing one of the axes
corresponding to A, B and C parallel with a plane and rotating around it, will yield as
intersection ellipses with aspect ratios? ranging from % to %, from % to % respectively
from g to %. Note that if % % some values of aspect ratios between % and % can not be
reached and others are obtained twice. Note however that if the aspect ratios r and % are
seen as equivalent (i.e. (r, 1)), then each value is obtained exactly twice. The two different
cases are illustrated in Figure 8 and Figure 9. In the first case 4 poses for R(I', \) are
obtained in the two orthogonal planes. By mental interpolation it is possible to visualize a
path transforming from one pose to the other. For this case the global set of possible poses
is located on two bended circle-like shapes (one above and one under the plane). In the
second case when in one plane 8 solutions can be found and none in the other, the global
locus of the poses should consist of 4 circle-like shapes. In [20] only the first of these two
cases was illustrated.

Another difficult case which was discussed by several authors [21, 12, 16], is the case
where all intrinsic camera parameters are known except for the focal length which can vary
freely. This case corresponds more or less to a calibrated zoom camera. As was seen in
Table 1, R(T', ) should have two main axes of equal length, in other words, cigar-like or
m&m-like ellipsoids. Here also, we will concentrate on the most complex case. This is the
case where the potential AC is an ellipse. In this case the locus of potential camera poses
consist of a hyperbola and an ellipse. Reasoning with real ellipses and cones (without
using the method proposed in this paper), only the hyperbola motion can be understood.
In fact, in this case the wrong hyperbola would be visualized (namely one going through

2In this case the aspect ratio is defined as the division of the length of one axis by the other. This last
axis is selected as the one that is parallel with the rotation axis.
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Figure 8: Ellipse R(¢) with aspect ratio of % and two possible poses for a R(I', \) with
axes ratio of (3,2,1). An estimation of the locus of the possible camera locations is also
shown.

————=--9
s

Figure 9: Ellipse R(¢) with aspect ratio of % and two possible poses for a R(I', \) with
axes ratio of (3,2,1). An estimation of the locus of the possible camera locations is also
shown.
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Figure 10: Illustration of critical hyperbolic and elliptic motion of a zoom camera.

the ellipse).

Making use of the proposed mapping R, it is however simple to fully understand this
case. This is illustrated in Figure 10. The potential absolute conic (represented by R(¢))
is the intersection of the circular cones (represented by the ellipsoids A, B, C,D) with
the plane II. It has the same excentricity as the ellipsoid A (in both cases). The plane
containing H, the plane containing E and the plane I are mutually orthogonal. Note that
for the ellipsoids associated with the hyperbola (left) the smallest eigenvalue is double while
on for the ones associated with the ellipse (right) it is the largest one that is double. The
factor A is given by the ratio of the single eigenvalue (associated with the optical axis) and
the double eigenvalue (associated with the image plane). This gives the ratio between the
true focal length and the one obtained by considering ¢ as the absolute conic. Therefore,
only the central part of H and the top and bottom parts of E can still yield realistic focal
lengths. This also eliminates the possiblity to consider very elongated ellipses as potential
absolute conics for this class of critical motions. This also eliminates the problems that
were foreseen by Sturm [21] for the asymptotic similarity of the hyperbole with a straight
forward motion. Figure 11 gives a 3D view of this case.

6 Conclusion

In this paper a method to represent the rather abstract concept of the absolute conic
through real geometric entities was given. The main benefit of this approach is that it
allows to apply geometric intuition to understand problems related to self-calibration and
critical motion sequences. The image of the absolute conic can be represented as an ellipse
in the image. In this case self-calibration constraints are translated to simple geometric
constraints on this ellipse. The analysis of critical motion sequences can take advantage of
this new representation. Although automated approaches for obtaining theoretic solutions
have made progress, they are often still not able to solve complex problems without being
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Figure 11: 3D view of critical hyperbolic and elliptic motion of a zoom camera.

guided. In this case intuition can come in very handy. In the last part of the paper
some complex critical motion sequences which could not be understood through standard
geometric intuition were analysed and illustrated with the presented method. This not only
allows to understand these cases, but also allowed us to draw some interesting conclusions
which would have been hard to get without a real geometric representation.
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