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Abstract

In this paper, a new hierarchical stereo algorithm is pre-
sented. The algorithm matches individual pixels in cor-
responding scanlines by minimizing a cost function. Sev-
eral cost functions are compared. The algorithm achieves a
tremendous gain in speed and memory requirements by im-
plementing it hierarchically. The images are downsampled
an optimal number of times and the disparity map of a lower
level is used as ’offset’ disparity map at a higher level. An
important contribution consists of the complexity analysis
of the algorithm. It is shown that this complexity is inde-
pendent of the disparityrange. This result is also used to
determine the optimal number of downsample levels. This
speed gain results in the ability to use more complex (com-
pute intensive) cost functions that deliver high quality dis-
parity maps. Another advantage of this algorithm is that
cost functions can be chosen independent of the optimisa-
tion algorithm. The algorithm in this paper is symmetric,
i.e. exactly the same matches are found if left and right
image are swapped. Finally, the algorithm was carefully
implemented so that a minimal amount of memory is used.
It has proven its efficiency on large images with a high dis-
parity range as well as its quality. Examples are given in
this paper.

1. Introduction
The goal of this work is to compute fast accurate disparity
maps, even for big images with large disparity ranges. It
is assumed that these images are rectified first. The impor-
tance of the disparity maps for good 3D reconstruction is
well known. The results of research on this topic include a
wide variety of algorithms [1]. Most of these algorithms are
minimizing a cost function. The cost has 2 aspects: A first
component decides how well a pixel of the left image cor-
responds to a pixel at the right image, i.e. the dissimilarity
between 2 pixels. A second, respectively third component
are related to the continuity in the horizontal, respectively
vertical dimension of the disparity map. The latter is only
dominant if no strong image data are available.

A possible criterion to classify these algorithms is the

dimension of the optimization problem. The cost func-
tion decides how well a pixel of the left image corresponds
to a pixel of the right image (zero dimensional cost func-
tion) [12]. More robust is to optimize the sum of all costs
of all matches in one scanline (one dimensional). The best
is to optimize the sum of all costs over the whole image
(two dimensional) [8]. This algorithm, like many other al-
gorithms [5] [7], has chosen the second method, because it
seems the best tradeoff between robustness and computa-
tional complexity. However, we will take into account in-
formation of the other scanlines by propagating information
between them.

Our stereo algorithm has a number of specific proper-
ties. The algorithm is based on the hierarchical solution of
the correspondence problem. Using this approach, we will
show that the complexity decreases from

������� ��� 	�
��
��������
to
������� � � , where W and H represent respectively the

width and height of the pictures. Note that the com-
plexity becomes independent of the disparity search range	 ��
������ . The algorithm offers a significant advantage over
other algorithms, especially when this search range is large.
[12] [8]

Another advantage of this hierarchical approach is that
the memory usage can be greatly reduced. The acceleration
discussed above does not lead to an explosion of memory
usage. As will be explained in the following paragraphs,
rather the contrary is true. Considering that today the bot-
tleneck lies in the memory bandwidth and the cache sizes,
this is very important in implementing the algorithm. Even
for large images (1500x1500), it uses only a 100kbyte, so
that it fits easily into Pentium memory caches.

This algorithm is a candidate for real time implementa-
tion, as it offers a good tradeoff between speed and quality.
Because of the gain in speed, it was possible to use more
complex and computation intensive cost functions. Sec-
ondly, because of decoupling between algorithm and cost
function, several cost functions could be tested.

The paper is structured as follows. First a formal prob-
lem definition is given. In section three, a tree search al-
gorithm that has been used as a starting point for this work
is given. In the next section, an efficient hierarchical imple-
mentation is developed, followed by its complexity analysis
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in section five. In section six, the symmetry of the algorithm
is discussed and the algorithm is slightly modified to pro-
vide this symmetry. In section seven, a comparison is made
with known solutions from litterature. Finally, results and
conclusions are presented.

2. Problem Definition
In this section, we first introduce some important definitions
that are used troughout this paper. Then, we discuss the cost
function and go more in detail about one of its components,
the dissimilarity function. We end up with a formal problem
definition.

Match sequence The correspondence problem, that we
are trying to solve, searches for matches between left and
right image. A match is noted ��� � ����� ���!��" � , �!��� is
the index of the pixel in the left image and � �#" is the pixel
index in the right image. The disparity

	
of a match must lie

between 2 predefined constants, as postulated by constraint
C1: $&%(' 	#)+* �-, 	 �/.10!23.54 , 	�) 
 � (1)

We define
	 ��
��6��� � 	 ) 
 � 2 	 )7* �98 %

.
An ordered set of matches :;� *=<�*?>A@�BCB DAE

that obeys con-
straints C2..C4, is called a match sequence MS.$(F&' � *HG �#�JI/�LK G �#�NM9� *HG ��"!I/�3K G ��"

where O ,QP I�RSIQT ) 2 %$VU�' � *?WA@�G ���-�X� *HG �#� 8 %ZY � *?WA@�G �#"[I/� *\G ��" 8 %
where P �]O �?� T ) 2 F$_^`' ��a G �#�b�cO Y ��a G �#"��cO

(2)
It is important to have a closer look at these constraints. The
first constraint C2 expresses that no pixel can ever belong
to 2 matches in the same match sequence and an ordening
constraint is imposed. Constraint C3 imposes that the match
sequence may not contain gaps. If there is a match M, then
either the next pixel in the left, or the next pixel in the right
scanline must be matched to the match following M. We
say that the match sequence is complete if also the last pixel
of left and/or right scanline appears in the (last) match. In
Figure 1, an example is given to clarify these definitions.
The match sequence used in the example is:�ed � : � F �fO � � � U � % � � � ^ � F � � ��g � U � � �Hh � ^ � � �ji � h � � �Hk � i � ��Hl � k � � � %�F � l � � � %�U � % O � � � %�^ � %�% � � � % g � %�F � < (3)

Instead of coding a match sequence as given in the example
above, one can as well just code the disparities in what we
call a

	 2nm�o;p;q1o�rts�o . The disparity map consists of noth-
ing else than all

	 2nm#o;p;qNo�rts�o�m . The
	 2nm�o�p;qNo�rts�o that

Figure 1: Graphical representation of a match sequence
with a left and a right occlusion. The left scanline is on
top. The corresponding disparities are also indicated.

corresponds with the example above is1:u d!�v:6w_rtxyo�z1��w_rtxyo�z1� F � F � F � F � F � % � % � % � F � F � U � U � U � U <
(4)

Cost function Once we defined a match sequence, a cost
can be associated to it. As said in the introduction, the cost
function consists of 3 components (The intensity of the im-
ages is represented by I.):{ � u d � � |~} @���� > a � u � .10���.14 ��� ) 
��H��� � 8|-} @���� > a ��� � � ����� � 8 |~} @��#" > a �H� � � ����� � 8|-} @���� > a ��� � u d � .10 � 2 u d } @�� .50 �����y�9� � .10 ��� (5)� For each unoccluded pixel, a cost that equals the dis-

similarity between 2 pixels is taken into account. This
dissimilarity function is discussed below in detail.� If the pixel is occluded, a cost equal to

�
is counted. In

contrast to other algorithms in the literature [4], larger
occlusions are (linearly) more severely penalized. Left
occlusions are taken into account in the second sum-
mation, while right occlusions are in the third summa-
tion.� The last term takes into account the vertical dimension
in the image. If this

	 2Qm�o;p;qNo#rts�o differs a lot from
the scanline above, its penalty will be higher. This term
is also scaled by an intensity gradient factor ��� � that
decreases this penalty if there is a large vertical inten-
sity gradient near the pixel under consideration. This
is an inter-scanline penalty with far lower complexity
than described in previous work [3], but with compa-
rable performance. The intensity gradients ���#� �#������ are

1The underlined disparities are interpolated. This is necessary for the
hierarchical implementation.
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easily calculated using the Sobel operator. The actual
function used is:�y� � � .10 � �c�-��.-� % � 
����� W¡ �¢ � �#�£��¤

where d � � .50 � �Xd¦¥6§�o;¨ � .50 � (6)

The parameter � is scaled such that a Sobel output of
70 gives �y� � � %

. Outputs above 1 are clipped.

Dissimilarity Function The dissimilarity function indi-
cates how well (the neighbourhood of) the pixel at posi-
tion xL matches with pixel xR. It is the most dominant term
in the cost function. Three dissimilarity functions are dis-
cussed. Each time, the dimension of the neighbourhood is
considered, because it is directly related to the robustness of
the dissimilarity function.

1. The easiest dissimilarity function is to take the abso-
lute value of difference in intensities.u � .10��f.54 � � ��� � .50 � 2 � � .14 ��� (7)

The advantages are its simplicity and speed. Its prac-
tical use is very limited because it is not robust (0 di-
mensional). To make it more robust, this value can be
calculated over a 2 dimensional window. It is named
Sum of Absolute Differences (SAD). The Sum of the
Square Differences can also be calculated (SSD).

2. A second alternative is a more complex dissimilarity
function that implements a 2 dimensional cross corre-
lation between the neighbourhoods of the pixels under
consideration [10]. It is implemented according to fol-
lowing formula:

u � .10���.14 � �
© ��*?> }N© �

© ��K > }ª© � 0 * K#4 * K«¬¬­ © ��*®> }ª© �
© ��K > }N© � 0 
* K © ��*?> }N© �

© ��K > }N© � 4 
* K
where 0 * K¯� � � � �\° 8 P �f.50 8 R � 2²±� � �4 * K³� � � � �\° 8 P �f.54 8 R � 2´±� " �

±� � �
© ��*?> }N© �

© ��K > }ª© � � � �H° 8 P ��.50 8 R �� F � §�. 8 % � � F � § ° 8 % �
±� " �

© ��*?> }N© �
© ��K > }ª© � � " �H° 8 P �f.50 8 R �� F � §�. 8 % � � F � § ° 8 % � (8)

This is the most robust dissimilarity function discussed
in this paper. Because of the normalization in the de-
nominator, it can deal with zone differences between

Figure 2: Birchfield’s dissimilarity measure: � " )7* �µ,� a� , � " ) 
 � , thus
u @

equals 0.

left and right images, such as global intensity varia-
tions. The biggest disadvantage is its computational
cost. Attempts to minimize the number of operations,
result in an explosion of memory usage. With nowa-
day’s computers, we should definitely avoid this.

3. The last dissimilarity function presented here is the one
described by Birchfield [6]. This dissimilarity func-
tion is insensitive to image sampling. The latter phe-
nomenon can significantly change the intensity value
of a pixel where the intensity function is changing
rapidly. Most stereo algorithms [7] [13] just work at
pixel resolution, so it is important to use a dissimilar-
ity function that eliminates errors due to sampling. It
is illustrated in Figure 2. First we calculate � }" and� W" , the linearly interpolated intensities halfway be-
tween xR and its neighbours. Actually, Birchfield’s
dissimilarity measure is looking for the minimum dis-
tance between � a� � � � � .50 � and the linearly inter-
polated intensity curve in an interval ¶·2 @
5� @
�¸ around
xR. Indeed, considering the maximum and minimum
of the intensities � }" � � W" � � a" � � " � .54 � , an intensity
band ¶ � " )+* � � � " ) 
 ��¸ is formed. The dissimilarity
measure D(xL,xR) equals the distance between � a� and
the nearest boundary of this band. If � a� is found in
the band, as illustrated in Figure 2, D(xL, xR) equals
0. The same procedure is repeated in which the left
image is interpolated to obtain a symmetric dissimilar-
ity measure. This dissimilarity measure performs very
well, and will be used indeed in our algorithm, unless
extra robustness is needed. It needs only 3 additions
per pixel in an efficient implementation. Further de-
tails can be found in Birchfield’s paper. [6]

Problem Definition Now, all the material is ready for
a formal problem definition: Find between all match se-
quences that obey constraints C1..C4, the sequence with the
lowest cost, according to the cost function defined above.
The cost of a scanline can be calculated incrementally, i.e.
one can reuse the result if one adds a match to the match
sequence. In the next section, it is shown how this sequence
is found, making use of dynamic programming.
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Figure 3: Stereo tree with the successors of match (0,0) and
match (1,0).

3. Tree search algorithm
In this section, we describe a first solution, using a tree rep-
resentation in which the best path is found making use of
dynamic programming [2]. The matrix structure that is used
to solve this optimization problem is also covered in this
section.

Stereo Tree To describe the stereo tree, we define the
nodes and edges. Each node is just a valid match, obey-
ing constraint C1. An edge is defined by the constraints
of a match sequence: between every 2 nodes that comply
with constraints C2 and C3 exists an edge. It is not diffi-
cult to see that a kind of network is built between all pos-
sible matches that include the first pixel (beginnodes) and
all matches that have the last pixel of a scanline (endnode).
The construction of the tree is best explained with an exam-
ple (The 2 scanlines used are the same as in the introduc-
tion). Figure 3 shows such a tree, with the matches as nodes
in the shaded bullets. The beginnodes are found in the up-
per row and the left column. Also shown are the successors
of match (0,0) and match (1,0). Also remark that the nodes
(xL, xR) are placed in a special configuration, namely the
matrix with horizontal xL and vertical xR axis. This way, a
kind of bandmatrix from upper left to bottom right corner is
formed. This is the subject of the next paragraph.

Matrix The implementation uses 4 matrices. First it is ex-
plained using indices xL, xR, as in Figure 3. Afterwards, it
will be explained how a transformation of xL, xR is applied
yielding Figure 4.� Every node

� .50��f.54 � has its own matchcost, calcu-
lated by the dissimilarity function. Because this func-
tion can be quite expensive from computational point
of view, it is calculated before and stored in matrix ¹ .� Every node has one and only one predecessor, by the

Figure 4: The 4 compressed matrices º ��� , º¼» , ¹ and ½ .
The filling has just started.

definition of the tree structure. This predecessor can be
unambiguously characterized by its

� .50¿¾À��.14�¾ � num-
bers. That’s why we need 2 other matrices º ��� andº ��" that store .50 ¾ , respectively .14 ¾ of each node.� Because each node has only one predecessor, this node
also characterizes the path from one of the beginnodes
to that node. The path cost of that path is stored in a
4th matrix ½ , thus ½ � .10��f.54 � = { (MS).

The matrices are filled top-down, the endnode with the
lowest cost ( ½ ) is selected and trivial backtracking is per-
formed to find the best path.

To be more memory efficient, only the diagonal band of
the matrices is stored. In fact, this is equivalent to a trans-
formation by which the .54 axis is transformed into the

	
axis. This way, implementation is far more efficient and the	 2/m�o�p;qNo�rts�o can be directly read out from the ½ matrix.
The 4 compressed matrices are shown in Figure 4, when the
filling has just started. Note the special pattern by which the
successors of node (0,0) can be found.

4. Hierarchical implementation
The complexity of this algorithm is

������� ��� 	�
��
������ � , as
will be shown in the next section. In this section, we
develop a hierarchical implementation of the above algo-
rithm, which will be shown to have a complexity indepen-
dent of

	 ��
������ . We first need to introduce the concept of an¥6zªzªm�o#Á 	 2�m�o;p;qNo#rts�o .
Offset stereo tree An offset stereo tree is a normal stereo
tree, but the number of allowed nodes is limited by an extra
constraint:$ g ' 	�Â�)7* �-, 	#Â , 	�Â�) 
 � where

	#Â � 	 2 u dªÃ � .50 � (9)
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Figure 5: Overview of the hierarchical stereo calculation.

This means that the nodes that are allowed must have
a disparity in the interval ¶ 	 Â�)7* �Ä8 u d Ã � .10 � � 	 Â�) 
 � 8u d Ã � .50 � ¸ , around a given offset disparity. This offset dis-
parity sequence

u d Ã � .50 � is given. How it is calculated is
subject of the next paragraph.

Hierarchical calculation of the disparity map As al-
ready suggested in the introduction, this offset disparity se-
quence is the result of the disparity calculation at a higher
(downsampled) level. We assume in this paper that down-
sampling is always done by a factor 2 in 2 dimensions. An
example of one scanline is given in Figure 5, where the
scanlines of the same example are used again. Both of
them are downsampled by which the disparity search range
halves. Then, our algorithm is executed with an initial off-
set disparity map, which is chosen all-zero. 2 The result
(in our example, all ones, but this is coincidence) is upsam-
pled afterwards and multiplied by 2. This

	 2[m�o;p;q1o�rts�o is
then used as an ¥6zªzªm�o#Á 	 2�m�o�p;qNo�rts�o in our next run at the
original level in a

	�Â ��
������ �Å¶®2 % � % ¸ . From next section, it
will be clear that executing the algorithm twice with a small	 Â ��
������ is cheaper than one ’big’ search in the full

	 ��
������ .
Next, the memory requirements for the 4 matrices can be

reduced further by using the relative
	 Â

axis instead of the
absolute disparity

	
. The algorithm is programmed in such

way that the ¥6zªzªm�o#Á u d Ã sequence is read from the dispar-
ity map, used to calculate an updated (refined) map using
our 4 matrices and rewritten in the same disparity map, after
being interpolated. The 4 matrices are shown in Figure 6.

One question remains unanswered: What’s the largest
refinement that’s allowed, i.e. what’s the choice of

	;Â=)+* � ,	#Â�) 
 � ? As already suggested in [9], this depends on the
disparity estimation error in each level. Experiments have
shown that this error is below 1.5 pixel. In the previous

2If a raw disparity map is available, it can be used here as offset dispar-
ity map.

Figure 6: The 4 reduced matrices used in the hierarchical
stereo calculation.

upsampled level, this error corresponds to 3 pixels. That’s
why we choose the constants

	 Â�)7* � �Æ2 U and
	 Â�) 
 � � U

.
Disparity errors up to 3 pixels will be corrected in a lower
level. As a consequence

	 Â ��
������ � i
.

5. Complexity Analysis
Reduction of complexity As already discussed in
Birchield’s thesis [4], the complexity Ç of the non-
hierarchical algorithm is proportional to the square of the
disparity search range. L represents the number of times
downsampling is applied. (L = 0 represents the non-
hierarchical algorithm.)Ç � 0��nO � � � � �v�Ä	 
��
������ � (10)

Downsampling once
� 0²� % � reduces the overall com-

plexity to3:Ç � 0[� % � � � � �v�Ä	�
Â ��
��6��� 8 | 
ÉÈ 
 	 � @ � 
��
������ ¤
where

	 � @ ���
������ � »�Ê�Ë=Ì�Í�Î } »=ÏHÊ�Ë�Ì#Í�Î
 8 % (11)

An analytical expression for the complexity Ç � 0 � , func-
tion of L, can be found. It reaches a unique global minimum
for 0[�c0 � ¾ � . This optimal number of levels is only a func-
tion of the initial disparity search range

	 ��
������ . The com-
plexity at this optimal level is

Ç � 0[�c0 � ¾ � � � �ÆÐª�v�ÑÐ1h�g 2 ^ O i %��	 ��
������ 8 g � 
�Ò9Ò
(12)

So, if
	 ��
������ is large enough, we claim that the com-

plexity is independent of the disparity search range. This is
illustrated in Figure 7 which shows a logarithmic plot of the
complexity Ç versus L. The tests are performed on large im-
ages: 1404x1092. The figure compares the calculated com-
plexity with experimentally measured runtimes for 4 values
of the disparity range

	 ��
������ � g % � % O i � F£% l � ^�^�U . As we

3It suffices to search in a Ó�ÔÖÕ�×Ø�Ù�Ú�Û�Ü that is Ý Ï�Ê�Ë=Ì#Í�ÎÞ smaller than Ý Ê�Ë=Ì�Í�ÎÞ .
This disparity range will be corrected (and enlarged) while upsampling and
refining the disparity map.
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Figure 7: Logarithmic plot of the complexity Ç versus L.

can see, the theoretical curves (solid without bullets) de-
crease exponentially towards an almost constant complex-
ity, where they reach a unique minimum. Practical results
(dashed with bullets) show the same tendency. All these
minima for a varying

	 ��
��6��� parameter, as described by
Equation 12, are connected by the solid line, that reaches
asymptotically

�v�vß®àyá @ a �Hh�g � .
We end this section with a practical implementation for

calculating the optimal level of downsampling. The real
formula, a result of the analytical optimization problem
(
	�Â ��
������ � i

), is

0 � ¾ � � ß®àyá 
 Ð ��	 ��
������ 8 g � ��â ^ l F6^ 2 ^ g �F6^�F Ò (13)

A good approximation of this curve is given by:

0 � ¾ �äã ß?à�á 
æå �H	 ��
��6��� 2 F 8 	�Â ��
������ �F ��	#Â ��
������ 2 % � ç� ß?à�á 
æå �H	 ��
��6��� 8 g �%�F ç (14)

This is nothing else than the result of the solution of	 � �£���
������ � 	�Â ��
������ � i
. So we keep on downsampling as

long as
	 ��
��6��� is greater than

	�Â ��
������ .
6. Symmetry
Recently, the focus of our work has shifted towards the sym-
metry of the algorithm. Symmetry means that the same
match sequence is found if the left and the right image are
swapped. If we consider Figure 1 again and if we swap the
images, would the same match sequence still be found? To

have a symmetric algorithm, 3 conditions have to be ful-
filled. First, the costfunction and the corresponding dissim-
ilarity function must be symmetric. The dissimilarity func-
tions that are presented in this paper are symmetric. The
costfunction of Equation 16 is assymetric due to the last
term. A modified symmetric costfunction is given in the
following equation.

{ � u d � � |~} @��#� > a � u � .50è��.54 ��� ) 
��H��� � 8 (15)|~} @���� > a �H� � � ����� � 8 |~} @���" > a �\� � � ����� � 8|~} @���� > a � � � u d � .10 � 2 u d } @6� .50 ���\��� � � .50 ���y� � � .54 � �
Secondly, the same nodes must be considered in the

search tree. Figure 8 shows that this is not the case for the
algorithm described before. In this figure, the search tree is
shown near a left occlusion. In the right image, when the
left and right image are swapped, the matches are indicated
in gray. In the left image, the same matches as in the right
image are considered (gray), but there are also additional
ones (dark gray). This is because of the vertical direction of
refinement. To avoid this, the boundary given by constraint
C5 (Equation 9) must be more tight near an occlusion. Cur-
rent work consists in swapping this direction of refinement
in the presence of occlusions.

Third, the same search tree must be built during execu-
tion of the algorithm. This means that in case of an am-
biguity (2 paths with the same cost), the same path must
be taken, independently of which image is considered first.
This means that at every stage in the search algorithm, we
will make a hard decision. Nevertheless, the existence of an
ambiguity provides us with extra information regarding the
reliability of that match. We will call this soft information,
in contradiction with the hard decision that must be taken.

Figure 8: Symmetric nodes must be considered.
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7. Comparison
It is instructive to compare our stereo algorithm with other
stereo algorithms. First, it is compared with the algorithm
of Koch [12] and Falkenhagen [10]. They developed an
algorithm that searches for correspondences by matching
blocks (for instance NCC). Local boundary conditions are
taken into account, but no global cost function is minimized.
Interpolation of disparities is non-existent. To increase the
robustness of the local optimisation problem, and to reduce
the corona effect, one estimates the disparity in a large re-
gion (large robust block comparison), after which these dis-
parities are refined with smaller blocks. Although this kind
of hierarchy is comparable with the one used in our algo-
rithm, it arises from a fundamentally different reason, i.e. a
lack of robustness of the local optimisation problem. It is
important to see that the acceleration of our algorithm, un-
der certain conditions proven by Birchfield [6], has no effect
on the outcome! The complexity of the algorithm described
in [10] is

������� �Ä� 	6
��
������ � .
Secondly, our algorithm is compared with Birchfield’s

algorithm [4]. A modified version is implemented in In-
tels’ OpenCV. The core of this algorithm is very similar
to our algorithm, but there is a major difference in how
the acceleration is performed. Birchfield’s fast algorithm
(complexity

������� ��� 	 ��
������ ß®àyá1��	 ��
������ ��� ) used a method to
prune bad nodes in the search tree. The disadvantage is that
the exact minimum (best path) is no longer guaranteed, and
to achieve an acceptable minimum (path), extra constraints
are put on the cost function. It can no longer be chosen
independently of the algorithm, and Birchfield had to post-
pone several tasks to a postprocessing step. For instance, in
Birchfield’s algorithm, propagation of disparities between
scanlines, intensity gradient information and processing oc-
clusions are done during postprocessing. To make all this
happen, a lot of postprocessing parameters are used without
rules to tune them.

Finally, a comparison is made with the class of mincut-
maxflow stereo algorithms [8] [15]. We compared our al-
gorithm with the implementation of Roy and Cox [8]. A
complete 2D optimisationproblem is solved, making use
of mincut-maxflow problem. The algorithm offers high
quality disparity maps, comparable with the one obtained
by our algorithm. The disadvantage is its complexity������� ��� 	�
��
������ ��ß?à�áN���v	 ��
������ ��� and its memory use (more
than 3.5 Gbyte for Mars images given in the Results sec-
tion).

8. Results
The first example is provided by ESA (European Space
Agency). Figure 9 shows images of the testbed of Mars’
surface. These are large images (1404x1092) with large dis-
parity ranges (500 and more). This was the actual reason to

search for a new algorithm which resulted in the hierarchi-
cal algorithm, since most existing algorithms failed. This is
a good example to illustrate the memory needs and speed of
our algorithm. The images were downsampled 4 times, and
the total processing time did not exceed 70 seconds. The
amount of memory used was 150 kbyte. Because of imper-
fections of the cameras, yielding an intensity profile in the
images, the more expensive NCC dissimilarity function is
used.

Figure 9: Mars images. Original left and right image are
shown at the top. The disparity map is presented at the bot-
tom left and a detail of the disparity map near a stone on
Mars’ surface is shown at the bottom right.

A second testcase includes a set of images of the Aren-
bergcastle in Leuven. These two images (792x635) can be
found at the top of Figure 10. It is a good example to show
the accuracy of the disparitymap. There are lots of depth
discontinuities and lots of details. The hierarchical algo-
rithm achieves sharp edges (roof, crenels, ...) and a good
overall quality. The total runtime is 16 seconds. 4

A third testcase includes a set of images of an Indian
temple (Figure 11). Lots of small occlusions and depth dis-
continuties are present in the images. Again, the accuracy
of the disparitymap is very high. Many details (ornaments,
faces, hair, ...) are clearly visible in the 3D model which
shows also a good overall quality. The total runtime is 30
seconds.

The next image is provided by the University of Tsukuba

4The tests were performed on an intel PentiumIII workstation 700MHz
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as a dataset for testing accuracy. The depth map ground
truth is also given in Figure 12. A lot of details, includ-
ing the camera in the background, are visible in the dis-
paritymap. Because of the small images (384x288), down-
sampling was not needed during the execution, that took 4
seconds of processing time.

The last image is provided by the Microsoft Research,
again as a dataset for testing accuracy. The depth map
ground truth is also given in Figure 13. The black spots
in the disparitymap represent occlusions. In previous im-
ages, they were interpolated. Because of the large occlu-
sion present in the image, this is not done here. The im-
ages (284x216) are downsampled only once during execu-
tion that took only 2 seconds of processing time.

9. Conclusion
The algorithm presented in this paper is based on the hi-
erachical solution of the stereo correspondence problem,
using subsampling. The complexity is

������� � � , which
is independent of the disparityrange and lower than other
classical stereo algorithms which have a complexity of������� ��� 	�
��
������ � . A careful implementation yields mini-
mum memory usage, so that the computation fits in the
cache of most modern processors. The disparity maps show
a high quality, thanks to a new and more complex cost func-
tion. This cost function is completely decoupled from the
optimisation problem, so it is easy to switch cost functions
to make a tradeoff between quality and execution time.
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Figure 10: Images from the ’Arenbergkasteel’ Original left
and right image are shown at the top. The disparity map
is presented in the middle together with a 3D model and 2
details of this model.

Figure 11: Images from an Indian temple Original left and
right image are shown at the top. The disparity map is pre-
sented in the middle together with a 3D model and 2 details
of this model.
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Figure 12: Tsukuba dataset for testing accuracy. Original
left and right image are shown at the top. The disparity map
is presented in the middle. The ground truth can be found
at the bottom.

Figure 13: Slanted dataset for testing accuracy. Original left
and right image are shown at the top. The disparity map is
presented in the middle. The ground truth can be found at
the bottom.
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