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Abstract

In this work, we present a technique for robust estima-

tion, which by explicitly incorporating the inherent uncer-

tainty of the estimation procedure, results in a more efficient

robust estimation algorithm. In addition, we build on re-

cent work in randomized model verification, and use this

to characterize the ‘non-randomness’ of a solution. The

combination of these two strategies results in a robust esti-

mation procedure that provides a significant speed-up over

existing RANSAC techniques, while requiring no prior in-

formation to guide the sampling process. In particular, our

algorithm requires, on average, 3-10 times fewer samples

than standard RANSAC, which is in close agreement with

theoretical predictions. The efficiency of the algorithm is

demonstrated on a selection of geometric estimation prob-

lems.

1. Introduction

The Random Sample Consensus (RANSAC) algorithm

[8] is a widely used robust estimation technique, finding ap-

plication in a variety of computer vision problems. The al-

gorithm is simple and works well in practice, providing ro-

bustness even for substantial levels of data contamination.

The basic RANSAC algorithm operates in a hypothesize-

and-verify framework, where a minimal subset of the in-

put data points is randomly sampled and used to hypothe-

size model parameters. The verification step then involves

evaluating this model against all data points, and determin-

ing its support (the number of data points consistent with

the model). This hypothesize-and-verify loop is terminated

when the probability of finding a model with larger support

than the current best model falls below some user-specified

threshold (typically 1%-5%).

In its standard formulation, RANSAC operates with min-

imal assumptions on the data, relying purely on the fact that

with enough iterations, a ‘good’ sample (the generally ac-

cepted definition being a minimal subset that is free from

outliers) will eventually be drawn, resulting in a model that

has largest support. Since it is computationally infeasible

to try every possible minimal subset, the standard termina-

tion criterion in RANSAC determines the number of trials

required to ensure with some confidence η0, that at least

one minimal subset is drawn which contains all inliers. It

can be shown [2] that for a 95% confidence in the solution,

approximately three uncontaminated samples are drawn on

average before the confidence in the solution is achieved.

The implicit assumption in the above formulation is that

a model produced from an all-inlier minimal subset will be

consistent with all other inliers in the data and, similarly,

that a model produced from a contaminated sample will be

consistent only with a few points. In practice, both these

assumptions may be violated, leading to either increased

runtimes, or incorrect solutions. In particular, it has been

shown [5] that in practice, the standard stopping criterion

is overly optimistic: due to noise in the data, a model gen-

erated from an all inlier sample may not be consistent with

all other inliers. As a consequence of this decreased sup-

port, the number of samples drawn in RANSAC typically

increases by a factor of two to three compared to the theo-

retically expected number. In addition, when the minimal

sample forms a degenerate configuration for the entity be-

ing estimated (for instance, points on a plane in the case of

fundamental matrix estimation), even a contaminated sam-

ple may result in a solution with large support. In this case,

an incorrect solution will be returned by the algorithm.

In recent years, techniques have been proposed to deal

with the cases described above. For instance, the Locally

Optimized RANSAC (Lo-RANSAC) technique [5] aims to

address the case where an all-inlier sample is supported

only by a subset of all the inliers. Given a hypothesis with

the largest support so far, Lo-RANSAC performs an ‘inner

RANSAC’ loop, where a fixed number of models are gener-

ated by sampling non-minimal subsets from within the sup-

port of the current best solution, and verifying these models

against all data points. The RANSAC algorithm then re-

sumes sampling on all data points, carrying out the local

optimization step every time a hypothesis with better sup-



port is found. The effect of the local optimization step is

to mitigate the effects of noisy data points by using non-

minimal subsets to generate hypotheses. Since this often

results in an increase in the support, the net effect is that

the overall number of iterations required by the algorithm

reduces by a factor of two to three, thus moving closer to

the theoretically predicted number. In addition, techniques

have been proposed to deal with the case of degenerate data

configurations, either specifically for epipolar geometry es-

timation [6 ] or for linear estimation problems in general [9].

In this work, we introduce a new framework for robust

estimation, which addresses some of the issues mentioned

above, by explicitly characterizing the uncertainty of the

models hypothesized in the estimation procedure, in terms

of their covariance. This uncertainty arises from impre-

cise localization of the data points from which the model is

computed, as well as from their spatial distribution, which

infl uences the conditioning of the problem. W e show that

by explicitly accounting for these uncertainties, it is possi-

ble to account for the effects of noise in the data. In other

words, we show that knowledge of the uncertainties can be

leveraged to develop an inlier classification scheme that is

dependent on the model uncertainty, as opposed to a fixed

threshold. In terms of compensating for noise in the estima-

tion process, our work is closely related to the Lo-RANSAC

approach, which provides a solution to a very similar prob-

lem. However, while Lo-RANSAC attempts to deal with the

effect of imperfect model estimation (i.e., reduced support),

the formulation we propose addresses precisely the cause

itself. This strategy has the advantage that, given a model

(with associated uncertainty), we can immediately identify

a set of points that could potentially support this solution,

if the imperfect model estimation were taken into account.

The ‘true’ inliers then form a subset of this set of points,

and we are able to efficiently extract this subset.

Going further, the framework we propose builds on an-

other observation: all-inlier minimal subsets are sampled

multiple times in RANSAC before the algorithm terminates.

As mentioned above, on average, three all-inlier samples are

drawn by RANSAC before a 95% confidence in the solution

is achieved. In addition, due to the effects of noise, an all-

inlier sample may not gather sufficient support, which fur-

ther increases the number of samples drawn. B y leveraging

knowledge of the uncertainties, we can correctly estimate

the support for any given all-inlier model, since we are ex-

plicitly accounting for the noisy estimation process. This

implies that once we have found the first all-inlier sample,

we can robustly find its support, and terminate the algorithm

at that point. Note that here, we make the assumption that

there is only one model in the data, which is indeed the case

for a large variety of estimation problems.

To summarize the main contributions of this work:

a. W e show how the uncertainties of the estimation pro-

cess and the points may be integrated into a random

sampling framework, allowing us to robustly estimate

the support for a model generated from a noisy mini-

mal subset. B oth the model and point uncertainties are

factored into the inlier identification step, which results

in a set of potential inliers, from which the true inliers

can be efficiently extracted.

b. Given that we can estimate this support, we demon-

strate that it is possible to terminate the random sam-

pling algorithm once the first good sample has been

drawn. Since we are stopping early as well as com-

pensating for imperfect estimation, this should theo-

retically result in a factor of approximately 6 -9 fewer

samples than required by standard RANSAC. W e show

results that demonstrate this speed-up.

c. The framework we develop is fl exible and can be in-

tegrated with other techniques, such as those for op-

timized model verification [4 ]. W e leverage this idea

both to identify good samples, as well as achieve an

additional computational benefit. In addition, our al-

gorithm may also be combined with techniques such

as Least Median of Squares [18] and algorithms that

handle degeneracy [6 , 9].

2 . Uncertainty Analysis

In general, there exists a wide body of work in pho-

togrammetry and computer vision that deals with error anal-

ysis and propagation with respect to image measurements.

A survey of this literature can be found in [12, 15, 10]. In

this work, we restrict our attention to some common ge-

ometric entities in order to specifically demonstrate how

knowledge of uncertainties may be integrated into a ran-

dom sampling framework. B efore describing the proposed

robust estimation algorithm, we first provide a discussion

of uncertainty analysis as applied to the estimation of two

common geometric relations, the homography and funda-

mental matrix, and show how point uncertainties are trans-

formed under the covariance of an estimated relation. The

discussion in this section refers to [7 ] and [20]; the former

develops the theory behind characterizing the uncertainty

for homography estimation in terms of its covariance, while

the latter deals with fundamental matrix estimation.

2.1. Uncertainty for homography estimation

Given a set of corresponding points xi ↔ x′
i
, where xi

and x′
i

are in �2, the 2D homography H is the 3 × 3 pro-

jective transformation that takes each xi to x′
i
. Since each

point correspondence provides two independent equations

in the elements of the matrix H, a total of four correspond-

ing points are required to compute H up to scale.



Expressing xi and x′
i

in terms of homogeneous 3 -vectors,

the pair of equations for correspondence i is given by:
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h = 0

where x′
i
= (x′

i
, y′

i
,w′

i
)T and h is the 9-vector made up of

the entries of the matrix H. B y stacking the equations cor-

responding to four point correspondences, we then obtain a

set of equations Ah = 0, where A is an 8×9 matrix. The Di-

rect Linear Transformation (DLT) algorithm for determin-

ing the solution then consists of computing the nullspace of

A using the SV D. The unit singular vector corresponding to

the smallest singular value is the solution h (up to scale).

In practice, the points used in the computation of the

homography are imperfectly localized, and these errors in

position cause uncertainty in the estimated transformation.

This uncertainty is characterized by the covariance of the

transform, which depends on the error in point locations,

their spatial distribution and the method of estimation. As

in [7 ], we assume that the DLT is used to compute H.

It is common to consider the computation points as hav-

ing errors modeled by a homogeneous, isotropic Gaussian

noise process with known variance. Note that the standard

RANSAC algorithm also uses an estimate of this quantity to

set the threshold for inlier classification. Note that while we

do make the simplifying assumption of a common, isotropic

covariance matrix for every point, as discussed in [13 ], this

is a reasonable assumption to make in practice.

Assuming that the points in each image are perturbed by

Gaussian noise with variance σ (we make the simplifying

assumption that the variance is the same for points in both

images; this does not affect the analysis), the uncertainty of

the homography is encapsulated in a 9×9 covariance matrix

Λh, which is given by

Λh = JSJ (1)

where J = −
∑9

k=2 ukuT
k
/λk, with uk representing the kth

eigenvector of the matrix AT A and λk the corresponding

eigenvalue. S is a 9 × 9 matrix with a closed-form expres-

sion; we refer the reader to [7 ] for details on the derivation

and the coefficients of S.

In standard RANSAC, the computed homography is then

typically used to determine the (symmetric) transfer error

for each point correspondence in the data, given by

d⊥ = d(x′i ,Hxi)
2
+ d(xi,H

−1x′i)
2 (2)

where H and H−1 represent forward and backward transfor-

mations, respectively. If this error is below a predefined

threshold t, the correspondence is classified as an inlier.

Note that while the threshold setting, in theory, is related

to the variance of the point measurement noise, the contri-

bution of this noise to the uncertainty of the transform itself

is not incorporated into standard RANSAC techniques.

Figure 1. Using the covariance matrix of the estimated transforma-

tion in point transfer.

In order to determine the effect that the uncertainty of

the transform has on point transfer, we consider the forward

transformation x̂′i = Hxi (the formulation is symmetric in

the reverse direction). Given the (assumed) 3 × 3 covariance

matrixΛx for point x, the covariance of the transferred point

x̂′ may no longer be an isotropic Gaussian distribution. The

uncertainty in the transferred point is then given by [7 ]

Λx̂′ = BΛhB +HΛxH (3 )

where B is the 3 × 9 matrix
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The first term in equation (3 ) represents the uncertainty in

x̂′ given an exact point x and uncertain H. The second term

represents the uncertainty given an exact H and uncertain

point measurement x. The 3 × 3 matrix Λx̂′ thus defines

a covariance ellipse that represents the uncertainty in point

transfer due to both uncertainty in point measurement as

well as uncertainty in the homography estimated from a

minimal sample of four noisy correspondences. This result

is illustrated in Figure 1, where a homography H is com-

puted from a set of four point correspondences (denoted by

the blue ’+’ symbols), along with its associated covariance

matrix Λh. This covariance matrix is then used to transfer

the uncertainty of another point (denoted by the green ’x’)

from the left image into the right. It can be observed that

the uncertainty of the transferred point is now represented

in terms of the red uncertainty ellipse, which represents a

level set of the probability density function describing the

noise spread around the ellipse centre. Since the two error

regions (of the measured point in the right image and the

transformed point) intersect in the second image, this im-

plies that by accounting for the various uncertainties, this

correspondence can be explained as a true match.

2.2. Uncertainty for fu nd amental matrix estimation

Given a set of corresponding points xi ↔ x′
i
, the funda-

mental matrix F is the 3 × 3 matrix that satisfies x
′T
i

Fxi = 0.

Each correspondence provides one linear equation in the en-

tries of F. Since F is defined up to a scale factor, a simple



linear solution may be found from 8 point matches. In fact,

by enforcing the rank constraint, F may be computed from 7

point matches. Due to the relative simplicity of the linear 8-

point algorithm in terms of the discussion of its uncertainty

analysis, we focus on this algorithm in the presented work.

Thus, given 8 point correspondences, an appropriately nor-

malized [11] matrix M may be constructed, where

M =







































x′
1
x1 x′

1
y1 x′

1
y′

1
x1 y′

1
y1 y′

1
x1 y1 1

x′
2
x2 x′

2
y2 x′

2
y′

2
x2 y′

2
y2 y′

2
x2 y2 1

. . . . . . . . .

. . . . . . . . .

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1







































Solving Mf = 0, where f is a 9-vector made up of the en-

tries of F, followed by rank 2 constraint enforcement then

provides the solution.

The uncertainty analysis for the 8-point algorithm was

developed recently in [20]. Given the measurement noise

in the pixel coordinates, the goal is to characterize the un-

certainty of F in terms of its covariance matrix ΛF. If we

denote the solution to the linear system of equations as f̃,

the covariance of f̃ can be shown to be:

Σf̃(X) = σ2JXJT
X (4 )

where JX is an 8× 3 2 matrix that represents the Jacobian of

the transformation that generates f̃ from the vector of point

matches X, and σ is the standard deviation of the noise in

point measurements. The rank 2 constraint is then enforced

by computing

F = UD
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where U, D and V are obtained from the singular value de-

composition F̃ = UDVT . An efficient method for comput-

ing the Jacobian of the SV D is described in [16 ], and we

use this result to compute the 9 × 9 Jacobian matrix JS V D.

The final covariance matrix for F is then obtained as

ΣF = JS V D

(

Σf̃ 08,1

01,8 0

)

JT
S V D

Along the lines of the discussion in Section 2.1, the un-

certainty of the transform may be used to map the covari-

ance ellipse of a point in one image into the other. However,

since the fundamental matrix defines a point-line mapping,

the interpretation of this uncertainty is now altered. Specif-

ically, given the fundamental matrix F and point x, we have

the epipolar line l = Fx corresponding to x. The uncertainty

of this line is represented in terms of a covariance matrix

Σl = JFΣFJT
F + σ

2JxJx (5)

where JF and Jx are the Jacobian of the point-line mapping

with respect to F and x. This covariance matrix defines a

conic Ck, which corresponds to a hyperbola in the second

image. As in the case of the homography, the validity of

a match can be determined in terms of whether the point

x′ lies within the mapped uncertainty area, or if their error

regions intersect.

3 . Incorporating uncertainty into RAN SAC

In this section, we describe how knowledge of the uncer-

tainty of the estimation may be leveraged in RANSAC to

obtain a more efficient algorithm.

Inlier classifi cation:

The discussion in Section 2 introduced the idea behind char-

acterizing the uncertainty of the estimated transformations,

and hinted at a way in which this could be used to perform

the classification of points into inliers and outliers. For in-

stance, consider the case of homography estimation - given

the covariance Λh of the homography, we can compute the

error ellipse for a transferred point. Now, instead of us-

ing the distance between the transferred point x̂′ and the

measured point x′ (as in equation (2)) as a metric, we can

use this ellipse to identify potential inliers. In particular, if

the point x′ falls within this area, or if the covariance el-

lipse of the point x′ intersects the mapped ellipse, then this

could be a potential inlying match, since by accounting for

the various uncertainties, these points indeed do conform to

each other. If this process is repeated for all corresponding

points, a set of potential inlying matches can be obtained.

A similar interpretation holds true for the case of the fun-

damental matrix, where the covariance ΛF maps the uncer-

tainty of a point in one image to a hyperbola in the other.

Note that this does not imply that there is a consistent

transformation that gives rise to this set of inliers; rather,

this set represents points that could potentially be classified

as inliers by accounting for uncertainties and considering

each correspondence independently. A more subtle point

is that since the covariance of the transform is estimated

from the minimal sample and used to transfer additional

points (that were not used in its computation), outliers may

also fall into the set of potential inliers. This is because,

as discussed in [12] (Section 5.2.6 ), extrapolation far be-

yond the set of points used to compute the transform may

be unreliable. However, we note that if the assumptions of

the point measurement uncertainties is accurate, then all in-

liers should fall into this set of potential inliers, since we are

explicitly accounting for noise in the estimation. W e thus

make the observation that this set of potential inliers should

contain all true inliers, and is likely to have a significantly

higher inlier ratio than the original set of correspondences.

This observation is important as it helps the algorithm ter-

minate much quicker than standard RANSAC, particularly

when the contamination level of the data is high.



Incorporating the cov ariance test into RAN SAC:

Given that we can compute a set of potential inliers for a

particular hypothesized transform, we then address the issue

of when this covariance check should be applied. Clearly, it

does not make sense to apply the uncertainty analysis to

a sample that is contaminated, since the formulation de-

scribed in Section 2 makes the assumption that the only

source of error is noise in the point locations (and does not

account for outlying matches). Thus, if we can identify min-

imal samples that are likely to be uncontaminated, then the

covariance test can be applied to narrow down all potential

inliers in the data. Identifying these uncontaminated sam-

ples is not trivial, since merely observing their support is

not indicative - for instance, when the inlier ratio of the data

is low, even a true sample may have a low absolute num-

ber of inliers. One way to address this problem is to esti-

mate how likely it is that a configuration of points that form

the support for a particular solution, could have occurred

by chance. B y choosing a model that has sufficiently low

probability of being random, it will be possible to identify

good samples. This is the idea behind the Minimum Prob-

ability of Randomness (MINPRAN) algorithm [19] which

estimates this probability by assuming that outlier residuals

follow a uniform distribution. However, as noted in [21],

applying this technique to the estimation of geometric enti-

ties such as the fundamental matrix is not straightforward.

More recently, work in optimized model verification

[14 , 1, 4 ] has focused on minimizing the number of data

points tested in the verification step of RANSAC. These

techniques make use of the observation that most of the

models hypothesized in RANSAC are likely to be contam-

inated, and are consistent with only a small fraction of the

data points. Thus, it is often possible to discard bad hy-

potheses early on in the verification process. In particular,

an optimal randomized model verification strategy is devel-

oped in [4 ], based on W ald’s theory of sequential decision

making. The evaluation step is cast as an optimization prob-

lem which aims to decide whether a model is good (Hg) or

bad (Hb), while simultaneously minimizing the number of

verifications performed per model, as well as the probability

that a good model is incorrectly rejected early on.

W ald’s Sequential Probability Ratio Test (SPRT) is based

on the likelihood ratio

λ j =

j
∏

r=1

p(xr |Hb)

p(xr |Hg)
(6 )

where xr is equal to 1 if the rth data point is consistent

with a given model, and 0 otherwise. Thus, p(1|Hg) de-

notes the probability that a randomly chosen data point is

consistent with a good model, and this can be approximated

by the inlier ratio ε. Similarly, p(1|Hb) is the probability

that a randomly chosen data point is consistent with a bad

model, approximated by a parameter δ, which is initialized

based on geometric considerations and may be updated as

the algorithm progresses, in terms of the average fraction

of data points consistent with bad models. If, after evaluat-

ing j data points, the likelihood ratio becomes greater than

some threshold A, the model is rejected. As shown in [4 ],

the probability α of rejecting a good model in the SPRT

is α ≤ 1/A. Thus, the larger the value of A, the smaller the

probability of rejecting a good model. However, the number

of points verified per model increases as log(A). An optimal

value of A can be found to satisfy these two constraints.

W hile the verification procedure described above was

developed with a view to minimizing the number of eval-

uations for bad models, we make the observation that as a

byproduct, we also obtain an idea of the models that are

likely to be uncontaminated. Since contaminated models

will be rejected early on in the SPRT, models that survive

this evaluation procedure are likely to be those that are

good. Adopting this strategy to identify good models has

the benefit that an additional computational speedup com-

parable to [4 ] is achieved by the early termination of con-

taminated hypotheses.

3 .1. A lgorithm

W ith the above discussion in mind, we now describe a

modified RANSAC algorithm that incorporates knowledge

of the uncertainties into the estimation process. The tech-

nique is described in Algorithm 1.

3 .2. A lgorithm d escription

Algorithm 1 describes the Cov-RANSAC technique

which accounts for uncertainty in the estimation process.

The hypothesis generation phase proceeds as in standard

RANSAC. Note that we do not assume that prior infor-

mation about the validity of correspondences is available.

If available, this information can be easily integrated into

the sampling stage to achieve non-uniform sampling [3 ].

Hypothesis verification is then performed using the SPRT.

There are two possible outcomes at this stage: either a

model is rejected early on, or the model survives this eval-

uation stage and is accepted. In the first case, we move on

to the next hypothesis. In the second case, we perform the

covariance estimation procedure to identify the set of poten-

tial inliers I′. W ith a view to increasing the performance of

the algorithm, note that we first perform a check on the co-

variance of the transform, to estimate how well constrained

the solution is. The covariance of the transform depends on

the spatial distribution of the points used in its computation;

thus, if the points fall into an unstable configuration, the un-

certainty of the transform could potentially be very large.

W hile this in itself would not cause the algorithm to fail, it

could cause the size of the set of potential inliers I′ to be

close to the size of the dataset, implying that the speed-up



Algorithm 1 RANSAC with uncertainty estimation: Cov-

RANSAC

1. Hypothesis generation:

Sample a minimal subset of size s at random from the

data

Estimate model parameters from this minimal subset

2 . Verifi cation:

Evaluate the model using SPRT (refer [4 ] for the algo-

rithm)

if model accepted then

3 . Cov ariance test

Compute the covariance ΛT of the transform (Sec. 2)

if trace of covariance matrix ≤ threshold then

for i = 1 to number of data points do

Compute the mapped error region Λx̂′ or Λl̂

if point satisfies the covariance test then

Add point i to set of potential inliers I′

end if

end for

4 . Inner RAN SAC:

Run standard RANSAC on the set I′

Return solution and set of true inliers I

else

Go to hypothesis generation step

end if

else

Go to hypothesis generation step

end if

achieved would be minor. W hile it is possible to envision a

set of nested calls to the algorithm, each time with a smaller

set I′, we use the approach in Algorithm 1 for simplicity.

Once a set of potential inliers is found, an inner

RANSAC is performed (Step 4 ). Since the inlier ratio is

now typically much higher than before, this RANSAC re-

quires far fewer iterations to terminate. The solution found

is then returned, along with the final set of inliers, I. Note

that we could perform an SPRT-based RANSAC in the inner

loop as well, to achieve additional computational savings.

W e also make the point that since we have a lower bound on

the inlier ratio in the set I′ (given by the ratio of the number

of inliers found after the SPRT to the size of I′), we could

potentially perform a least quantile of squares (similar to

[18]), which would allow us to find the solution without re-

lying on a threshold. The tradeoff in this case would be an

increased number of samples in the inner loop. Finally, note

that while, in general, performing rigorous variance propa-

gation usually leads to additional costs, our algorithm typi-

cally invokes this step only once (when the first uncontami-

nated sample is found). Thus, variance propagation consti-

tutes a constant additional cost which, particularly for low

inlier ratio problems, is a small fraction of the total runtime.

4 . Results

4 .1. C ov ariance propagation v s. local optimiz ation

As discussed earlier, the technique we propose in this

work is related to Lo-RANSAC in that both approaches aim

to deal with the fact that an uncontaminated sample may

not be consistent with all inliers. Thus, one may wonder

how our algorithm functions if the covariance test were sim-

ply replaced with a local optimization step. In particular,

one may replace the covariance estimation and propagation

steps in Algorithm 1 (i.e., Step 3 ) by a fixed number of

RANSAC iterations, where non-minimal subsets are sam-

pled from the set of inliers to the first model that passes the

SPRT, and are then evaluated against all points. As in [5],

we use 10 iterations of this inner RANSAC, with the size

of the non-minimal subset being min(size(Ik), 12), where Ik

is the support for the hypothesis that passes the SPRT. The

rest of Algorithm 1 remains the same.

The main advantage to using the covariance estimation

versus local optimization is that sampling in the latter is

purely local in nature and may get caught in local min-

ima. For instance, consider the problem of estimating the

homography between the images shown in Figure 2. Figure

3 (a) shows the ground truth inliers superimposed on one of

the images - these inliers were found by verifying 100, 000

random models and represents a close estimate of the true

inlier set. For the image pair shown in Figure 2, there are

3 16 9 putative correspondences and 13 97 inliers, leading to

an inlier ratio of 0.4 4 . Running Algorithm 1 with local

optimization instead of the covariance check leads to the al-

gorithm often terminating with an inlier set that represents

a local maximum; one such example is shown in Figure

3 (b). On the other hand, the unmodified Algorithm 1 is

consistently able to find all inliers in the data, since it com-

pensates specifically for the noisy estimation process. This

point is further illustrated in Figure 4 , which compares the

number of inliers returned after local optimization and after

the covariance test, over 500 runs. It can be seen that in the

case of local optimization a lower number of inliers is fre-

quently returned. On the other hand, the covariance test re-

turns, on average, a larger number on inliers. The mean and

standard deviation for the number of inliers returned by the

local optimization method are 97 5.6 and 3 02.2, while the

corresponding numbers for the covariance test are 127 4 .1

and 98.9, respectively. Note that these numbers represent

the raw inlier counts returned by the algorithm, without an

optimization step performed post-hoc.

4 .2. H omography estimation

The performance of the proposed approach was evalu-

ated against the standard RANSAC algorithm, the original

Lo-RANSAC approach [5] and the SPRT-based approach

[4 ], which represents the state of the art. Note that since



Figure 2. Image pair used for homography computation.

Figure 3 . (a) Ground truth inliers and (b) inliers corresponding to

a sample solution obtained using local optimization in Algorithm

1. It can be seen that the local optimization step fails to recover all

true inliers.

Figure 4 . Histograms of inlier counts returned over 500 runs using

(a) local optimization and (b) the covariance test, in Algorithm 1.

Note that the average number of inliers returned is substantially

lower in the former case. In addition, roughly 20% of the runs

using local optimization return less than half the total number of

true inliers, as compared to no such runs with the covariance test.

we do not assume the existence of prior information regard-

ing correctness of the correspondences, we do not compare

against techniques that specifically exploit this information

[3 , 17 ]. The image pairs used in the experiments are shown

in Figure 5, representing a range of inlier ratios. For these

experiments, the assumed standard deviation for the mea-

Figure 5. Image pairs used in the homography experiments. Inlier

ratios: A − 0.3 3 , B − 0.23 , C − 0.4 4 , D − 0.19

surement error was 1 pixel. For the SPRT, the parameters

were initialized conservatively with ε = 0.1 and δ = 0.01.

The threshold parameter for the trace of the covariance ma-

trix was set to 500, and this was held constant over the im-

ages tested. The results of the evaluation are tabulated in

Table 1, which shows average numbers over 500 runs for

inliers found (I), samples evaluated (k) and verifications per

model (vpm) for the four RANSAC techniques. It can be

observed that using the covariance information in RANSAC

leads to a 3 -10 fold reduction in the number of samples eval-

uated compared to standard RANSAC. In addition, since the

algorithm leverages the SPRT, the number of verifications

per model is also reduced by a factor of 4 -18 compared to

standard RANSAC. In contrast, the Lo-RANSAC technique

reduces the number of samples by 2-3 fold, with a slight in-

crease in the number of inliers found (this is due to the use

of non-minimal samples). The SPRT-based RANSAC sig-

nificantly reduces the number of verifications per model, but

requires the evaluation of the same order of samples as in

standard RANSAC. In summary, the performance improve-

ment of the Cov-RANSAC technique in terms of samples

evaluated is in line with theoretical expectations. Further-

more, an additional speed-up is obtained due to the opti-

mized model verification incorporated in the algorithm.

4 .3 . F u nd amental matrix estimation

A similar performance comparison was performed for

the task of estimating the epipolar geometry for image pairs.

The images used in the experiments are shown in Figure 6 .

The standard deviation of the measurement error was again

assumed to be 1 pixel, and the SPRT parameters were ini-

tialized as ε = 0.2 and δ = 0.05. The results of the evalua-

tion are shown in Table 2, which tabulates average numbers

over 500 runs, for all techniques. The results again demon-

strate the advantage of using the uncertainty information. It

can be seen that the proposed technique leads to a 4 -10 fold

reduction in the number of samples evaluated, with an addi-

tional computational benefit resulting from the early termi-

nation of bad hypotheses.



RANSAC SPRT Lo- Cov-

RANSAC RANSAC

A I 14 6 14 7 152 14 5

ε ∼ 0.3 3 , N = 4 4 9 k 6 89 97 2 27 8 102

vpm 4 4 9 3 1 4 4 9 6 4

B I 127 8 1280 13 6 7 127 4

ε ∼ 0.4 4 , N = 3 16 9 k 215 27 2 94 6 5

vpm 3 16 9 3 6 7 3 16 9 6 88

C I 296 299 3 10 298

ε ∼ 0.23 , N = 13 27 k 24 11 2893 1004 3 03

vpm 13 27 29 13 27 127

D I 4 28 4 3 7 4 4 1 4 3 2

ε ∼ 0.19, N = 223 9 k 3 127 3 56 1 1809 3 02

vpm 223 9 3 9 223 9 120

Table 1. Comparison of the different RANSAC techniques for ho-

mography estimation on real data. The table shows, for each im-

age pair and estimation algorithm, the average number of inliers

(I), samples evaluated (k) and verifications per model (vpm). Note

that Cov-RANSAC achieves a 3 -10 fold reduction in the number

of samples evaluated.

Figure 6 . Image pairs used in the fundamental matrix experiments.

Inlier ratios: A − 0.6 5, B − 0.53 , C − 0.5, D − 0.59

RANSAC SPRT Lo- Cov-

RANSAC RANSAC

A I 292 294 296 294

ε ∼ 0.6 5, N = 4 4 9 k 159 24 2 92 4 4

vpm 4 4 9 3 9 4 4 9 6 1

B I 127 6 1280 1298 127 8

ε ∼ 0.53 , N = 23 99 k 7 6 2 819 53 9 13 2

vpm 23 99 7 9 23 99 191

C I 6 6 1 6 6 1 6 7 0 6 6 0

ε ∼ 0.5, N = 13 27 k 17 3 7 17 91 7 88 3 12

vpm 13 27 4 7 13 27 14 4

D I 124 8 1251 126 1 1251

ε ∼ 0.59, N = 2109 k 3 84 4 22 212 3 8

vpm 2109 4 1 2109 13 3

Table 2. Comparison of the different RANSAC techniques for fun-

damental matrix estimation on real data. The table shows, for each

image pair and estimation algorithm, the average number of inliers

(I), samples evaluated (k) and verifications per model (vpm). Note

that Cov-RANSAC achieves a 4 -10 fold reduction in the number

of samples evaluated.

5 . Conclusion

In this paper, we demonstrated how uncertainty informa-
tion may be incorporated into a random sampling frame-
work. The resulting algorithm, Cov-RANSAC, achieves
a 3 -10 fold reduction in the number of samples evaluated
for two common geometric estimation problems. The algo-
rithm also uses optimized model verification, which leads

to an additional computational benefit. The framework is
fl exible and can be combined with other techniques, for in-
stance, using prior information to guide the sampling pro-
cess. The results demonstrate the advantages of using un-
certainty information in performing robust estimation.
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