
Sensor Fusion for Depth Estimation, including TOF
and Thermal Sensors

Jeroen van Baar, Paul Beardsley

Disney Research Zurich

Zurich, Switzerland

jeroen@disneyresearch.com

Marc Pollefeys, Markus Gross

Institute for Visual Computing

ETH Zurich

Zurich, Switzerland

Abstract—This paper describes the computation of depth maps
for a high-quality reference camera augmented by a set of satellite
sensors. The satellite sensors include support cameras, a TOF
(time-of-flight) sensor, and a thermal camera, all rigidly attached
to the reference camera. There is extensive previous work on
computing depth maps with stereo alone, and high-quality results
have been achieved. However it has proved difficult to achieve
good results for cases such as textureless areas, or similar fore-
and background colors. We show that with our proposed sensor
fusion we can achieve high quality results.

The paper makes two contributions. The first is a method
for combining TOF data with multi-camera data that includes
reasoning about occlusions, to produce an improved depth
estimate near depth discontinuities. The second contribution is
to show the benefit of thermal sensing as a segmentation prior.
Thermal cameras were formerly high-cost devices but are now
available at the same cost as machine vision cameras. This work
demonstrates their advantages, particularly for scenes including
humans.
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I. INTRODUCTION

This paper describes a high quality reference camera aug-

mented with satellite sensors of different modalities. Figure 1

shows our experimental setup.1

The goal is to obtain high-quality depth maps. Existing

work has shown the advantage of active sensors for measuring

3D information, including TOF sensors and structured illumi-

nation. The Kinect has been a landmark device in bringing

3D sensing to the mass market, using a camera plus an

IR illumination source that projects a speckle pattern onto

the scene. But there are limitations with both approaches -

TOF response falls off on an oblique surfaces, as found for

example near the occluding contour of a curved object. While

structured illumination delivers sparse information, not pixel-

dense measurement. Both approaches suffer when the surface

is poorly reflective.

The first contribution of this paper is to demonstrate how

TOF data is combined with data from multiple cameras to

overcome the problem of fall-off and produce a high-quality

depth measurement at an occluding contour. The depth map is

actually computed for the (high-resolution) reference camera,

1For a practical system, we would envisage a more compact arrangement
of sensors around the reference camera, but the focus of the current work is
on the algorithms not the hardware.

Fig. 1. Left The high quality reference camera is at center (obscured by a
beam splitter). The four satellite cameras are arranged approximately along
a horizontal line with the reference camera. The depth camera is at the top.
The beam splitter passes visible light to the reference camera and reflects
thermal radiation to the thermal camera at the bottom. Right Resistors are
accurately mounted below the surface and in registration with the corners of
the checkerboard pattern for easy calibration of the thermal and reference
camera.

supported by the lower resolution TOF sensor and support

cameras. The method utilizes support cameras on both sides

of the TOF sensor in order to do explicit reasoning about

occlusions.

Our second contribution is to demonstrate the advantage

of sensor fusion including thermal sensing. Thermal cameras

detect emitted heat and aid segmentation by detecting thermal

gradients between humans and the background. Human skin,

even when covered by some layers of clothing, typically gives

a reasonably strong thermal gradient with the background.

A beam splitter is used to capture registered images for the

reference camera and the thermal camera. Beam splitting with

two visible light cameras has a disadvantage that only half the

light enters each camera. But beam splitting for a visible light

camera and a thermal camera using a K-glass beam splitter

results in most of the incident visible light entering the visible

light camera, and most of the thermal radiation entering the

thermal camera.

Replicating the high quality reference camera to create a

(homogenous) multi-camera system may prove very costly.

Instead we aim to exploit current hardware advances. The prize

of lesser quality cameras continues to fall. In addition those

types of cameras continue to miniaturize, for example, small

USB board cameras have a weight of 30g and dimensions of a
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couple of cm. New low-end thermal cameras are a similar size

and price to machine vision cameras [1]. Building a multiple

sensor modalities single system is thus becoming practical.

Our experimental setup in Figure 1 is merely a prototype. It

is feasible to eventually envisage a compact cinematographic

camera augmented with satellite sensors with little impact on

its normal handling and workflow.

A. Paper Organization

The remainder of the paper is organized as follows: in Sec-

tion II we discuss related work; a detailed technical description

is given in Section III; results are presented in Section IV

followed by a discussion and conclusion (Section V).

II. RELATED WORK

Sensor fusion has received a lot of attention in recent years,

especially in combining visual data with Time-of-Flight (ToF)

depth data [2], [3], [4]. We similarly exploit ToF data in

combination with visual data.

Guan et al. [4] use a combination of cameras and ToF

depth sensors to reconstruct 3D objects. Given their setup

they can only reconstruct single objects within some bounded

volume. We are interested in depth for general (indoor) scenes,

typically involving multiple dynamic subjects. Scanning ap-

proaches using IR-based depth sensors can reconstruct ob-

jects [5] and environments [6], [7]. These approaches are based

on a dense sampling with the depth sensor, rather than using

data at a single point in time, and therefore do not permit

dynamic objects or scenes. Tola et. al [8] capture 3D video

using a ToF sensor and registered cameras, by generating a

3D mesh based on the depth values from the depth sensor.

The images from the camera are then used as textures for

the 3D mesh. This approach does not consider the resolution

of the registered cameras. ToF depth sensors have been used

together with stereo for enhancing depth maps [9] and also

computing alpha mattes [10]. Good results are demonstrated,

however the scenes either have only very small volume, or

else can the foreground subject can be segmented reliably

from the background. We aim our fusion to general scenes

with multiple dynamic subjects instead. In addition we show

that we can reconstruct depth maps at HD-resolution using a

fusion approach.

For an overview of depth (disparity) methods and multi-

view stereo see [11], [12]. High quality results can be ob-

tained using global methods based on formulating the depth

reconstruction as a Markov Random Field. See [13], [14]

for an evaluation of the various methods. The drawback of

global methods is their performance, since the problem size

depends on the number pixels in the images. Determining

the correct parameters to obtain the best results could thus

be time consuming. To avoid the running times of global

methods, Larsen et al. [15] propose an iterative approach as

an approximation to Belief Propagation. They back project the

current depth hypothesis onto the cameras in their multi-view

setup. We adopt a similar approach in our local method, and

show that we can obtain high quality depth maps from fusion

of the various modalities. Our method can obtain results which

are comparable to global methods in under a minute.

The fact that depth and color discontinuities are often

correlated has often been exploited. In [16] the authors propose

to oversegment images of video sequences and compute depth

maps with consistent object boundaries. Others exploit color

discontinuities for weighting in global optimization methods

to avoid smoothing over depth boundaries, for example [17].

All these color based approaches fail in areas with lack of

(color) contrast, such as textureless areas, but also similarly

colored fore- and background objects. In addition to ToF data

we therefore also propose to exploit thermal IR.

Fusion with thermal IR has been used in previous work.

In [18] the authors propose to exploit thermal IR for tracking

humans in video using so-called spatiograms. Their goal is the

reliable tracking of occurrences rather than accurate segment

boundaries. We exploit thermal IR in the context of computing

depth maps for general scenes.

III. RECONSTRUCTING DEPTH MAPS

A. Calibration

The intrinsics and extrinsics of the reference and satellite

cameras are calibrated using a standard approach [19]. The

reference camera and the depth camera are calibrated together

using the method described in [20].

A beam splitter is used to capture registered images from

the reference camera and the thermal camera. Calibration is

done using a custom calibration target with a conventional

checkerboard pattern that has heated resistors on the vertices.

This enables detection of corresponding features in the ref-

erence image and the thermal image. The beam splitter is

first physically adjusted to bring the corresponding features

into coarse registration, then a homography is computed to

produce an accurate registration between the images, following

the method of [21].

In addition to geometric calibration, we also perform a

color calibration to transform the color spaces of the satellite

cameras to that of the reference camera using the method

of [22].

B. Depth Maps from Sensor Fusion

This section describes the computation of depth maps for the

high quality reference camera. The problem is to obtain a high

quality depth map by fusing (a) multi-view stereo (MVS) data

from the reference camera plus satellite cameras, with (b) low

resolution depth data from the depth camera. We also exploit

the thermal signal as we will explain in this section.

The depth computation contains the following steps:

1) Compute the initial data cost for the MVS by sweeping

a depth plane through a discretized depth volume [23].

2) Fuse the MVS stereo data with ToF depth data, including

re-projection onto the satellite cameras.

3) Perform plane fitting to reduce noise and improve final

result.

We compute depth maps based on a discretization of the

depth volume into a set of depth layers. For each pixel of
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the reference image we determine the depth plane with largest

support and assign the depth to this pixel. We define support

as the maximum of the combined contribution of MVS stereo,

ToF depth and re-projection onto the satellite images. The

support per pixel can then be formulated as:

Ep(x) = wst · Ep,st + wToF · Ep,ToF + wre · Ep,re, (1)

where st stands for stereo, and re for reprojection on the

satellite cameras.

MVS Stereo: To determine the contribution from MVS

stereo, a plane is swept through the depth volume, and the

images from the satellite images are projected onto this plane

at each depth. We then determine the agreement between

the pixel of the reference image with pixels of the satellite

images using normalized cross correlation (NCC). One reason

for choosing NCC stems from the fact that the we use

heterogenous cameras as the reference and satellite cameras.

NCC provides robustness given the different resolutions and

field of views of the cameras. The adaptive NCC proposed

by Heo et al. [24] provides further robustness. The NCC is

computed both for a log-space image as well as an RGB

image. Compared to standard NCC, the correlation is nor-

malized according to a bilateral weighting. This provides

better localization of intensity discontinuities. The contribution

Estereo is then finally computed as 1−max(NCC, 0).
Occlusion Reasoning: We have two satellite cameras on

each side of the reference camera. This allows initial occlusion

reasoning by comparing the NCC results between the two

left cameras, and the two right cameras. If their contributions

differ by more than some threshold NCCthresh we discard

the NCC value that is furthest from 1. In our examples we

use NCCthresh = 0.75.

ToF Depth: For a pixel in the reference camera, the

contribution of the ToF camera is determined by the difference

of the depth plane Di from discretization and the depth value

reported by the ToF camera at the corresponding pixel. As

described in [20], a 3D point P is first transformed to the ToF

camera’s coordinate space, and then projected onto its image

plane. We then look up the associated depth value DToF .

The contribution for the ToF depth data is then determined

according to:

EToF = exp(s ·min(|Di −DToF |, τ)/σToF ) (2)

with s = 1/τ . In our case the ToF camera has a range of 5

meter, and we obtained good results with τ = 0.1m.

Reprojection onto Satellite Cameras: The contribution

from stereo is computed based only on the satellite cameras.

Because we combine with ToF depth in the fusion step,

we further aim to improve the support for each pixel at a

particular depth by reprojecting the associated 3D point onto

the satellite cameras. The depth camera is a time-of-flight

sensor that measures phase shifts of reflected modulated IR

illumination. As discussed earlier, it is less reliable near depth

discontinuities where the IR signal strikes an oblique surface

so that there is a reduction in the signal reflected back at the

sensor. This is an important step to improve the overall quality

of the depth map.

Given a point P representing a pixel in the reference image

on the current depth plane, we reproject P onto the satellite

camera image planes using the projection matrices computed

during calibration of the setup. We compare the color of the

associated pixel in the satellite camera, with that of the pixel in

the reference image. The final contribution Ep,re to equation 1

is then:

Ep,re = exp(−
(

n∑
i=0

( |RGBref −RGBsat|
3

))
/σre) (3)

Occlusion Reasoning: Additional occlusion reasoning can

be performed again during this step. We compare the color

similarity between the left and right satellite cameras. If the

difference is larger than some threshold we only consider

the contribution from the lesser of the two. Equation 3 then

becomes:

Ep,re =

⎧⎪⎨
⎪⎩
exp(−L/σre), if L−R > τ

exp(−R/σre), if R− L > τ

exp(−(L+R)/σre), otherwise

(4)

with L and R corresponding to equation 3 for the left and

right cameras.

C. Plane Fitting for Improving Depth Estimates

The initial depth map can be obtained by evaluating equa-

tion 1 and apply the winner-take-all strategy of selecting the

depth with largest support. The resulting depth map may be

very noisy. To reduce this noise, we perform an iterative

plane fitting approach. We emphasize that this is not a global

method. Rather, we perform an iterative, somewhat conserva-

tive, plane fitting approach which aims to retain some details

obtained by evaluating equation 1 at the expense of allowing

some noise to remain in the depth map.

We first segment the reference image into regions using the

method described in [25]. We extended this method to incor-

porate the thermal signal in addition to the color information.

By also considering the thermal signal we aim to correctly

segment along object boundaries in areas with similar fore-

and background colors. For each segment we then perform

the following steps:

1) Pick four pixels and fit least squares plane to the

corresponding depth values.

2) Determine inliers and outliers for this plane hypothesis.

3) For the outliers, re-estimate the depths according to the

plane hypothesis.

4) Reproject 3D points associated with the re-estimated

depths onto the satellite cameras.

5) Determine if re-estimated depths are acceptable.

If a scene is well approximated by planar segments, plane

fitting approaches can achieve very high quality results. In

general however scenes may have cluttered, or detailed objects

in the background which are not well approximated by planes.

Our approach is therefore to apply plane fitting conservatively.
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We sample the depth values in a segment according to a

RANSAC [26] approach. We discard plane hypotheses which

are slanted more than 45◦ degrees as these are very likely

wrong estimates. We also omit planes which do not have

enough inliers. This means that for some segments we cannot

reliably estimate planes and we leave the initial depth values

as is.

For the cases when a segment is well approximated by

a plane, we compute the depths for the pixels classified as

outliers according to the fitted plane. We then reproject the

corresponding 3D points onto the satellite to check if the newly

estimated depths are consistent with the color information

from the satellite images. If the depths are not consistent with

the color information we discard the plane.

Occlusion Reasoning: We again take into account that we

may be dealing with an occlusion region. We separately check

for color consistency for the left and right satellite cameras.

However in addition we also check if the pixel in a satellite

image is occluded by comparing the depth value. For each

segment which is well represented by a plane, we store the

depth value at the reprojected locations in the satellite images.

We overwrite the current depth value whenever a smaller depth

value reprojects to a particular satellite image pixel. We can

either iterate this approach for a fixed number of iterations, or

until the number of segments that are updated is below some

threshold.

D. Smoothing

The final step is to smooth the computed depth maps using

the trilateral filtering described in [27]. We trivially extend

the trilateral filter to incorporate the thermal signal as well.

In addition we also incorporate the dis-/similarity between

neighboring segments in the filter. As we will discuss in the

results section, this smoothing step is especially effective if

the depth discontinuities have been accurately estimated. We

will show that for some challenging example scenes our sensor

fusion can obtain such accurate estimates.

E. Comparative Analysis

The ideal way to evaluate the system would be to compare

the results with ground-truth. Laser scanners offer millimeter

accuracy 3D measurements, but are unable to handle dynamic

scenes because of the scanning time of the laser. Thus accurate

ground-truth is not readily available.

As an alternative, we computed depth maps using a stereo

pair of two multi-spectral cameras that are capable of record-

ing in RGB and IR, plus several Kinects to project IR speckle

pattern onto a scene. Conventional stereo matching is carried

out on the images, with the IR speckle providing useful texture

for to disambiguate the matching on homogeneous surfaces.

Color gradients from the registered RGB images can be used

to impose first order smoothing priors. This approach has its

own limitations, but it does provide a basis for showing how

our results compare against another method which is expected

to provide high-quality depth. We present a comparison in the

next section.

Fig. 3. Thermal image superimposed on the reference camera color image.
The thermal signal is high for humans, especially for exposed skin, compared
to many inanimate objects.

IV. RESULTS

A. Hardware

Figure 1 shows the camera rig. The high quality camera is

a 3-CMOS Sony PWM-350K capturing 720p HD; the satellite

cameras are Point Grey Grasshoppers, resolution 1600x1200;

the depth camera is a Swiss Ranger SR4000, resolution

176x144; the thermal IR camera is a FLIR SC-645, resolution

640x480. All devices capture at 25fps and are synced using

an external synchronization trigger.2 Example images captured

with the rig at one time instant are shown in Figure 2. An

example of the registration between the reference RGB image

and the thermal image is shown in Figure 3, with the thermal

image superimposed on the color image.

B. Fusion via Local Method

For all the results presented in this section we used 50

depth layers to discretize the depth volumes. In Figures 4

and 5 we present results obtained with the method discussed

in Section III. Textureless areas which are difficult for stereo

are reconstructed correctly in the fusion with the ToF depth.

Exploiting discontinuities in the thermal signal, the hair and

fingers of the subjects in Figures 4 are correctly reconstructed

as well.

By exploiting the thermal signal, the segmentation can be

correct when there is no color discontinuity present. The left

column of Figure 6 shows a zoomed-in area from the color

image (for the example from the left column of Figure 4).

Along the boundary between the subjects’ hair there is no

distinct color difference. The thermal signal in the middle col-

umn shows a clear difference, and the segmentation correctly

segments along the boundary as shown in the right column.

The the depths are correctly reconstructed as a result (see

Figure 4).

C. Comparative Analysis

We compare our local method to a global method which

optimizes the depth reconstruction formulated as a MRF.

Figure 7 shows the results obtained using Tree-reweighted

2The thermal camera is not triggered on each frame, but its stream is started
on the external trigger and then runs synchronous at 25fps.
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Thermal DepthReferenceLeft-most satellite Right-most satellite

Fig. 2. Example images from different cameras at one time instant. Top - depth camera. Center - cinematographic camera. Left and right - the outermost
satellite cameras. Bottom - thermal camera.

Fig. 4. First row Reference camera image. Second row Depth map before
smoothing. Third row Depth after trilateral smoothing. In the first column
the hair of the two subjects is reconstructed correctly. In the second column
the hand, including fingers, is accurately reconstructed.

message passing (TRW) [28]. The left image shows the result

when the thermal signal is incorporated as a smoothness prior.

The right image shows the result without. The depth map is

notably wrong in the region where the subjects’ hair overlap.

As noted in the previous section, we simultaneously capture

IR patterns projected with Kinects and capture the scene using

multi-spectral cameras. We again emphasize that this is not a

ground truth comparison. We reconstruct the scene using semi-

global matching [29] on the IR images. We calibrate the multi-

spectral cameras with respect to the rig which allows to repro-

ject the resulting depth map onto the reference camera image,

shown in the top row of Figure 8. The holes in the depth map

are due to occlusion between the multi-spectral stereo cameras

and reprojection onto the high resolution reference image. The

quality of the depth obtained with our fusion approach for the

foreground subject compares to depth obtained from stereo on

the projected IR patterns. In the background the depths have

different values. This is due to the fact that the ToF depth data

Fig. 5. First row Reference camera image. Second row Depth map
before smoothing. Third row Depth after trilateral smoothing. Additional
examples showing results for challenging scenes including textureless areas,
and cluttered background (plants).

Fig. 6. Left Color image. Middle Thermal image. Right Segment boundaries.
Although there is no clear color discontinuity between subjects’ hair, the
thermal image clearly shows a different signal. The segmentation is able to
segment along the thermal boundary.

contributes most in these textureless areas. The depth values

reported by the ToF sensor at further distances are slightly

different from real world measurements.

D. Comparison of Modalities

To give a better idea of the contribution of each modality,

we omitted the reprojection onto the satellite cameras for the
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Fig. 7. Comparison with global MRF method (Tree-reweighted message
passing) for computing depths. Left Without thermal segmentation prior.
Right With thermal segmentation prior. For the latter case, the boundary for
the foreground objects’ hair is incorrectly reconstructed, due to the lack of
color gradient.

Fig. 8. Comparison with stereo from projecting IR speckle patterns.
The depth map using IR patterns is obtained with additional multi-spectral
cameras. The top row shows the reprojection onto the reference camera of
our experimental rig. The bottom row compares the depth obtained by stereo
from the IR patterns with our approach.

examples shown next. The depth maps were reconstructed

using TRW. Figure 9 compares the results for stereo (RGB),

stereo + thermal (RGB+T), stereo + depth (RGB+D) and

stereo + depth + thermal (RGB+D+T), in rows two through

five for several example scenes. The TRW parameters were

fixed for all results. In the first column of Figure 9, (RGB)

and (RGB+T) yield equivalent results. When the information

from the depth camera is fused, the space between the two

foreground subjects is reconstructed at the correct depth.

Finally, in row four, (RGB+D+T) preserves the shape of the

nose for the foremost subject. For the second column, when

fusing the information from the depth camera, the paper leaflet

is no longer being reconstructed compared to the (RGB) and

(RGB+T) cases. This, together with the missing leaves for

the plants in the background, demonstrates the problem of

thin structures for the depth camera. In the third column of

Figure 9, the hand shape is better preserved for both cases

where thermal is considered in the smoothness prior. In the last

column of Figure 9 the plant pot is reconstructed accurately

along its boundary when thermal is considered.

V. DISCUSSION AND CONCLUSION

This paper describes a reference camera augmented with

satellite sensors. We described a straightforward method to

fuse the modalities and compute high quality depth maps

for the reference camera. The performance for the results

presented in the previous section is less than one minute per

frame. Further optimization may reduce this to several seconds

per frame.

Experimental results were shown for scenes with dynamic

objects and background clutter. Large textureless areas such

as background walls are handled by fusing depth from stereo

with ToF depth. We also showed cases where surfaces of

the same color overlapped at different depths. Of particular

interest is the case where human subjects or body parts

are overlapping - we showed that different subjects may

have different thermal signatures, and therefore an occluding

contour can be found even though the skin color is similar.

We provided additional comparisons to show the contribution

of each modality separately. Furthermore we compared our

approach to some other techniques of computing depth maps,

and showed that we obtain comparable results.

Future work will focus on exploiting the multiple modalities

to generate temporally smooth depth for video sequences.

Temporally smooth depth maps require accurate motion / flow

estimation. As depth sensors continue to improve, the depth

data can be directly exploited for computing accurate motion

information.

Finally, we argued that the required satellite sensors for this

system are becoming more compact and more low-cost. It is

feasible to envisage a compact clip-on device that attaches to

a cinematographic-quality reference camera, to enable robust

and accurate computation of depth maps.
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