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Abstract— In this paper we present a novel visual odometry
pipeline, that exploits the weak Manhattan world assumption
and known vertical direction. A novel 2pt and 2.5pt method
for computing the essential matrix under the Manhattan world
assumption and known vertical direction is presented that im-
proves the efficiency of relative motion estimation in the visual
odometry pipeline. Similarly an efficient 2pt algorithm for
absolute camera pose estimation from 3D-2D correspondences
is presented that speeds up the visual odometry pipeline as
well. We show that the weak Manhattan world assumption and
known vertical allow for direct relative scale estimation, without
recovering the 3D structure. We evaluate our algorithms on
synthetic data and show their application on a real data set. Our
experiments show that the weak Manhattan world assumption
holds for many real-world scenarios.

I. INTRODUCTION

The Manhattan world assumption is a very strong re-
striction to a general 3D scene. And yet this assumption is
fulfilled for many scenes that contain man-made architectural
structures, at least partially. The assumption especially holds
true for indoor environments, and also for urban canyons
of modern cities. This was successfully demonstrated and
exploited in a variety of recent papers [1], [3], [4]. In this
work we will refer to the weak Manhattan world, describing
a world consisting of vertical planes which are arbitrary
oriented around the vertical direction. They are not required
to be orthogonal to each other. The only restriction is,
that vertical planes are parallel to the gravity vector and
the ground planes are orthogonal to the vertical direction.
Especially visual odometry can benefit at a high degree
from the Manhattan world assumption. In this work we
will present two novel relative pose algorithms and a novel
absolute pose algorithm which exploits the weak Manhattan
world assumption and additionally takes advantage of the
knowledge of the vertical direction of the scene structure in
the images.

The known vertical direction leads to a simpler formu-
lation for relative camera motion, in particular to a 2pt
algorithm and a 2.5pt algorithm, in contrast to the standard
5pt method. For successive camera pose estimation from 3D-
2D matches we propose a new 2pt method, exploiting the
known vertical direction.

The vertical direction can be computed from image fea-
tures, but also from an inertial measurement unit (IMU)
(which e.g. measures the earth’s gravity vector) attached
to a camera. This is the case for almost every state-of-
the-art smart phone (e.g. IPhone, Google Nexus S, Nokia
N900..) which are all equipped with a camera and an IMU.
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Fig. 1. Knowing the vertical direction, e.g. by measuring the gravity vector
with an IMU or from vanishing points, the image can be rotated such that
the y-axis of the camera matches the vertical direction. Under the weak
Manhattan world assumption this aligns the x-z-plane of the camera with
the ground plane and the y-axis with the vertical direction of walls.

In the experiments we evaluate the proposed algorithms
under different image noise and IMU measurement noise and
compare the results to the standard 5-pt relative pose and the
3-pt relative pose with known vertical direction algorithm.
We demonstrate the proposed algorithms on real data and
show that the weak Manhattan world assumption holds and
can be exploited in real-world scenarios.

II. RELATED WORK

Early results on coupling inertial sensors (IMU) and
cameras and using the measured gravity normal for ego-
motion estimation have been discussed in [13] or [10].
Most closely related to our paper are the works of [2],
[6]. The authors also use the gravity normal to simplify
the relative camera motion problem and the absolute camera
pose problem. More recently [7] proposed to combine IMU
and vision data from monocular camera to incrementally
accumulate the motion and reconstruct the camera trajectory.
The incremental approach requires integration of the IMU
data over time and is brittle towards IMU inaccuracy.
The Manhattan world assumption [1] has recently success-
fully been used for multi-view stereo [4], the reconstruction
of building interiors [3] and also for scene reconstruction
from a single image only [8]. Our contribution differs from
them, as we combine IMU measurements with the weak
Manhattan world assumption.

III. RELATIVE AND ABSOLUTE POSE ESTIMATION

Knowing the vertical direction in images will simplify the
estimation of camera pose and camera motion, which are
fundamental methods in any odometry pipeline. It is then



possible to align every camera coordinate system with the
measured vertical direction such that the y-axis of the camera
is parallel to the vertical direction and the x-z-plane of the
camera is orthogonal to the vertical direction (illustrated in
Fig. 1). Under the Manhattan world assumption this means
that the x-z-plane of the camera is now parallel to the world’s
ground plane and the y-axis is parallel to vertical walls. This
alignment can just be done as a coordinate transform for
motion estimation algorithms, but also be implemented as
image warping such that feature extraction method benefit
from it. Relative motion between two such aligned cameras
reduces to a 3-DOF motion, which consists of 1 remaining
rotation and a 2-DOF translation vector. The absolute camera
pose for aligned camera has 4-DOF, again 1 remaining
rotation and a 3-DOF translation vector.

The algorithms for estimating the relative pose are derived
from computing a homography between a plane in two
images and decomposing it. After incorporating the Man-
hattan world constraint, which restricts the possible planes
to vertical and horizontal ones, and after incorporating the
vertical direction, which decreases the DOF of the camera
orientation, the parameterization of a homography is greatly
simplified. This simplification leads to a 2pt and a 2.5pt algo-
rithm for computing homographies and closed form solutions
for the decomposition. The homography is represented by

H = R+
1

d
tTn, (1)

where R = RyRxRz is a rotation matrix representing the
relative camera rotations around the x, y, and z-axis, t =
[tx, ty, tz]

T represents the relative motion, n = [nx, ny, nz]
T

is the plane normal and d is the distance from the first
camera center to the plane. In all our derivations, the camera-
plane distance is set to 1 and absorbed by t. With the
knowledge of the vertical direction the rotation matrix R
can be simplified such that R = Ry by pre-rotating the
feature points with RxRz, which can be measured from the
IMU or vanishing points. Under the weak Manhattan world
assumption additionally the parameterization of the plane
normal n can be simplified, to be only vertical or horizontal
planes.

A. 2pt relative pose for known plane normal

The following algorithm is able to compute the relative
pose given 2pt correspondences and the normal of the
plane on which the points reside. The derivation will be
carried out for a vertical plane but works similar for planes
parameterized around other axis.

The homography for a vertical plane can be written as

H = Ry + [tx, ty, tz]
T [nx, 0, nz] (2)

where the normal vector is parametrized by nx = sin(φn)
and nz = cos(φn). The homography then writes as

H =

cos(φy) + nxtx 0 sin(φy) + nztx
nxty 1 nzty

nxtz − sin(φy) 0 cos(φy) + nztz

 (3)

=

h11 0 h13
h21 1 h23
h31 0 h33

 (4)

To solve for the 6 entries of H we solve x′ × Hx = 0,
where x = [x y 1]T and x′ = [x′ y′ 1]T are the point
correspondences. By using this relation we get rid of the
unknown scaling factor of the homography. Knowing nx and
ny leads to one additional linear constraint in the entries of
the homography, h23 = nx/nzh21.

This leaves 5 entries in H to be estimated. Each point cor-
respondences gives 2 inhomogeneous linearly independent
equations of the form Ah = b,

[
0 0 −x− nx

nz
xy′ y′

−xy′ −y′ xx′ + nx

nz
x′ 0 0

]
h =

[
y

−x′y

]
(5)

where h = [h11 h13 h21 h31 h33]
T .

Using 2 point correspondences this gives 4 equations
which is a deficient-rank system. The solution is h =
Vy+wv (see [5]) where svd(A) = UDVT and v is the last
column vector of V. The vector y is computed by yi = bi/di
where di is the i− th diagonal entry of D and b′ = UTb.
This leaves the unknown scalar w which can be computed
from the additional constraint, that one of the singular values
of the homograph has to be one (i.e., det(HTH − I) = 0,
see [11]). By substituting h = Vy + wv for the entries of
H. The determinant is a 4th order polynomial in w which
results in 4 solutions for H.

If the plane normal is not known one can sample the ratio
nx/nz . Each sample represents a hypothesis in the RANSAC
loop that are then tested against the other points. Having
multiple hypothesis is better than computing the orientation
with one additional point sample since this has only a linear
instead of an exponential impact on the RANSAC iterations.
Knowledge about the approximate orientation of the wall
relative to the camera will reduce the number of hypothesis,
for example the case when the camera is moving along a
corridor it is not always necessary to sample the full 360 deg
for the side walls.

The such parameterized homography can easily be de-
composed in the rotation and translation parameters of the
relative motion. First step is a proper normalization of the
up to scale homography, by dividing it by h22. h22 needs to
be 1 according to Eq. 3. Using the relation n2x + n2z = 1, ty
can be obtained from h21 and h23 by ty = ±(h221 + h223)

1
2

which gives two solutions for ty which differ in the sign. The
normal can then be computed as follows that nx = h21/ty
and nz = h23/ty . Two pairs of the normal have to be
computed for the two ty . Next we can compute sin(φy) from
a quadratic in the entries h11, h13, h21, h23 and the cos(φy) is
obtained from the relation sin(φy)

2 + cos(φy)
2 = 1. Finally



tx and tz are obtained as tx = (h11 − cos(φy))/nx and
tz = (h33 − cos(φy))/nz .

B. 2pt relative pose for ground plane

This derivation is a special case of the previous one and
will work for points on the ground plane. The normal of
the ground plane is n = [0 1 0]T . This leads to an again
simpler formulation for the homography and only 2 point
correspondences are enough to compute the full homography.
The homography for the ground plane can be written as:
H = Ry + [tx, ty, tz]

T [0, 1, 0]
The entries of H are then

H =

 cos(φy) tx sin(φy)
0 ty + 1 0

− sin(φy) tz cos(φy)

 (6)

=

 h11 h12 h13
0 h22 0

−h13 h32 h11

 (7)

Because of 2 linear constraints in the entries of H , H has
only 5 unknowns, for which can linearly be solved using 2
point correspondences. Each point gives 2 constraints of the
form Ah = 0,

[
y′ 0 −xy′ −y yy′

−xy′ −yy′ −y′ x′y 0

]
h = 0 (8)

where h = [h11 h12 h13 h22 h32]
T .

The rotation and translation parameters of the relative
motion can be read off the homography matrix directly,
after proper normalization. Inspection of H shows that the
following relation h211 + h213 = 1 has to be fulfilled. The
proper normalization is by dividing H by (h211+h

2
13)

1
2 . The

rotation matrix R and the translation vector t are then:

t = [h12, h22 − 1, h32]
T , R =

 h11 0 h13
0 1 0

−h13 0 h11

(9)

C. 2.5pt relative pose with unknown plane normal

The 2.5pt algorithm is an extension of the 2pt described
in section III-A. The homography is designed as in Eq 2.
However, when the plane normal n is not known we can’t
make use of the same linear constraint, thus all the 6
parameters of H have to be estimated. To do this, one more
equation is needed which can be taken from a third point.
Thus we stack the constraint equations of 2 points and 1 of
the equations from a third point into an equation system of
the form Ah = b. The two equations from one point are as
follows:

[
0 0 −x −1 xy′ y′

−xy′ −y′ xx′ x′ 0 0

]
h =

[
y

−x′y

]
(10)

where h = [h11 h13 h21 h23 h31 h33]
T .

As in section III-A the solution to this system is of the
form h = Vy + wv. The unknown scalar w can again

be computed from the additional homography constraint
det(HTH − I) = 0 (see [11]). The determinant is a 4th
order polynomial in w which results in 4 solutions for H.

The interesting fact in this case is that we used only 1
equation of the 2 available ones for computing the homog-
raphy. While in a RANSAC loop it is however necessary to
sample 3 points for this method, it is now possible to do a
consistency check on the 3 point correspondences. To be an
outlier free sample the one remaining equation has also to
be fulfilled by the estimated homography. This can easily be
tested and if it is not fulfilled the hypothesis is discarded.
This gives a computational advantage over the standard 3pt
essential matrix method [2], because inconsistent samples
can be detected without testing on all the other point corre-
spondences.

D. 2pt absolute pose

With known vertical the absolute pose problem gets sim-
plified as well and it is possible to compute the remaining
4DOF absolute pose from 2 3D-2D point correspondences.
Here we again assume that the camera is pre-rotated by the
vertical direction so that the x-z plane is parallel to the
ground plane. The camera matrix is defined as P = [R t]
which results in

P =

 cos(φy) 0 sin(φy) tx
0 1 0 ty

−sin(φy) 0 cos(φy) tz

 . (11)

There are 4 unknowns which are the rotation angle around
the y-axis and one 3D translation vector. Using the relation
x×PX = 0 we can solve for these unknowns, where X is
a homogeneous 3D point of the form X = [X Y Z 1] and x
is an image point x = [x y 1]. One 3D-2D correspondence
gives 2 linearly independent equations of the form

[
yZ −yX 0 −1 y
−yX −yZ −y x 0

]
p =

[
Y

−xY

]
(12)

where p = [cos(φy) sin(φy) tx ty tz]
T . 2 point correspon-

dences give an equation system with 4 equations. Variable
elimination can be used to find expressions for tx, ty, tz and
eliminate it from the remaining 4th equation. The remaining
equation is in cos(φy) and sin(φy) only and the additional
constraint cos(φy)2 + sin(φy)

2 = 1 can be used to get an
expression in sin(φy). It is quadratic in sin(φy) and can
be solved in closed form. Then the other parameters can
be found by back-substitution, which leads to 2 solutions
for the camera pose. A similar approach has been described
in [6], however for our derivation we assume pre-aligned
feature correspondences, while in [6] the measured angles of
the IMU are included in the equation system. Furthermore
our angles are parameterized in sin and cos while in [6] a
representation with tan is used.



IV. RELATIVE SCALE ESTIMATION WITHOUT 3D
STRUCTURE RECOVERY

The formulation of the homography induced by the ground
plane Eq. 1 encodes the inverse distance d of the first camera
to the plane. Assuming the ground plane is visible over all
views, the relative scale can be propagated between views
over the plane. The computation of the homography assumes
the distance to the ground plane to be 1, as formulated in
Eq. 1. The actual distance between the first camera and the
ground plane ise encoded in the translation vector of the
camera (i.e., y-component of the camera). This distance can
then be used to rescale the relative translation vector of the
second camera. The implicit encoding of the scale in the
homography allows for direct scale estimation without the
need of a computationally expensive recovery of the 3D
structure.

V. EXPERIMENTS

We evaluate the accuracy of the presented algorithms on
synthetic data under different image noise and IMU noise.
We compare the results to the general 5pt algorithm pre-
sented in [12] and the general 3pt algorithm proposed by [2]
with two know orientation angles. Finally we demonstrate
our algorithms on our own small dataset.

A. Synthetic evaluation

To evaluate the algorithm on synthetic data we chose the
following setup. The average distance of the scene to the first
camera center is set to 1. The scene consists of two planes,
one ground plane and one vertical plane which is parallel to
the image plane of the first camera. Both planes consist of
200 randomly sampled points. The base-line between two
cameras is set to be 0.2, i.e., 20% of the average scene
distance, and the focal length is set to 1000 pixel, with a
field of view of 45 degrees.
Each algorithm is evaluated under varying image noise and
increasing IMU noise. Each of the two setups is evaluated
under a forward and sideways translation of the second
camera. For each configuration we randomly sample 100
cameras.

a) Relative pose:: Fig. 2 and Fig. 3 compare the 2-
point algorithm to the general 5-point [12] and 3-point
algorithms [2]. Notice, in this experiments the camera poses
were computed from points randomly drawn from the ground
plane. Since camera poses estimated from coplanar points do
not provide a unique solution for the 5pt and 3pt algorithm
we evaluate each hypothesis with all points coming from
both planes. The solution providing the smallest reprojected
error is chosen to be the correct one. This evaluation is used
in all our synthetic experiments. Similarly Fig. 4 and Fig. 5
show a comparison of the 2.5pt algorithm with the general
5pt and 3pt algorithm. Here the camera poses are computed
from points randomly sampled from the vertical plane only.
The evaluation shows that knowing the vertical direction
and exploiting the planarity of the scene improves motion
estimation. The 2pt and 2.5pt algorithms outperform the
5pt algorithm, in terms of accuracy. Under perfect IMU
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Fig. 2. Evaluation of the 2 point algorithm under different image noise.
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Fig. 3. Evaluation of the 2pt algorithm under different IMU noise and
constant image noise with 0.5 pixel standard deviation. (First row sideways
motion, second row forward motion.

measurements the algorithms are robust to image noise and
perform significantly better than the 5pt algorithm. With
increasing IMU noise their performance are still comparable
to the 5pt algorithm.

b) Absolute pose:: We compare the presented 2pt ab-
solute pose algorithm to the closed form solution proposed
in [9]. We evaluate the algorithm on different noise in the
image plane and noise in the roll and pitch measurements
of the IMU. The results are shown in Fig. 6 and Fig. 7.
With increasing image noise the absolute 2pt algorithm
outperforms the 4pt algorithm. While with increasing IMU
noise their approach has a higher accuracy.

B. Algorithm evaluation on real data

c) Plane detection:: We evaluate our relative motion
algorithms on an image pair that contains multiple planes
and further demonstrate that the weak Manhattan world
assumption holds on real images, where vertical structures
might not be perfectly vertical due to construction or due
to IMU inaccuracies. Relative motion is computed with the
2pt algorithm as well as with the 2.5pt algorithm. The
2pt algorithm computes the relative motion from matches
found on the ground, while the 2.5pt algorithm computes
relative motion from matches found on the wall. Fig. 8
shows the inlier sets of the two methods in one image. The
motion estimate from the homographies can be refined by
constructing the essential matrix of it and finding inliers
to the essential matrix (these need not be on planes) and
computing a least squares estimate of the essential matrix.
Furthermore, the detected inlier sets can be used for plane
detection.

d) Visual Odometry:: We evaluate the 2pt relative pose
on our own dataset, recorded with an IMU camera rig. Sam-
ple images are shown in Fig. 8a). The experiment consists of
114 images showing a forward motion towards the front wall
followed by a backwards motion to the starting point. First,
we extract SIFT features and match them to neighboring
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Fig. 4. Evaluation of the 2.5pt algorithm under forward and sideways
motion under varying image noise.
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Fig. 5. Evaluation of the 2.5pt algorithm under IMU noise and constant im-
age noise with 0.5 pixel standard deviation. (First row sideways translation,
second row forward translation.

views. Then, we compute the relative pose between two
consecutive views using the 2pt algorithm in a RANSAC
scheme. Finally, the solution with most inliers is used to
form the camera trajectory by concatenating neighboring
poses. Fig. 9 compares the raw odometry obtained from the
2pt algorithm without scaling and without refinement to the
odometry obtained after non-linear refinement and proper
scaling with the method described in section IV.

e) 2pt absolute pose:: We integrate the 2pt absolute
pose algorithm into a standard SfM pipeline and show results
of a reconstructed scene in Fig. 8b). The 2pt absolute pose
algorithm is used to find a first inlier set from the 3d - 2d
correspondences. The full camera pose and 3d points are then
refined using bundle adjustment. The dataset was recorded
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Fig. 6. Evaluation of the 2pt absolute pose algorithm under forward and
sideways motion with varying image noise.
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Fig. 7. Evaluation of the 2pt absolute pose algorithm under different IMU
noise and image noise of 0.5 pixel standard deviation. (First row, sideways
translation, second row forward translation.

a)

b)

Fig. 8. a) Detected planes using the 2pt and 2.5 algorithm. b) Sample
input image and two synthetic views of the reconstructed scene using the
absolute 2pt algorithm.

using a Nexus One smartphone, equipped with IMU and
camera.

VI. CONCLUSION

In this paper we presented an odometry pipeline that
exploits the weak Manhattan world assumption and takes
advantage of knowing the vertical direction in images. Our
results show that the weak Manhattan assumption holds for
real-world scenarios and can be used to derive efficient
algorithms for relative motion (2pt, 2.5pt). Furthermore our
results confirm that the vertical direction measured from an
off-the-shelf IMUs are accurate enough to be used for relative
motion estimation and absolute pose estimation (2pt).
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