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ABSTRACT

We propose a novel algorithm to synchronize video recording
the same scene from different viewpoints. Our method relies on
correlating space-time interest point distribution in time between
videos. Space-time interest points represent events in video that
have high variation in both space and time. These events are
unique in time and may pronounce themselves in videos from
different viewpoints. We show that by detecting, selecting space-
time interest points and correlating their distribution, videos from
different viewpoints can be automatically synchronized.

1. INTRODUCTION

Dynamic scene reconstruction keeps attracting interest. To
reconstruct a dynamic scene, it is common practice to have
more than one camera recording the scene. In a scenario
the scene is recorded by handheld cameras, the first step
toward reconstruction is to synchronize these videos. Al-
though the synchronization may be done manually, an au-
tomatic algorithm is highly desirable or even necessary
when the reconstruction algorithm does not have control
on when and how the videos come in.
We propose a novel algorithm to synchronize video record-
ing the same scene from different viewpoints. Our method
relies on correlating space-time interest point distribution
in time between videos. Space-time interest points repre-
sent events in video that have high variation in both space
and time. These events are unique in time and may pro-
nounce themselves in videos from different viewpoints.
We show that by detecting, selecting space-time interest
points and correlating their distribution, videos from dif-
ferent viewpoints can be automatically synchronized.
Our method first detects space-time interest points in video
using scale-adapted techniques. Then by selecting the strongest
interest points using a uniform search with uniform sam-
pling algorithm in each video, it forms a distribution of
space-time interest points. This distribution becomes a
descriptor of time feature of the video. A correlation al-
gorithm then tries to correlate these distributions and esti-
mate temporal difference between videos.

2. PREVIOUS WORK

Multiple view reconstruction requires synchronization of
videos from different viewpoints recording the same scene.
Most of the early work does not address the problem of
synchronization and synchronization is mostly done man-
ually. Until recently, Wolf etc.[1] proposed a synchroniza-
tion algorithm that tries to find the time shift by minimiz-
ing the rank of a matrix stacked with tracking point data
from two cameras and Caspi etc.[2] proposed a synchro-
nization method that is based on matching the trajectories
of objects from different viewpoints.
Our method differs from the previous methods in that it
does not need any correspondence between image fea-
tures, not even the linear-combination relation between
image features required by [1]. Instead, it exploits the
correlation of space-time interest point distribution in dif-
ferent videos of the same scene. By correlating these dis-
tributions it achieves synchronization without any explicit
image feature correspondence.
Section 3,4 discuss the basic idea of scale-adapted space-
time interest point. Section 5,6 introduce the concept of
distribution of space-time interest points in time and gives
an algorithm to sample these distributions for synchro-
nization purpose. Section 7 show our experimental re-
sults. Section 8 draws the conclusion and describe po-
tential future work.

3. SCALE-ADAPTED SPACE-TIME INTEREST
POINT

We first introduce image interest points and extend the
concept naturally to space-time interest points.
Image interest points have been studied for a long time.
The most widely used detector of these points is the Harris
corner detector[3]. Suppose a gray image is represented as
I: R2 → R, the convolved matrixη indicates the variation
in image space at point(x, y):

η = g(·, ·, σ) ∗
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Ix andIy are the derivatives of image intensity along im-
age coordinates.g(·, ·, σ) is the gaussian kernel with vari-
anceσ

g(·, ·, σ) =
1

2πσ
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Harris corner detector detects an interest point by finding
the positive maxima of the corner function which is pro-
posed by Harris and Stephens [3]

H = det(η)− k trace2(η) (3)

Scale adapted image interest point detection is proposed
by Lindeberg [4][5]. The idea is to use a combination
of normalized Gaussian derivatives as a gauge for scale
selection. For example, a possible choice of gauge is a
normalized Laplacian:

∇2
norm = Ixx,norm + Iyy,norm (4)

whereIxx = σ2Ixx andIyy = σ2Iyy. σ is the variance
of the Gaussian kernel. Estimating the scale boils down to
detecting theσ at which∇2

norm assumes local maxima.
Further, Lindeberg[6] explores temporal scales followed
by more recent work of Laptev and Lindeberg [7][8] that
generalizes the above ideas to the space-time domain. The
interest point detection matrix becomes
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Ix andIy are the derivatives of image intensity along im-
age coordinates.It are the derivative along time.
The corner function that tells the strength of an interest
point becomes

H = det(η)− k trace3(η) (6)

The normalized Laplacian for scale selection in space-
time becomes:

∇2
norm = Ixx,norm + Iyy,norm + Itt,norm (7)

Ixx,norm = σ2aτ2bIxx, Iyy,norm = σ2aτ2bIyy andItt,norm =
σ2cτ2dItt. σ andτ are the variances of the Gaussian ker-
nel in space and time. The parametersa,b,c andd are set as
a = 1, b = 1

4 , c = 1
2 andd = 3

4 for a prototype space-time
event of a gaussian blob[7][8]. These values can be used
when no prior information of space-time events available
and can be adjusted for more specific event detection.
We are going to adopt this space-time interest point detec-
tor in our synchronization algorithm.

4. SELECTION OF SPACE-TIME INTEREST
POINTS

Space-time interest points represent events such as object
appearing and disappearing, object breaking and merging,

and velocity change[7][8]. We need a criterion to select
space-time interest points in video.
First, space-time interest points are selected by their strength
shown by the corner function (eq. 6). Toward this end, we
need to manipulate the function. LetH = 0 in (eq. 6).
We have

k =
det(η)

trace3(η)
(8)

whereη is given by (eq. 5).k indicates the strength of a
space-time interest point. The more variation in space and
time the interest point has, the larger k is.
Another way to expressk allows to observe the range of
k:

k =
λ1λ2λ3

(λ1 + λ2 + λ3)3
(9)

whereλ1, λ2 and λ3 are the eigenvalues ofη given in
(eq.5). Because we are only interested in positive k and in
that case all eigenvalues must be greater than 0, the range
of k is (0, 1

27 ].
We select those points whose k value is over some strength
threshold S in(0, 1

27 ] as space-time interest points.
It could be the case thatλ1, λ2 andλ3 are small, which
is an indication of weak interest points, but because they
have similar values they result in large k, which is an indi-
cation of strong interest points. So we need one more cri-
terion to exclude such a situation. We set a simple thresh-
old T for the minimum ofλ1, λ2 andλ3.
Combining these two criteria, we select space-time inter-
est points based on

• The minimum of eigenvalues is greater than thresh-
old T

• The strength indicated byk computed using (eq.9)
is greater than threshold S.

In practice, we are interested in finding a certain number,
e.g. 200, of the strongest space-time interest points in a
video. We do not set threshold S and T explicitly. In-
stead, our algorithm has two passes. In the first pass, we
keep pruning interest points with smaller k until a certain
number, e.g. 400, of interest points are left. In the sec-
ond pass, out of the 400 interest points, we choose the 200
with larger minimum eigenvalues.

5. SPACE-TIME INTEREST POINTS
DISTRIBUTION IN TIME

Because space-time interest points represent special events
such as object appearing and disappearing, object break-
ing and merging, and velocity change[7][8],for two cam-
eras recording the same scene, most of these events, if not
all, can be expected to appear in both videos. The accu-
mulation of space-time interest points between different



videos recording the same scene highly correlate. Space-
time interest point distribution over time can serve as a de-
scriptor of time feature of the video. By correlating these
distributions, videos can be synchronized.
We need effective techniques to sample space-time inter-
est point distribution, which is the topic of this section,
and then to exploit their correlation, which is the topic of
the next section.
An efficient algorithm to sample the distribution of space-
time interest points is needed. The reasons why we need
a sample rather than a complete distribution are

• It is computationally expensive to find all space-
time interest points in video

• It is not necessary. Distribution formed by a subset
of the strongest space-time interest points is usually
all we need for correlation purpose.

We choose a uniform search with uniform sampling algo-
rithm to form the distribution. We look at video data as
a functionf( ~X) ( ~X = [x, y, t], x, y are the image space
coordinates andt is the time coordinate). We divide the
domain off into uniform regions, then uniformly sam-
ple within each region and find the strongest space-time
interest point locally. Then we globally select a certain
number of the strongest space-time interest points from
regional ones, from which the distribution is formed.
Distribution of space-time interest points is presented as a
histogram. The x-axis represents time and y-axis, the total
number of space-time interest points found accumulated
at that time.

6. CORRELATION OF SPACE-TIME INTEREST
POINT DISTRIBUTION AND ESTIMATION OF

TEMPORAL DIFFERENCE

The correlation between space-time interest point distri-
bution is a good measurement for synchronization. Sup-
pose the distribution in the first video is represented as
V 1 = [η1, η2, ..., ηm] and the distribution in the second
video is represented asV 2 = [ζ1, ζ2, ..., ζn], the correla-
tion function is defined as

C(t) =
j=min(m,n)−max(−t,1),k=min(m,n)−max(t,1)∑

j=max(−t,1),k=max(t,1)

ηj ζk

t is the possible frame(time) offset.t is an integer within
[−m + 1, n]. t is such defined that when it is positive the
first video is lagging behind, negative, running ahead. The
t at whichC(t) reaches its maximum is the estimation of
the temporal difference.

Figure 1: (top) sample frames of the first football field
sequence with space-time interest points denoted using
transparent red squares (bottom)sample frames of the sec-
ond football field sequence with space-time interest points
denoted using transparent red squares.
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Figure 2: (left) the distribution of space-time interest
points for the first football field sequence (middle) the dis-
tribution of space-time interest points for the second foot-
ball field sequence (right) the correlation of the two distri-
butions. The correlation reaches its maximum for a frame
offset of +24 which is the estimation of the temporal dif-
ference between two videos.

7. EXPERIMENTS

We carried out experiments to test our synchronization
method. Most of the tests turned out positively. There
was one case where our method failed and we will give
out the reason and, more importantly, a method which can
inform us when our method possibly fails.
The first test case(Figure 1,2) is a remote scene with two
cameras recording a field where two persons are practic-
ing football. The videos that we use for synchronization
are of 200 frames running about 6 seconds. The total num-
ber of strong space-time interest points in each video, de-
tected, selected and used to build the distribution by our
algorithm, is around 200. The temporal difference esti-
mated by our method is 24 frames. The result corresponds
to the value derived by human inspection.
The second test case(Figure 3,4) is an indoor scene with
two cameras recording the same person talking and ges-
turing. The videos that we use are of 100 frames running
about 3 seconds and well synchronized in a controlled lab
environment. We offset one video by 20 frames. The total
number of strong space-time interest points in each video,
detected, selected and used to build the distribution by our



Figure 3:(top) sample frames of the first indoor sequence
with space-time interest points denoted using transpar-
ent blue squares (bottom) sample frames of the second
indoor sequence with space-time interest points denoted
using transparent blue squares.
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Figure 4: (left) the distribution of space-time interest
points for the first indoor sequence (middle) the distribu-
tion of space-time interest points for the second indoor se-
quence (right)the correlation of the two distributions. The
correlation reaches its maximum for a frame offset of -20
which is the estimation of the temporal difference between
two videos.

algorithm, is around 200. The temporal difference esti-
mated by our method is 20 frames. The result corresponds
to ground truth.
The third test case(Figure 5,6) is similar to the second one
only that two cameras have a wider baseline. The tempo-
ral difference estimated by our method is 6 frames. The
result corresponds to ground truth. However, it can be ex-
pected that as the baseline gets wider, it gets harder for our
method to synchronize.
The fourth test case(Figure 7,8) shows a failure of our
method. The scene is a jogger. This test case is chal-
lenging. First, two cameras have a very wide baseline.
Second, the jogger is partially occluded in one viewpoint.
Third, the jogging motion which incurs space-time inter-
est points is repetitive. There are three high peaks appar-
ently apart from each other corresponding to frame offsets
of -11, -1 and 22 in the correlation graph(Figure 8). Al-
though the maximum correlation is reached for a frame
offset of−11, the actual temporal difference is22 which
corresponds to the third highest peak. Multiple peaks in
the correlation graph indicate ambiguity of the estimation.
It can be detected by the following method:

Figure 5:(top) sample frames of the third indoor sequence
with space-time interest points denoted using transpar-
ent blue squares (bottom) sample frames of the second
indoor sequence with space-time interest points denoted
using transparent blue squares.
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Figure 6: (left) the distribution of space-time interest
points for the third indoor sequence (middle) the distri-
bution of space-time interest points for the second indoor
sequence (right)the correlation of the two distributions.
The correlation reaches its maximum for a frame offset
of +6 which is the estimation of the temporal difference
between two videos.

• Find all peaks that are above the value of80% of
the highest peak.

• If there is no other peak in that range except the
highest one, the estimation is reliable.

• If there are multiple peaks that correspond to tem-
poral differences apart from each other, more ac-
curately, whose distances are beyond the accuracy
tolerance of estimation, e.g. a frame offset of 5,
the estimation is ambiguous; however, if they cor-
respond to temporal differences whose distances are
with the tolerance, the estimation from the highest
peak is still reliable because the neighboring peaks
are presumably side products of a good correlation.

8. CONCLUSION AND FUTURE WORK

By correlating space-time interest point distribution of videos
recording the same scene, the temporal difference between
them can be estimated. We demonstrate this conceptually,
from the implication of space-time interest points and the



Figure 7: top) sample frames of the first jogger sequence
with space-time interest points denoted using transparent
red squares (bottom)sample frames of the second jogger
sequence with space-time interest points denoted using
transparent red squares.
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Figure 8: (left) the distribution of space-time interest
points for the first jogger sequence (middle)the distribu-
tion of space-time interest points for the second jogger se-
quence (right) the correlation of the two distributions. The
correlation reaches its maximum for a frame offset of -11
which is the estimation of the temporal difference between
two videos.

correlation between their distributions, and factually, from
different test cases. We also gives a method to decide
whether ambiguity exists in the estimation.
Further investigation includes using space-time interest points
to automatically calibrate cameras. This involves space-
time interest point matching between videos and an effec-
tive algorithm to deal with outliers. We expect that suc-
cessful application of it may require videos recording the
same scene to satisfy certain requirements on baseline, ob-
ject occlusion, etc.
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