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Abstract

This paper presents a novel approach for dense recon-
struction from a single-view of a repetitive scene struc-
ture. Given an image and its detected repetition regions,
we model the shape recovery as the dense pixel correspon-
dences within a single image. The correspondences are rep-
resented by an interval map that tells the distance of each
pixel to its matched pixels within the single image. In order
to obtain dense repetitive structures, we develop a new rep-
etition constraint that penalizes the inconsistency between
the repetition intervals of the dynamically corresponding
pixel pairs. We deploy a graph-cut to balance between
the high-level constraint of geometric repetition and the
low-level constraints of photometric consistency and spa-
tial smoothness. We demonstrate the accurate reconstruc-
tion of dense 3D repetitive structures through a variety of
experiments, which prove the robustness of our approach to
outliers such as structure variations, illumination changes,
and occlusions.

1. Introduction
The existence of repetitive and symmetric structures

is a pervasive phenomenon in urban scenes. In typical
images, the perspective distorted repetition and symmetry
encode the relative 3D geometry between the repeating
elements. If the repetition is mostly on a plane, the perspec-
tive distortion can be modeled by a planar homography.
Detecting such planar repetition and symmetry allows us
to recover vanishing points and camera calibrations [13, 7].
While non-planar repeating structures can not be accurately
modeled by one homography, this paper exploits the visual
differences between the repeating elements to recover
the 3D details. We propose to obtain the 3D repetition
information by modeling it as energy minimization yielding
a dense 3D reconstruction of the repetitive structures.

The main contribution of this paper is a novel model to
use high-level geometric information, such as repetition
and reflective symmetry, in an optimization framework,
which allows to enforce geometric consistency between

(a) The input image (b) The repetition detection [17]

(c) Dense reconstruction (d) Single-view 3D model

Figure 1. An example of our reconstruction. The repeating ele-
ments in (b) show differences in due to their depth. Particularly,
the distance between two columns is larger than the distance
between the upper windows given that the columns are closer.
Our approach recovers consistently repeating structures despite
the varying reflections and occlusions.

repetitive pixels that are not immediate image neighbors.
By enforcing consistency between the 3D reconstruction
of the repeating elements, more accurate reconstructions
even filling in occluded structures can be achieved (e.g.
the tree in Fig. 1). One application of our method is
stereo reconstruction of urban scenes with repetitive 3D
structures. Additionally, we demonstrate the extension of
the proposed concept to multi-view reconstruction.

The remainder of the paper is organized as follows.
Section 2 briefly discusses the related work. In Section 3
we discuss the 3D geometric constraints deployed for
reconstruction followed by the repetition detection in
Section 4 and the optimization framework for dense
reconstruction in Section 5. Experiments and applications
are shown in Section 6.
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2. Related Work
Dense reconstruction of repetitive structures strongly

connects the work on repetition analysis and on stereo
reconstruction. Due to the importance of repetition and
symmetry in man-made scenes, many methods have been
proposed to detect repetitive and symmetric structures
especially from facade images (e.g. [10, 17]).

Reconstruction from Repetition and Symmetry Sparse
reconstruction based on repetition and symmetry has been
well studied. Hong et al. [7] explores general symmetry (in-
cluding translational, reflective, and rotational symmetry)
to recover camera pose and the orientation of scene objects,
as well as some sparse geometry, from a single view. Fran-
cois et al. [5] use a virtually mirrored viewpoint to frame
the single view reconstruction as a two view reconstruction.

Based on the sparse reconstruction, several work has
furthur achieved dense reconstruction. Gool et al. [6]
propose an optimization framework that uses the sprase
feature matches as control points to recover dense depth
maps. Shimshoni et al. [14] recover symmetric human face
models by propagating the correspondences of manually-
given pixels pairs based on photometric stereo. Our work
proposes a global energy minimization framework to
model both repetition and reflective symmetry in the image
domain with a simple interval map model.

Markov Random Field Stereo MRF-based stereo opti-
mization typically uses a data term to enforce photometric
consistency between matched pixels, and a smoothness
term to penalize the inconsistency of disparities between
pixel neighbors [3, 11, 16]. Most stereo algorithms enforce
the consistency only in the traditional pixel neighborhood,
while consistency between non-neighboring pixels is often
considered intractable. We propose a novel repetition and
symmetry-based energy function that enforces high-level
consistency between the disparities of non-neighboring pix-
els. Furthermore, we show that high-level 3D information
can be modeled in the image domain by graphcut.

Symmetric Stereo Symmetric stereo methods treat all the
images equally. Particularly, to recover multiple depth maps
that are consistent with each other, the interactions between
the depth maps need to be modeled. However, the interac-
tions between pixels in different images are depth depen-
dent posing a challenge to an image based model. Several
methods have been proposed to enforce the consistency in-
directly through visibility and occlusions. For example, [9]
define an interaction set among multiple images and enforce
the hard visibility constraint, and [15] uses an occlusion
term to penalize the occlusion, which indirectly makes
depth maps consistent. In this paper, the proposed energy
function will directly enforce the consistency between mul-
tiple depth maps (and different parts within the depth map).

3. The 3D Geometry of Rectified Images
We consider the dominant horizontal repetition and

symmetry often found in man-made environments, which
can be robustly detected. Without loss of generality, we
assume the following properties for one set of 3D repeating
structures that have equal spacing:
• The camera center is at (0, 0, 0);
• The 3D repetition step is 1 along direction (1, 0, 0)T .
The projection matrix of the original image can be written
as P = KR[I | 0], where K is the intrinsic calibration and
R is the camera orientation.

Consider a rectified image generated according to
two orthogonal vanishing points in the original im-
age. The homography H for rectification must satisfy
HKR (1, 0, 0)T ∼ (1, 0, 0)T and HKR (0, 1, 0)T ∼
(0, 1, 0)T . The matrix H can be written as[

a 0 b
0 c d
0 0 1

]
(KR)−1,

where a, b, c, d are decided by the choice of rectification
and the calibration K. Given a 3D point (X, Y, Z)T , the
corresponding pixel (x, y)T in the rectified image is

(x, y)T = (
aX

Z
+ b,

cY

Z
+ d)T . (1)

Given a set of repeating 3D points (X + k, Y, Z)T with
k = 0, . . . , N andN the number of repetitions, their projec-
tions lie on the same scanline y = cY/Z + d in the rectified
image, and the distance between any two neighbouring
projections is a/Z. Therefore, the repetition interval is
actually a function of depth Z, which we denote as

IZ =
a

Z
. (2)

This implies for the reconstruction: 1) the pixel correspon-
dences need to be considered only within scanlines, 2) the
relative depth of the 3D point can be recovered from the
image repetition interval if the camera calibration is known.
When the camera calibration K is available, the camera
pose can be solved. Hence, a, b, c, and d can be obtained
from H , and the 3D location of each pixel (px, py) in the
rectified image can be then recovered as

(Xp, Yp, Zp)T = (
px − b
IZ

,
a(py − d)

cIZ
,
a

IZ
)T . (3)

For uncalibrated cameras, we assume the principle point of
the original image at the image center, and recover the focal
length and the camera pose by enforcing the orthogonality
of vanishing directions, which is similar to [13]. In case of
degeneracy where the vanishing points are almost at infin-
ity, we choose the focal lengths based on the EXIF header
of the JPEG if its available or as a typical viewing angle.
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In addition to pure repetition, it is possible to model
local reflective symmetries for the repetitive structures.
Let the range along (1, 0, 0)T of the first element be
[X0 − 0.5, X0 + 0.5], the symmetry planes in 3D are
Xi = X0 + i

2 , i ∈ N, and their corresponding positions in
the rectified image are

x =
a(X0 + i

2 )

Z
+ b = (X0 +

i

2
)IZ + b. (4)

Hence, the symmetry axes at different depths are trans-
formed to different locations in the rectified image. Besides
the depth, symmetry axes is constrained by the global
unknown X0, which we can automatically recover in
Section 5. Note that x = b is the vanishing line of any
planes that is perpendicular to (1, 0, 0).

4. Repetition Detection
As the input to our algorithm, we deploy the repetition

detection of [17] to obtain rectified images and their
repetition regions. In addition, the detection provides the
vanishing points of the original image (from which we
recover K and R) and the homography H used by the
rectification (from which we recover a, b, c and d). The
detection [17] is particularly robust to the appearance
differences between the repeating elements, and we exploit
these differences for the dense reconstruction.

Each detected repetition region P fits the geometric
model discussed in Section 3, which allows the repetition-
based dense reconstruction. For each region P , we choose
a repetition interval range according to the feature matches
along the scanlines in the region, where the feature matches
are byproduct of the repetition detection. Let DX be
the horizontal distances of the matched feature pairs.
We empirically choose the repetition interval range as
L = {l | l ∈ N, |l − mean(DX)| < 2

√
var(DX)}.

Experiments show that such a range is typically larger than
the actual interval range, but we can search for a more
accurate range from a first-pass reconstruction with L.

5. Optimization Framework
Instead of direct recovery of depth, we densely estimate

the repetition intervals for pixels of a repetition region in
the rectified image, which are inversely proportional to the
depths. Similar to the disparity map in two-view stereo,
we call this interval map. An interval map is basically a
labeling f over a repetition region P , such that each pixel p
matches either p − f(p) or p + f(p)1 2. As a key property
of repetitive structures, the interval map should satisfy:

f(p− f(p)) and f(p+ f(p)) are similar to f(p).

1To simplify the notations, we use p± I to denote (px ± I, py).
2Throughout the paper, we do not use any pixels outside the region P .

Now we propose a novel energy function to jointly
model photometric appearance similarity, neighborhood
smoothness and repetition consistency:

E(f) = Edata(f) + Esmooth(f) + Erepetition(f), (5)

where the data term Edata is the matching cost of repeating
pixels, the smoothness term Esmooth penalizes the differ-
ences between the repetition intervals of neighboring pixels,
and the repetition term Erepetition penalizes the differences
between the repetition intervals of corresponding pixels.

Data term since repetition is bidirectional, the data cost
should combine the cost from the left matching and right
matching. Let D(p, q) be the matching cost of two pixels
p and q, we define the data cost for a pixel p as

Df (p) =

 mean { D(p, q) | q = p± f(p), q ∈ P }
if p+ Lmax ∈ P or p− Lmax ∈ P

0 otherwise.

The two cases of Df (p) ensure that a pixel either has valid
costs for all labels or 0 for all labels, which handles the
margin when the repetition count is two. The data cost for
the entire image is defined as

Edata =
∑
p∈P

Df (p). (6)

Given two pixels p and q, we design their matching
cost based on the maximum absolute difference from the
three color channels, which we denote as DO(p, q). We
employ two standard techniques to improve the matching
cost: We first apply the Birchfield-Tomasi (BT) sam-
pling [1] to reduce errors caused by the resampling during
the image rectification, which is denoted by DBT (p, q).
Second, we truncate with TD the matching cost to im-
prove robustness to occlusion leading to the pairwise cost
D(p, q) = min(DBT (p, q), TD).

A significant difference between the repetition-based
reconstruction and multi-view stereo is that we match
the appearances of multiple surfaces within one image,
while multi-view stereo matches the appearance of the
same surface across multiple images. Hence we aim for
more robustness as real scenes often do not have perfect
repetition. The cost truncation supports the robustness of
large appearance differences of the repeating elements.

Smoothness term we define the smoothness cost based
on the truncated L1 distance of the repetition intervals of
the neighboring pixels. Let NP be the set of neighboring
pixels in the repetition region P for the 4-neighborhood
system, our smoothness term is defined as

Esmooth = ωsmooth

∑
(p,q)∈NP

V (p, q), (7)
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where ωsmooth is a positive penalty for violating the
smoothness constraint. To boost robustness we again chose
a truncated cost V = min(TV , |f(p) − f(q)|) with TV
being the truncation threshold. The cost V is small for
small interval differences, and avoids overly punishing
large interval changes at object boundaries.

Repetition term We design a novel repetition term to pe-
nalize the deviation between different instances f(p±f(p))
of the same repetition f(p). Treating the different parts
of the interval map as the disparity map of the repeating
elements, the repetition term essentially provides a new
formulation for symmetric stereo by explicitly enforcing
that matching pixels have similar disparities.

For convenience of notation, we define a function

ρ(condition) = condition is true ? 1 : 0.

The repetition term between two pixels only needs to be
enforced when their distance is equal to one of their repe-
tition intervals. The key difference between the repetition
term and the smoothness term is that the pixel pairs are
relying on the labels of the pixels, which defines a dynamic
neighborhood for each pixel. We then define a function Rf

to check if two pixels p and q should be compared.

Rf (p, q) = ρ(|px − qx| ∈ {f(p), f(q)}). (8)

We also consider other requirements for enforcing the
repetition. As discussed in the data term, the matching of
repeating pixels often involves large appearance changes
from occlusions, reflections, noise etc. It is not optimal
to enforce the repetition consistency without considering
the photometric similarity, as the global optimization may
try to avoid those matching cost and propagate incorrect
intervals. Hence it is natural to loosen the repetition
constraint when the two locations significantly deviate in
appearance. This is similar in spirit to the idea reducing
the smoothness constraint across image edges. We define a
guiding function G(p, q) to evaluate if the repetition-based
consistency should be considered for two pixels.

Glocal(p, q) = ρ(DBT (p, q) < TG), (9)

where TG is a threshold for testing the pixel similarity.
Consequently, the repetition cost is applied only between
similar pixels, and larger TG gives stronger constraint.

In Section 6, we compare Glocal to two other choices
of the guiding function: 1) No repetition constraint with
Gnone = 0; 2) The global repetition term Gglobal that
enforces repetition based on the region decomposition of
[17] without considering the photometric similarity. In the
following Glocal from Equation (9) is always used unless
otherwise specified.

We define the repetition cost of the entire image as

Erepetition = ωrep

∑
qy = py, Rf (q, q)=1

G(p, q) ρ(f(p) 6= f(q)). (10)

where ωrep is a positive penalty for violating the repetition
consistency. Equation (10) uses a dynamic neighborhood
for the pixel nodes in the graph, which can not directly be
handled by traditional optimization methods. However, the
above equation can be rewritten as

Erepetition = ωrep

∑
|qx− px| ∈L, qy = py

Rf (p, q)G(p, q)ρ(f(p) 6= f(q)).

(11)
Now the neighborhood is fixed and the standard energy
optimization methods are applicable. Since the number of
edges for the repetition term is inO(|P |‖L|), one limitation
of this work is the possibly large memory consumption.

In this work, the efficient α-expansion graph-cut [3, 2]
is used to minimize the proposed energy. Kolmogorov and
Zabih [8] proved that α-expansion can minimize the class
of energy functions that satisfy the regularity constraint
e(α, α) + e(β, γ) ≤ e(β, α) + e(α, γ). We now prove
that our repetition term fulfills the regularity constraint.

Given an edge between two pixels p and q, let
ω = ωrepG(p, q) and δ = |px − qx|, the repetition cost
e(f(p), f(q)) of the edge is a function of their labels

e(f(p), f(q)) = ω Rf (p, q) ρ(f(p) 6= f(q))
= ωρ(f(p) = δ or f(q) = δ) ρ(f(p) 6= f(q)),

which is obviously non-negative and symmetric.
Now, we consider three labels α, β and γ to prove the

regularity property. If α = β, α = γ or β = γ the inequal-
ity can be simply proved by substitution, which this paper
will skip. If the three labels are all different, at most one of
them can be equal to δ, and there are four different cases:

IF α = δ : e(β, γ) = 0, e(β, α) = ω, e(α, γ) = ω;
IF β = δ : e(β, γ) = ω, e(β, α) = ω, e(α, γ) = 0;
IF γ = δ : e(β, γ) = ω, e(β, α) = 0, e(α, γ) = ω;
Otherwise : e(β, γ) = 0, e(β, α) = 0, e(α, γ) = 0.

Since e(α, α) ≡ 0, the inequality below holds true:

e(α, α) + e(β, γ) = e(β, γ) ≤ e(β, α) + e(α, γ).

It is also worth noting that our choice of repetition cost
is non-trivial, we find that other choices such as having
e(f(p), f(q)) proportional to (truncated) |f(p) − f(q)| or
penalizing only the non-occluded pixels will violate the
regularity constraint of α-expansion.

Reflective symmetry term Similar to the repetition term,
any available knowledge about the reflective symmetries
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can be incorporated. To model them it is required to know
the symmetry axis X0 in Equation (4). The symmetry axis
is initially unknown but can be recovered from the sparse
feature correspondences or alternatively from the dense
correspondences. For improved robustness we opt for the
latter and propose a two-step approach:

1. Recover the interval map f0 using only E(f) from
Equation (5), and locate X0,

2. Refine the interval map by a graphcut that includes the
reflective symmetry term:

E+(f) = E(f) + Esym(f). (12)

To extract X0 we render an orthogonal view f ′0 of the inter-
val map f0 by generating the 3D model from f0 by using
Equation 3 and reprojecting the 3D model along (0, 0, 1)T .
For robustness 3D points that have f0(p + f0(p)) 6= f0(p)
or f0(p − f0(p)) 6= f0(p) are excluded. NextX0 is chosen
from all possible locations in the repeating elements to
maximize the number of consistent pixels pairs in f ′0.

Next we introduce our reflective symmetry term Esym.
Given two pixels (p, q) that have different labels, we would
like to give a penalty if they are at symmetric positions w.r.t.
the depth of either f(p) or f(q). First, Equation 4 gives the
set of symmetry axes for an interval I , thus we can check if
the two pixels are symmetric w.r.t to one of these symmetry
axes. Second, to enforce reflective symmetry only within
each element, we require |px − qx| < Lmin. We denote
the function that tests the two aforementioned conditions as
C(I, p, q). Given an interval map f , we define the indicator
function S(f, p, q) for a pixel pair (p, q) as

S(f, p, q) = max(C(f(p), p, q), C(f(q), p, q)). (13)

Enforcing reflective symmetry is harder than enforcing
repetition due to the occlusions we often have from oblique
viewpoints. For example, in Figure 2.3, the right halves
of many repeating elements are severely occluded, and it
would create new problems if enforcing reflective symme-
try naively everywhere. In particular, enforcing reflective
on pixels whose symmetric structures are occluded would
require to perturb the occluding pixels. On the contrary,
only a few pixels are occluded in terms of pure repetition.
It is less reliable to recover depth from reflective symmetry
than from repetition, meaning the reflective symmetry
should be a waker constraint than the repetition.

In this paper, we realize the reflective symmetry term
as a refinement such that we do not contaminate the pixels
Λ(f0) that already satisfy the reflective symmetry in f0:

Λ(f0) = {p | ∃q(qy = py, f0(p) = f0(q), S(f0, p, q) = 1)}.

The graph edges Φ(f0) for enforcing reflective symmetry
are chosen to include all possible symmetric pairs but to

not have any pixels in Λ(f0):

Φ(f0) = {(p, q) |py = qy, p, q /∈ Λ,∃l∈L(C(l, p, q) = 1)},

The symmetry term for the entire region is then given by

Esym(f) = ωsym

∑
(p, q)∈ Φ(f0)

S(f, p, q) ρ(f(p) 6= f(q)),

where ωsym is the penalty for violating reflective symmetry.
The proposed symmetry term also satisfies the regularity

constraint. Consider the cost e(f(p), f(q)) of an edge
(p, q), if e(β, γ) = ωsym, one of C(β, p, q) and C(γ, p, q)
must be 1. As a result, either e(β, α) or e(α, γ) will
be equal to ωsym, and e(β, γ) ≤ e(β, α) + e(α, γ) is
satisfied. Although it seems intuitive to incorporate oc-
clusion information, we unfortunately find such reflective
symmetry terms violating the regularity constraint.

6. Experiments
This section demonstrates the experimental results of

the proposed repetition-based single view reconstruction to
show the advantages of the novel optimization framework.

6.1. Repetition-based Single-view Reconstruction

We first present our single-view reconstruction on a
variety of challenging urban scenes. While the pervasive
existence of the present repetition allows us to recover the
dense 3D geometry from single images. The pipeline we
deploy for urban scene reconstruction is:

1. α-expansion graphcut to minimize E(f)
2. Find the refined interval range L′ from recovered f
3. α-expansion graphcut to minimize E(f) on L′

4. Extract 3D symmetry axis parameter X0 using f
5. α-expansion graphcut to minimize E+(f) on L′

The refined interval range is extracted by excluding
the labels that are assigned to very few pixels. Let
r(l) = |{p|f(p) = l}|/|P |, the new range is chosen to be
L′ = [ min{l|r(l) ≥ rmin}, max{l|r(l) ≥ rmin} ], where
rmin = 1% is used. This filtering won’t affect most of the
pixels, but it does improve the robustness by neglecting
rarely used labels. We will show the effect of the label fil-
tering in the supplemental material. In all our experiments
we use TD = TG = 25, TV = 2, ωsmooth = ωrep = 10,
and ωsym = 2 unless explicitly stated.

Figure 2 shows the different results on four challenging
images when using different repetition constraints. We first
compare the interval maps recovered with three different
repetition terms (after step 1-3).

• No repetition constraint G(p, q) = 0. The standard
graphcut is able to recover some correct intervals for the
repetition regions, but the results show its sensitivity to
noise and outliers in real scenes.
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1

2

3

4

(a) Input rectified (b) Reconstruction with (c) Reconstruction with (d) Reconstruction with (e) Refined reconstruction
image no repetition term global repetition term local repetition term w. reflective symmetry

Figure 2. Comparison of different repetition terms. The brighter colors in the interval maps correspond to larger intervals and closer
surface, and the gray scale bars on the left give the number of filtered interval labels. The comparison shows the local repetition
term reconstructs correct interval maps despite the variations between the repeating elements, while the global repetition term tends to
over-smooth and propagate errors. The last column show2 the improvement after enforcing reflective symmetry.

• Global repetition term Gglobal(p, q) enforces repetition
everywhere within each repetition region group. Despite
the most continuous repetition results, this constraint is
error-prone by propagating local errors (e.g. matching
with occlusion boundaries). The quality is limited by the
accuracy of the initial region segmentation, for example,
the triangle structures in the 4th row in Figure 2 are
smoothed away.

• Local repetition term Glocal(p, q) enforces repetition
only for similar pixels. With the local repetition term, it
is possible to reconstruct repeating structures even under
large occlusions. It specifically handles the repetition of
different structures (e.g. Figure. 2.3 and 2.4).

Table 1 lists the computation time for the experiment
shown in Figure 2. It can be seen that enforcing the local
repetition term takes 3 times the time of the standard
optimization. For the local repetition term, no edges
will be constructed in the graph for the pairs that satisfy
G(p, q) = 0, and the total number of edges for repetition
is |{(p, q)|G(p, q) 6= 0, |qx − px| ∈ L, qy = py}|. Conse-
quently, the optimization with the local repetition term runs
faster than that with the global constraint term.

The refinement of interval maps by reflective symmetry
is demonstrated in Figure 2.(e). The repeating structures in
this experiment are all reflective symmetric, but the recon-

CPU: 3Ghz P4 Time (seconds)/ |L′| refine
Dim(P )×|L| none global local time

1 443x298x17 11/17 38/13 32/13 +14
2 781x461x17 22/14 79/13 67/14 +44
3 865x504x10 17/9 47/5 35/5 +14
4 996x582x13 29/12 91/8 79/8 +39

Table 1. Reconstruction timing (step 1-3) and label filtering under
different repetition terms. The last column gives the extra time on
enforcing reflective symmetry (step 4-5).

struction with neither local nor global repetition term can
produce symmetric interval maps. By including the reflec-
tive symmetry term into the optimization, the inconsisten-
cies between reflectively symmetric regions are corrected.

We reconstruct 3D structures by incorporating the recov-
ered interval map and calibration according to Equation 3
and present the high quality results in Figure 1(b), Figure 3
and Figure 5.(a) . The camera positions and calibrations
shown in Figure 3 are recovered based on vanishing points,
while for Figure 1(b) and Figure 5(a) they are selected
according to the EXIF data of the images because their
recovered vanishing point locations are close to infinity.
Hence, after scaling the 3D structure along the Z direction
as well as the focal length, the resulting image does not
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Figure 3. Dense reconstruction results. The first row gives the
original images, and the second row shows the recovered 3D mod-
els. Each 3D bounding box also indicates a symmetric repeating
item in 3D. More details can be found the supplemental video.

change. Such an ambiguity can not be solved without
additional information (e.g. the third vanishing point).

Experiments show that our repetition term is robust to
small errors in repetition detection and small radial distor-
tions. It is mainly because we do not explicitly enforce the
consistency between non-neighboring repeating elements
thus preventing disturbance from larger distortions. In
addition, the Birchfield-Tomasi sampling compensates
partially for the errors. The data term and smoothness term.
The typical impact would be a small shift for the location
of the occlusion boundaries. For example, Figure 2.1 is an
image that contains obvious radial distortion.

6.2. Repetition-based Symmetric Stereo

The proposed repetition-based reconstruction can also
be applied to the standard two-view stereo and multi-view
stereo of cameras that are equally spaced. For two-view
stereo, the proposed method can be viewed as a symmetric
stereo that explicitly enforces the consistency between
multiple disparity maps.

Given a stero pair (left image L and right image
R), the input to our algorithm is their combined image
P = [R,L]. We use such combined images to evaluate the
proposed algorithm on the Middlebury datasets [11, 12],
where the interval range is known from the ground truth
disparity range. We slightly modified our pipeline to dis-
able the steps that are specific to urban scenes by skipping
the label filtering and reflective symmetry refinement.

Compared with the urban scene reconstruction ex-
periments, we selected looser parameters to account for
the higher image quality. In addition, we also make the
smoothness cost adaptive to image edges, which are more
reliable than those in the highly-textured and noisy urban
images. The adaptive smoothness is chosen as:

V ′(p, q) =

{
0.5ρ(f(p) 6= f(q)) DO(p, q) > TE
min(TV , |f(p)− f(q)|) otherwise

TE , ωsmooth Avg. Tsukuba Venus Teddy Cones Bad
TG, ωrep Rank all all all all Pixels

∞,2, 10, 0 66.9 3.74 1.65 24.6 23.7 13.4
∞,2, 10, 1 61.0 3.67 1.65 19.7 14.5 10.4
∞,2, 10, 2 59.9 3.60 1.47 19.2 14.1 10.1
∞,2, 10, 4 59.9 3.46 1.20 17.9 12.9 9.79
∞,2, 20, 4 59.9 3.47 1.27 18.6 12.5 9.96

5, 4, 10, 0 68.2 3.53 2.10 24.6 31.7 15.1
5 ,4, 10, 1 58.2 3.06 1.50 19.0 18.1 10.3
5, 4, 10, 2 53.2 2.78 1.28 17.6 15.0 9.22
5 ,4, 10, 4 44.7 1.93 0.83 16.0 13.9 8.33
5, 4, 20, 4 43.3 2.02 0.80 15.8 12.8 7.99

Table 2. Evaluation of the repetition-based symmetric stereo. We
choose two sets of smoothness setting: {TE = ∞, ωsmooth = 2}
and {TE = 5, ωsmooth = 4}, and we gradually increase the
strength of the repetition term by increasing ωrep and TG, which
demonstrates the increasing improvements of reconstruction
quality. Extended version of this table can be found in the
supplemental material.

Figure 4. Interval maps recovered from the Middlebury
dataset [11, 12]. Two smooth disparity maps are generated
simultaneously, and the results are particular accurate for the
non-occluded areas.

where TE is the edge detection threshold. Consequently,
smaller penalties are given to image edges. Note that the
edge adaptiveness can be disabled by setting TE =∞.

Table 2 shows the evaluation of the recovered interval
map under different settings (We fix the remaining param-
eters: TD = 5, TV = 2, and ωsym = 0). The evaluation
proves that the additional repetition term in fact improves
the reconstruction by explicitly enforcing the consistency
between the two disparity maps. One example set of the
reconstruction is given in Figure 4. The repetition-based
symmetric stereo can be furthur improved by combining
with other existing techniques, such as segmentation-based
smoothness constraint.

6.3. Ortho-rectified Images

One of the interesting application of our single view re-
construction is to generate ortho-rectified views, an invari-
ant view of 3D structures. Based on the texture synthesis
proposed by [4], we generate the ortho-rectified images by

7
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(d) (e)

(f) (g)

Figure 5. Examples of generating ortho-rectified views. (a) Dense
surface model. (b) Fused orthogonal interval map. (c) Frontal
view with missing pixel marked red. (d-g) Results of synthesized
orthogonal views that accurately align the symmetry axes at
different depths. Indeed, there are a few artifacts in (g), for
example, the wrong door is copied to the last element, the error
around the depth discontinuity above the center door. We suggest
zooming to see the details.

filling the missing pixels from the best copy out of their
repeating counterparts when they are visible in other in-
stances of the repeating element. To reduce the noise in the
reconstruction, we first apply a simple fusion of the orthog-
onal interval map to refine the reconstruction by enforcing
smoothness, repetition and reflective symmetry in the 2.5D
space of the interval map. Figure 5 shows examples of the
fused orthogonal interval map and the final synthesized
image. In Figure 5, the occluded parts of the white windows
in the first copy and the last copy are filled in smoothly.

Due to the difference between the original viewpoints
and the orthogonal projections, there are pixels in the ortho-
rectified image for which all the copies are invisible in the
original image (compare Figure 5 and Figure 2.1). Generat-
ing truly realistic ortho-rectified images would require more
complicated model, which is beyond the scope of this paper.

7. Conclusion and Future Work
We proposed a novel framework for dense single view

reconstruction enforcing the high-level constraints provided
by repetition and symmetry along with the photometric

consistency and neighbor smoothness in a single unified
model. We demonstrate the power of our energy minimiza-
tion framework for single view dense reconstruction by
accurately extracting repetitive structures.

In the future, we would like to apply the proposed
optimization framework to multi-view reconstruction and
improve the quality of the ortho-rectified facade images.
Given that our intervals are corresponding to planes at
different depths, it is straightforward to extend our work to
plane sweeping multi-view stereo.
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