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Abstract

We present an approach for automatic reconstruction of a
dynamic event using multiple video cameras recording from
different viewpoints. Those cameras do not need to be cal-
ibrated or even synchronized. Our approach recovers all
the necessary information by analyzing the motion of the
silhouettes in the multiple video streams. The first step
consists of computing the calibration and synchronization
for pairs of cameras. We compute the temporal offset and
epipolar geometry using an efficient RANSAC-based algo-
rithm to search for the epipoles as well as for robustness.
In the next stage the calibration and synchronization for
the complete camera network is recovered and then refined
through maximum likelihood estimation. Finally, a visual-
hull algorithm is used to the recover the dynamic shape of
the observed object. For unsynchronized video streams sil-
houettes are interpolated to deal with subframe temporal
offsets. We demonstrate the validity of our approach by
obtaining the calibration, synchronization and 3D recon-
struction of a moving person from a set of 4 minute videos
recorded from 4 widely separated video cameras.

1. Introduction
In surveillance camera networks, live video of a dynamic
scene is often captured from multiple views. We aim to au-
tomatically recover the 3D reconstruction of the dynamic
event, as well as the calibration and synchronization, using
only the input videos. Different pairs of archived video se-
quences may have a time-shift between them since record-
ing would be triggered by moving objects, with different
cameras being activated at different instants in time. Our
method simultaneously recovers the synchronization and
epipolar geometry of such a camera pair. This method is
particularly useful for shape-from-silhouette systems [3, 4,
14] as visual-hulls can now be reconstructed from uncali-
brated and unsynchronized video of moving objects.

Different existing structure-from-motion approaches us-
ing silhouettes [21, 20, 22] either require good initialization
or only work for certain camera configurations and most of

Figure 1: Synchronization, calibration and 3D visual-hull
reconstruction from 4 video streams.

them require static scenes. Traditionally, calibration objects
like checkerboard patterns or LED’s have been used for cal-
ibrating multi-camera systems [23] but this requires physi-
cal access to the observed space. This is often impractical
and costly for surveillance applications and could be impos-
sible for remote camera networks or networks deployed in
hazardous environments. Our method can calibrate or recal-
ibrate such cameras remotely and also handle wide-baseline
camera pairs, arbitrary camera configurations and a lack of
photometric calibration.

At the core of our approach is a robust RANSAC [5]
based algorithm that computes the epipolar geometry from
two video sequences of dynamic objects. This algorithm
is based on the constraints arising from the correspondence
of frontier points and epipolar tangents [21, 13, 2] of sil-
houettes in two views. These are points on an objects’ sur-
face which project to points on the silhouette in two views.
Epipolar lines passing through the images of a frontier point
must correspond. Such epipolar lines are also tangent to
the silhouettes at the imaged frontier points. Previous work
used those constraints to refine an existing epipolar geom-
etry [13, 2]. Here we take advantage of the fact that video
sequences of dynamic objects will contain many different
silhouettes, yielding many constraints that must be satis-
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Figure 2: (a)Frontier Points and Epipolar Tangents.(b) The
Tangent Envelope.

fied. We use RANSAC [5] not only to remove outliers in
silhouette data but also to sample the space of unknown pa-
rameters. We first demonstrate how the method works with
synchronized video. We then describe how pair-wise funda-
mental matrices and frontier point can be used to compute a
projective reconstruction of the complete camera network,
which is then refined to a metric reconstruction. An exten-
sion of the RANSAC based algorithm allows us to recover
the temporal offset between pairs of unsynchronized video
sequences acquired at the same frame rate. A method to
synchronize the whole camera network is then presented.
Finally, the deforming shape is reconstructed using a shape-
from-silhouette approach taking subframe temporal offsets
into account through interpolation.

In Sec. 2 we present the background theory. Sec. 3 de-
scribes the algorithm that computes the epipolar geometry
from dynamic silhouettes. Full camera network calibration
is discussed in Sec. 4 while Sec. 5 describes how we deal
with unsynchronized video. Section 6 described our recon-
struction approach. Experimental results are presented in
different sections of the paper and we conclude with scope
for future work in Sec. 7.

2. Background and Previous Work
Our algorithm exploits the constraints arising from the cor-
respondence of frontier points and epipolar tangents [21,
13]. Frontier points on an objects’ surface are 3D points
which project to points on the silhouette in the two views.
In Fig. 2(a), X and Y are frontier points on the apparent
contours C1 and C2, which project to points on the silhou-
ettes S1 and S2 respectively. The projection of Π, the epipo-
lar plane tangent to X gives rise to corresponding epipolar
lines l1 and l2 which are tangent to S1 and S2 at the images
of X in the two images respectively. No other point on S1

and S2 other than the images of frontier points, X and Y
correspond. Morever, the image of the frontier points cor-
responding to the outer-most epipolar tangents [21] must
lie on the convex hull of the silhouette. The silhouettes are
stored in a compact data structure called the tangent enve-
lope, [16] (see Fig. 2(b)). We only need of the order of 500

Figure 3: (a) The 4D hypothesis of the epipoles (not in pic-
ture). (b) All frontier points for a specific hypothesis and a
pair of transferred epipolar lines l1, l2.

bytes per frame.
Video of dynamic objects contain many different silhou-
ettes, yielding many constraints that are satisfied by the true
epipolar geometry. Unlike other algorithms, e.g. [6], who
search for all possible frontier points and epipolar tangents
on a single silhouette, we only search for the outermost
frontier points and epipolar tangents, but for many silhou-
ettes. Only using the outermost epipolar tangents allows
us to be far more efficient because the data structures are
simpler and there are no self-occlusions. Sufficient motion
of the object within the 3D observed space gives rise to a
good spatial distribution of frontier points and increases the
accuracy of the fundamental matrix.

3. Computing the Epipolar Geometry

Computing the epipolar geometry from silhouettes is not
as simple as computing it from points. The reason is that
having two corresponding silhouettes doesn’t immediately
yield usable equations. We first need to know where the
frontier points are and this is dependent on the epipolar ge-
ometry. This is thus a typical “chicken and egg” problem.



However, this is not as bad as it seems. We do not need the
full epipolar geometry. The location of the epipoles (4 out
of 7 parameters) is sufficient to determine the epipolar tan-
gents and the frontier points. Our approach will thus consist
of randomly generating epipole hypotheses and then verify
that the bundle of epipolar tangents to all the silhouettes are
consistent. One of the key elements to the success of our al-
gorithm is to have a very efficient data representation and to
generate a proper distribution of epipoles in our sampling
process. This approach is explained more in detail in the
remainder of this section.

The RANSAC-based algorithm takes two sequences as
input, where the j th frame in sequence i is denoted by S j

i

and the corresponding tangent envelope by T (S j
i ). Fij is

the fundamental matrix between view i and view j, (trans-
fers points in view i to epipolar lines in view j) and e ij , the
epipole in view j of camera center i. While a fundamen-
tal matrix has 7 dof ’s, we only randomly sample in a 4D
space because if the epipoles are known, the frontier points
can be determined, and the remaining degrees of freedom of
the epipolar geometry can be derived from them. The pen-
cil of epipolar lines in each view centered on the epipoles,
is considered as a 1D projective space [7] [ Ch.8, p.227 ].
The epipolar line homography between two such 1D pro-
jective spaces can be represented by a 2D homography to
be applied to the 2D representation of the lines. Know-
ing the epipoles eij , eji and the epipolar line homography
fixes Fij . Three pairs of corresponding epipolar lines are
sufficient to determine the epipolar line homography H −�

ij

so that it uniquely determines the transfer of epipolar lines
(note that H−�

ij is only determined up to 3 remaining de-
grees of freedom, but those do not affect the transfer of
epipolar lines). The fundamental matrix is then uniquely
given by Fij = [eij ]×Hij .
At every iteration, we randomly choose the rth frames from
each of the two sequences. As shown in Fig. 3(a), we then,
randomly sample independent directions l 1

1 from T (Sr
1) and

l12 from T (Sr
2) for the first pair of tangents in the two views.

We choose a second pair of directions l21 from T (Sr
1) and l22

from T (Sr
2) such that l2i = l1i − x for i = 1, 2 where x is

drawn from the normal distribution, N(180, σ)1. The inter-
sections of the two pair of tangents produces the epipole hy-
pothesis (e12 , e21). We next randomly pick another pair of
frames q, and compute either the first pair of tangents or the
second pair. Let us denote this third pair of lines by l 3

1 tan-
gent to CH(Sq

1) and l32 tangent to CH(Sq
2) (see Fig 3(a)).

Hij is computed from (lki ↔ lkj ; k = 1. . .3)2. The entities
(eij ,eji ,Hij) form the model hypothesis for every iteration

1We use σ = 60 in our experiments. In case silhouettes are clipped in
this frame, the second pair of directions is chosen from another frame.

2For simplicity we assume that the first epipolar tangent pair corre-
sponds as well as the second pair of tangents. This limitations could be
easily removed by verifying both hypotheses for every random sample.

of our algorithm.
Once a model for the epipolar geometry is available, we

verify its accuracy. We do this by computing tangents from
the hypothesized epipoles to the whole sequence of silhou-
ettes in each of the two views. For unclipped silhouettes
we obtain two tangents per frame whereas for clipped sil-
houettes, there may be one or even zero tangents. Every
tangent in the pencil of the first view is transferred through
H−�

ij to the second view (see Fig. 3(b)) and the reprojec-
tion error of the transferred line from the point of tangency
in that particular frame is computed. We count the outliers
that exceed a reprojection error threshold (we choose this
to be 5 pixels) and throw away our hypothesis if the outlier
count exceeds a certain fraction of the total expected inlier
count. This allows us to abort early whenever the model
hypothesis is completely inaccurate. Thus tangents to all
the silhouettes Sj

i , j ε 1 . . . M in view i, i = 1, 2 would
be computed only for a promising hypothesis. For all such
promising hypotheses an inlier count is maintained using a
lower threshold (we choose this to be 1.25 pixels).

After a solution with a sufficiently high inlier fraction
has been found, or a preset maximum number of itera-
tions has been exhausted, we select the solution with the
most inliers and improve our estimate of F for this hypoth-
esis through an iterative process of non-linear Levenberg-
Marcquardt minimization while continuing to search for ad-
ditional inliers. Thus, at every iteration of the minimization,
we recompute the pencil of tangents for the whole silhou-
ettes sequence Sj

i , j ε 1 . . . M in view i, i = 1, 2 until
the inlier count converges. The cost function minimized is
the distance between the tangency point and the transferred
epipolar line (see Fig. 3(b)) in both images. At this stage we
also recover the frontier point correspondences (the points
of tangency) for the full sequence of silhouettes in the two
views. An outline of the algorithm is given in Algorithm 1.

Results. This approach works well in practice and has
been demonstrated on multiple datasets recorded by ourself
and by others [16]. Here we show some results obtained
from the 4-view dataset that is used throughout this paper.
In Figure 4 the computed epipolar geometry F14, F24 and
F34 are shown. The black epipolar lines correspond to the
initial epipolar geometry computed as discussed in this sec-
tion, the colored epipolar lines correspond to the epipolar
geometry once it is made consistent over a triplet of cam-
eras3. One can notice the significant improvement for pair
2-4 once three-view consistency is enforced. The result for
pair 3-4 is less accurate. This is due to clipping of the sil-
houette at the feet in most of the frames, therefore only
yielding a small number of extremal frontier points at the

3Note that the final epipolar geometry is refined even further through
bundle adjustment, see next section



Algorithm 1 Outline of our RANSAC algorithm

do // start RANSAC loop

// generate hypothesis
pick 2 corresponding frames
pick 2 random tangents in each
compute hypothesized epipoles
pick 1 more tangent pair in new frames
compute homography

// verify hypothesis
for all tangents (as long as promising)

compute symmetric transfer error
update inlier count

end

update best hypothesis

until hypothesis good enough

refine epipolar geometry

bottom of the image. The result is still sufficient to success-
fully initialize the bundle adjustment of the next section.

4. Camera Network Calibration from
pairwise epipolar geometry

Typical approaches for computing projective structure and
motion recovery require correspondences over at least 3
views. However, it is also possible to compute them based
on only 2-view correspondences. Levi and Werman [9] have
recently shown how this could be achieved given a sub-
set of all possible fundamental matrices between N views
with special emphasis on the solvability of various camera
networks. Here we briefly describe our iterative approach
which provides a projective reconstruction of the camera
network.

The basic building block that we first resolve is a set of
3 cameras with non colinear centers for which the 3 fun-
damental matrices F12, F13 and F23 have been computed
(Fig. 5(a),(b)). Given those, we use linear methods to find
a consistent set of projective cameras P1, P2 and P3 (see
Eq.1) [7], choosing P1 and P2 as follows :

P1 = [I|0] P2 = [[e21]×F12|e21]
P3 = [[e31]×F13|0] + e31v

T (1)

P3 is determined upto an unknown 4-vector v (Eq. 1). Ex-

Figure 4: Three computed epipolar geometries. Points in
the left column are transferred to epipolar lines in the right
column.

pressing F23 as a function of P2 and P3 we obtain :

F 23 = [e32]×P3P
+
2 (2)

which is linear in v, such that all possible solutions for F23

span a 4D subspace of P 8 [9]. We solve for v which yields
F 23, the closest appromixation to F23 in the subspace. P3

is obtained from the value of v from Eq. 1. The resulting
P1, P2, P3 are fully consistent with F12, F13 and F 23.

Using the camera triplet as a building block, we could
handle our N -view camera network by the method of induc-
tion. The projective reconstruction of a triplet (as described
above) initializes the projective reconstruction of the whole
network. At every step a new view that has edges to any two
views within the set of cameras reconstructed so far forms
a new triplet which is resolved in identical fashion. This
process is repeated until all the cameras have been handled.

This projective calibration is first refined using a projec-
tive bundle adjustment which minimizes the reprojection er-
ror of the pairwise frontier point matches. Next, we use the
linear self-calibration algorithm [12] to estimate the rectify-
ing transform for each of the projective cameras. We rectify
these projective cameras into metric cameras, and use them
to initialize a Euclidean bundle adjustment [19]. The Eu-
clidean bundle adjustment step produces the final calibra-
tion of the full camera network.

Results. Here we present results from full calibration
of the 4-view video dataset which was 4 minutes long



Figure 5: (a) Three non-degenerate views for which we
estimate all F matrices. (b) The three-view case. F 23

is the closest approximation of F23 we compute. (c)&(d)
The induction steps used to resolve larger graphs using our
method.

Figure 6: Recovered camera configuration and visual-hull
reconstruction of person.

and captured at 30 fps [14] (see Fig. 6). We com-
puted the projective cameras from the fundamental matri-
ces F12, F13, F23, F14, F24. On average, we obtained one
correct solution, one which converged to a global mini-
mum after non-linear refinement for every 5000 hypothe-
sis4. This took approximately 15 seconds of computation
time on a 3GHz PC with 1 GB RAM. Assuming a Poisson
distribution, 15,000 hypothesis would yield approximately
95% probability of finding the correct solution and 50,000
hypothesis would yield 99.99% probability.

F23 and F24 had to be adjusted by the method described
in Section 4, which actually improved our initial estimates.
The projective camera estimates were then refined through a
projective bundle adjustment (reducing the reprojection er-
ror from 4.6 pixels to 0.44 pixels). The final reprojection er-
ror after self-calibration and metric bundle adjustment was
0.73 pixels.

In typical video, outermost frontier points and epipolar
tangents often remain stationary over a long time. Such

4For all different camera pairs we get respectively one in 5555, 4412,
4168, 3409, 9375 and 5357. The frequency was computed over a total of
150,000 hypothesis for each viewpair.

static frames are redundant and representative keyframes
must be chosen to make the algorithm faster. We do this
by considering hypothetical epipoles (at the 4 image cor-
ners), pre-computing tangents to all the silhouettes in the
whole video and binning them and picking representative
keyframes such that at least one from each bin is selected.
For the 4-view dataset, we ended up with 600-700 out of
7500 frames.

5. Camera Network Synchronization

To deal with unsynchronized video, we modify our algo-
rithm for computing the epipolar geometry of camera pairs
as follows (see [17] for details). At the hypothesis step,
in addition to making a random hypothesis for the two
epipoles in the 4D space of the pair of epipoles, we also
randomly pick a temporal offset. The verification step of
the RANSAC based algorithm now considers the hypothe-
sized temporal offset for matching frames in the two views
throughout the video sequence. To make the algorithm ef-
ficient we select keyframes differently. To allow a tempo-
ral offset search within a large range we use a multi-scale
approach. Frames containing slow moving and static sil-
houettes allow to efficiently obtain an approximate synchro-
nization. Therefore, the tangents accumulated in the an-
gular bins during keyframe selection are sorted by angular
speed. While selecting the initial keyframes we select the
ones with the slowest silhouettes. Once a rough temporal
alignment is obtained, a more exhaustive set of keyframes
is used to recover the exact temporal offset within a small
search range and its variance along with the true epipolar
geometry.

A N-view camera network with pairwise temporal off-
sets, can be represented as a directed graph where each ver-
tex represents a camera and its own clock and an edge rep-
resents an estimate of the temporal offset between the two
vertices it connects. Our method in general will not produce
a fully consistent graph, where the sum of temporal offsets
over all cycles is zero. Each edge in the graph contributes
a single constraint: tij = xi − xj where tij is the temporal
offset and xi and xj are the unknown camera clocks. To
recover a Maximum Likelihood Estimate of all the camera
clock offsets, we set up a system of equations from con-
straints provided by all the edges and use Weighted Linear
Least Squares (each edge estimate is inversely weighted by
its variance) to obtain the optimal camera clock offsets. An
outlier edge would have only significantly non-zero cycles
and could be easily detected and removed before solving
the above mentioned system of equations. This method will
produce very robust estimates for complete graphs but will
work as long as a fully connected graph with at least N -1
edges is available.



(a)

eij range tij σij tij t̂ij
e12 [-13,-3] -8.7 0.80 -8.50 -8.32
e13 [-11,-1] -8.1 1.96 -8.98 -8.60
e14 [-12,-2] -7.7 1.57 -7.89 -7.85
e23 [-5,5] -0.93 1.65 -0.48 -0.28
e24 [-5,5] 0.54 0.72 0.61 0.47
e34 [-6,4] 1.20 1.27 1.09 0.75

Figure 7: (a) Results of camera network synchronization.
(b) Typical sync. offset distribution. (c) Sample offset dis-
tribution for rough alignment phase.

Results. We tried our approach on the same 4-view video
dataset that was manually synchronized earlier (see Fig. 6).
All six view-pairs were synchronized within a search range
of 500 frames (a time-shift of 16.6 secs). The sub-frame
synchronization offsets from the 1st to the 2nd, 3rd and 4th
sequences were found to be 8.50, 8.98, 7.89 frames respec-
tively, the corresponding ground truth offsets being 8.32,
8.60, 7.85 frames. The offsets we compute are approxima-
tively within 1

100s of the true temporal offsets. Fig. 7(a) tab-
ulates for each view-pair, the +/-5 interval computed from
initial rough alignment, the estimates (tij ,σij ) computed by
searching within that interval, the Maximum Likelihood Es-
timate of the consistent offset tij , and the ground truth t̂ij .
Rough alignment required 1.3-2.9 million hypotheses, and
60-120 seconds on a 3 GHz PC with 1 GB RAM.

For the pair of views, 2 & 3, Fig. 7(b) shows the offset
distribution within +/-125 frames of the true offset for hy-
potheses ranging between 1 to 5 million in count. The peak
in the range [-5,5] represents the true offset. Smaller peaks
indicate the presence of some periodic motion in parts of the
sequence. Fig. 7(c) shows a typical distribution of offsets
obtained during a particular run and shows the converging

Figure 8: Visual-hull reprojection error (white) induced by
subframe temporal offset.

search intervals.

6. Visual Hull Reconstruction from
Unsynchronized Video Streams

Once the calibration and synchronization are available, it
becomes possible to reconstruct the shape of the observed
person using visual hull techniques [3, 10, 8]. However, one
remaining difficulty is that the temporal offset between the
multiple video streams is in general not an integer number
of frames. Given a specific frame from one video stream,
the closest frame in other 30Hz video streams could be
as far of as 1

60s. While this might seems small at first,
this can be significant for a moving person. This problem
is illustrated in Figure 8 where the visual hull was recon-
structed from the closest original frames in the sequence.
The gray area represents what is inside the visual hull re-
construction and the white area corresponds to the repro-
jection error (points inside the silhouette carved away from
another view). The motion of the arm and the leg that takes
place during the small temporal offset between the different
frames is sufficient to cause a significant error.

To deal with this problem, we propose to use temporal
silhouette interpolation. Given two frames i and i + 1, we
compute the distance di(x) and di+1(x) to the closest point
on each silhouette for every pixel x [15, 11]. For the pur-
pose of interpolation we can limit ourselves to the convex
hull of both silhouettes. Then we compute an interpolated
silhouette for subframe temporal offset ∆ ∈ [0, 1] as the
0-level set of S(x) = (1 − ∆)di(x) − ∆di+1(x).

Results. In Figure 9 an example is shown. Given three
consecutive frames, we generate the frame in the middle of
frames 1 and 3 and compare it to frame 2. The result it
satisfying.

We use this approach in combination with the subframe
temporal offsets computed in the previous section to im-
prove our visual hull reconstruction results. We choose
some frames recorded from view 3 as a reference and gen-
erate interpolated silhouettes from the other viewpoints that
correspond to the appropriate temporal offset. From the ta-
ble in Fig. 7 we obtain ∆0 = 0.98 (after taking into account



Figure 9: Silhouettes for frame 1 and 3 overlapping (left),
interpolated silhouette for frame 2 (middle) and difference
between interpolated and original frame 2 (right).

Figure 10: Reprojection error reduced from 2.9% to 1.3%
of the pixels contained in the silhouette (834 to 367 pixel).
The overall improvement for the 4 corresponding silhou-
ettes was from 1.2% to 0.6% reprojection error.

an integer offset of 8 frames), ∆1 = 0.48, ∆3 = 0.09 (in-
teger offset of 1 frame). In Figure 10 and 11 the visual hull
reprojection error is shown with an without subframe sil-
houette interpolation. We show an overal improvement by
a factor of two or better of the reprojection error.

7. Conclusions and Future Work
In this paper we have presented a complete approach to de-
termine the 3D visual-hull of a dynamic object from sil-
houettes extracted from multiple videos recorded using an
uncalibrated and unsynchronized network of cameras. The
key element of our approach is a robust algorithm that effi-
ciently computes the temporal offset between two video se-
quences and the corresponding epipolar geometry. The pro-
posed method is robust and accurate and allows calibration
of camera networks without the need for acquiring specific
calibration data. This can be very useful for applications
where sending in technical personnel with calibration tar-
gets for calibration or re-calibration is either infeasible or
impractical. We have shown that for visual-hull reconstruc-
tions from unsycnhronized video streams subframe silhou-

Figure 11: Reprojection error reduced from 10.5% to 3.4%
of the pixels contained in the silhouette (2785 to 932 pixel).
The overall improvement for the 4 corresponding silhou-
ettes was from 5.2% to 2.2% reprojection error.

ette interpolation allows to significantly improve the quality
of the results.

Further work is needed to develop a more general sil-
houette interpolation scheme that can deal with faster vi-
sual motion and/or lower frame rates and with some spe-
cific topological degeneracies of our approach. We intend
to explore the use of approaches such as [1]. Eventually, we
would also like to be able to deal with asynchronous image
streams which do not have a fixed frame rate.

To record events in large environments we are explor-
ing the possibility to extend this work to networks of active
pan-tilt-zoom cameras [18]. In this case one has to solve
significant additional challenges, e.g. background segmen-
tation becomes harder, the observed events need to be ac-
tively tracked and calibration needs to be maintained. How-
ever, such a system would offer a far greater flexibility than
exisisting systems with fixed cameras.
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