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Abstract

This paper addresses the subspace properties and the recov-
ery of articulated motion. We point out that the nature of the
motion subspace of an articulated object is a combination
of a number of intersecting rigid motion subspaces. The
rank of that motion subspace is less than that of each artic-
ulated part combined, depending on the connection between
every two linked parts, either a rotation axis or a rotation
joint. The reduced dimension(s) results from an intersection
between two motion subspaces of the linked parts which is
exactly the motion subspace of the axis or joint that con-
nects them. From these observations, we describes the rank
constraints of articulated motion, gives an algorithm to re-
cover the image motion of the axis or joint and propose a
novel but simple approach to recover articulated shape and
motion from a single-view image sequence, which is based
on subspace clustering.

1. Introduction
Shape and motion recovery deals with the problem of esti-
mating the geometry of scene objects and the motion of the
camera. It has a wide variety of applications in robotics,
navigation, 3D modeling and animation etc.

Due to scene complexity, a single method of shape and
motion recovery has yet been found. However, a divide-
and-conquer strategy is taking shape in the past several
years. By dealing with different types of motion individ-
ually, more specifically, by discovering the intrinsic proper-
ties of motion subspaces of the scene, major breakthroughs
keep arriving. [1] points out that the rank of the motion
subspace of a rigid scene under orthographic projection is
at most4. Using a factorization method, rigid shape and
motion can be robustly recovered. [2] extends the factoriza-
tion method to a paraperspective projection camera model
approximating a perspective projection camera, whose mo-
tion subspace of a rigid scene remains at most of rank4.
[3] shows that the motion subspace of independently mov-
ing object are orthogonal to each other. This enables the
segmentation of the motion subspace of different objects
by deriving a shape invariant matrix. Once segmentation
is done, the shape and motion of each object can be recov-
ered individually. [4] shows that the motion subspace of
linearly moving objects is at most of rank6 without regard
to the number of objects. A linear algorithm is described

to recover the motions of the objects from this motion sub-
space. [5] shows that the motion subspace of a nonrigid
shape can be approximated by a linear combination of the
motion subspaces of a certain number of key shapes. Using
a factorization method combining nonlinear iterations, the
shape and motion of a nonrigid scene may be recovered.

To our knowledge, the motion subspace of an articulated
object has not be discussed in detail before. We point out
that the nature of the motion subspace of an articulated ob-
ject is a combination of a number of intersecting rigid mo-
tion subspaces. Furthermore, we address two intrinsic sub-
space properties of it. One is that the largest possible rank of
the motion subspace of an articulated object is less than the
sum of that of each articulated part.The correlation of the
motions of two connected parts results in one or two dimen-
sions less in motion subspace depending on the connection
between the parts, either a rotation axis or a rotation joint.
The second property is that the dimension reduction results
from an intersection between the two motion subspaces of
the connected parts.This subspace intersection has a phys-
ical meaning: it is the motion subspace of the rotation axis
or the rotation joint. That leads to two possibilities: the type
of connection can be automatically detected by the rank of
the intersection; the motion of the axis or the joint can be
recovered from this intersection. We provide algorithms to
achieve these.

Another advantage of viewing the motion subspace of
an articulated object as a combination of a number of inter-
secting motion subspaces is that it enables a new and sim-
ple strategy to recover articulated shape and motion, reduc-
ing the problem into clustering and segmenting motion sub-
spaces. Any robust reconstruction method of a rigid object
can then be applied to each segmented subspace. By putting
all the articulated parts into the same coordinate system, e.g.
the camera coordinate, the articulated shape and motion as
a whole get recovered.

Though we achieve the subspace properties and our re-
covery approach of articulated motion independently fol-
lowing the thread of research of motion subspaces of dif-
ferent types, we find some previous works on articulated
motion recovery aiming at similar goals. The attempts to
recover a rotation axis or joint as well as the articulated mo-
tion itself are not new. The originality of this paper lies in
our perspective of viewing articulated motion as a set of in-
tersecting motion subspaces and our recovery approaches
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whose simplicity benefits from this perspective, which only
require basic operations such as subspace intersection, clus-
tering and segmentation. We summarize others’ works in
the following and make comparison with ours. [8] treats
each part of an articulated object as independently moving
objects using [3]’s techniques at the initial stage and then
apply translation constraint on top of it. During the process,
they need to find the root object and solve the rest hierarchi-
cally. Our method treats each articulated part equally as dif-
ferent intersecting subspaces and does not need any heuris-
tic. The translation constraint is intrinsically expressed in
the intersection of motion subspaces and does not need to
be imposed explicitly. [9] first needs to recover the projec-
tive structure like the rotation of the camera before they can
use a minimization approach to recover a rotation axis and
it does not address the case of rotation joints. Our method
directly achieves the axis or joint motion subspace from
the measurement data without carrying out any recovery
beforehand. [10] rigorously proves the algebraic geome-
try relationship between articulated parts supposing differ-
ent types of connections are known. Our motion subspace
method does not need any prior knowledge of that and au-
tomatically detects the type of connection from the motion
subspaces.

There are also a large group of articulated motion track-
ing researches that is based on fitting a prior model with im-
age data. These are even further away from our approach.

Section 2 discusses the rank constraints of the articulated
motion; Section 3 gives the algorithms to compute the im-
age motion of a rotation axis and joint by intersecting mo-
tion subspaces of articulated parts; Section 4 overviews our
approach to recover articulated shape and motion; Section
5 discusses our experimental results; Section 6 draws our
conclusion and describe future works.

2. Subspace Properties of Articulated
Motion

In this section, we introduce the rank constraints of different
motions from rigid to independently moving objects. Then,
we derive the rank constraint of the articulated motion ma-
trix and describe the relationship between the motion of a
rotation axis or joint and the intersection of the motion sub-
spaces of two connected articulated parts. Our discussion is
based on a weak perspective cameral model.

2.1 Rank constraint of the motion of a rigid
body

The motion matrixW is a set ofn tracked feature points of
a rigid body across a number off frames:

W =




u1,1 u1,2 ... u1,n

v1,1 v1,2 ... v2,n

... ... ... ...

... ... ... ...
uf,1 uf,2 ... uf,n

vf,1 vf,2 ... vf,n




(1)

The homogeneous world coordinates of these feature points
are represented byS which we call the shape matrix:

S =




x1 x2 ... xn

y1 y2 ... yn

z1 z2 ... zn

1 1 1 1




M is the camera rotation matrix for all the frames andMi

is a2× 3 matrix for theith frame.

M =




M1

M2

...
Mf




T is the camera translation vector for all the frames.

T =




tx1
ty1
...
txf
tyf




W , M , T andS are related by:

W = (M |T )S (2)

The motion matrix of a rigid body is at most of rank4.

2.2 Rank constraint of the motion of inde-
pendently moving objects

Similar to (1), now then tracked feature points ofW belong
to independently moving objects. Suppose these tracked
points are grouped by the object that they belong to. Sup-
pose there arem objects and their shape matrices areS1,
..., Sm. Their motion matrices and translation vectors are
M1,...,Mm andT1,...,Tm respectively. The relation of these
matrices is:

W = (M1|T1|M2|T2|...|Mm|Tm)




S1

S2

...
Sm




(3)
W is at most of rank4×m.
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2.3 Subspace properties of the motion of an
articulated object

Given a set ofn tracked feature points belonging to an ar-
ticulated object across a number off frames, the rank con-
straint ofW is what we intend to find out.

2.3.1 Rank constraint of two connected articulated
parts of the object

Without loss of generality, we arrange the world coordinate
such that:

• The shape of one part,S1, are fixed.

• The z-axis of the world coordinate system coincides
with the axis in the rotation axis case; the origin coin-
cides with the joint for the rotation joint case.

Thus, for theith frame, the shape of the other part can be
expressed as

S2i =
(

Ri 0
0 1

)
· S2

whereRi can be any3 by 3 rotation matrix for the rotation
joint case and

Ri =




cos θi sin θi

− sin θi cos θi

1


 (4)

for the rotation axis case.
Let Wi be the image coordinates of theith frame in the

motion matrixW .

Wi = (Mi|Ti|Mi|Ti)
(

S1

S2i

)

= (Mi|Ti|Mi|Ti)




S1 (
Ri 0
0 1

)
· S2




= (Mi|Ti|(Mi ·Ri)|Ti)
(

S1

S2

)

There are two observations of the above equation.

• For the rotation axis case, besides two identicalTi

for each frame, it is easy to see from (4) that the last
columns ofMi andMi · Ri are identical to. SoM is
of at most rank6.

M =




M1|T1|(M1 ·R1)|T1

...
Mf |Tf |(Mf ·Rf )|Tf




Thus, the motion matrixW is of at most rank6.

W = M

(
S1

S2

)

• For the rotation joint case,M is at most of rank7 be-
causeRi can be any3 by 3 rotation matrix. Thus,W
is of at most rank7.

2.3.2 The intersection of the subspaces of two con-
nected articulated parts

Each articulated part is basically a rigid body and has a mo-
tion subspace of at most rank4. The motion matrix of two
connected articulated parts combined loses 1 or 2 dimen-
sions, which means the two subspaces intersect. For the
case of a joint connection, the 1-dimensional subspace in-
tersection is the motion subspace of the joint. For the case
of a rotation axis, the 2-dimensional subspace intersection
is the motion subspace of the rotation axis. We provide the
proof in the following.

Suppose the motion matrices of the two parts areW1 and
W2. Let W1i andW2i be the image coordinates of theith

frame inW1 andW2 respectively.

W1i = (Mi|Ti)S1 (5)

W2i = (Mi|Ti)
(

Ri 0
0 1

)
· S2 (6)

• For the case of a rotation joint, from either (5) or (6),
it is easy to derive the image coordinates across all the
frames of the joint, whose homogeneous world coordi-
nates is(0, 0, 0, 1)T :

WJOINT =




T1

...
Tf




First, we are going to prove thatWJOINT is in the
linear subspaces of bothW1 and W2. We assume
that S1 and S2 are not degenerate. So there is a
linear combination of columns ofS1 such thatS1 ·
C1 = [0, 0, 0, 1]T ; so is forS2 such thatS2 · C2 =
[0, 0, 0, 1]T . SoW1 · C1 = WJOINT andW2 · C2 =
WJOINT . WJOINT is in the linear subspaces of both
W1 andW2

Secondly, because the intersection ofW1 andW2 is at
most of rank1. WJOINT is indeed within the subspace
of the intersection ofW1 andW2.

• For the case of a rotation axis, from either (5) or
(6) plus (4), the image coordinates of two points on
the axis, whose homogeneous world coordinates are
(0, 0, 0, 1)T and(0, 0, 1, 1)T respectively, are:

W(0,0,0,1)T =




T1

...
Tf




W(0,0,1,1)T =




M1(3, :)
...

Mf (3, :)


 +




T1

...
Tf



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Mi(3, :) represent the last column ofMi.

First, we are going to prove thatW(0,0,0,1)T and
W(0,0,1,1)T are in the linear subspaces of bothW1 and
W2. Similar to the above, there are linear relations be-
tweenS1, S2 and[0, 0, 0, 1]T and[0, 0, 1, 1]T :

S1 · C11 = [0, 0, 0, 1]T

S1 · C12 = [0, 0, 1, 1]T

S2 · C21 = [0, 0, 0, 1]T

S2 · C22 = [0, 0, 1, 1]T

Thus,

W1 · C11 = W(0,0,0,1)T

W1 · C12 = W(0,0,1,1)T

W2 · C21 = W(0,0,0,1)T

W2 · C22 = W(0,0,1,1)T

So W(0,0,0,1)T and W(0,0,1,1)T are in the linear sub-
spaces of bothW1 andW2.

Secondly, because the intersection ofW1 andW2 is at
most of rank2. span(W(0,0,0,1)T ,W(0,0,1,1)T ) is in-
deed the intersection ofW1 andW2. The image coor-
dinates across all the frames of a point on the axis is in
this subspace.

3 Finding rotation axes and joints in
articulated motion

Before we proceed, we need to introduce some notations.
Bold capitals, e.g.A, denote a matrix.(A,B) means the
concatenation of two matricesA andB.

⊕
A means the

sums along the rows. Bold lowercase letters, e.g.t, denotes
a column vector.

Let W1, W2 be the motion matrices of two connected
parts of an articulated object. We assume that there is no
degenerate motion, i.e.

rank(W1) = rank(W2) = 4 (7)

As discussed in Section 2.3.1,rank((W1,W2)) = 6 for
the case of a rotation axis andrank((W1,W2)) = 7 for
the case of a rotation joint. Let us discuss the prior case first
and the later case is similar.

3.1 Finding the rotation axis

3.1.1 The intersection ofW1 and W2

Using SVD, we can decomposeW1 into U1 ·D1 ·V1 and
W2 into U2 ·D2 ·V2. Ui(:,1 : 4) (i = 1, 2) represents

the first4 columns ofUi. Let ci (i = 1, 2) be the two null
vectors of(U1(:, 1 : 4),U2(:,1 : 4)), so

(U1(:, 1 : 4),U2(:, 1 : 4)) · ci = 0 ⇒
U1(:, 1 : 4) · ci(1 : 4) = −U2(:, 1 : 4) · ci(5 : 8) ⇒
U1(:, 1 : 4) · ci(1 : 4) = U2(:, 1 : 4) · −ci(5 : 8)

Let ti = U1(:, 1 : 4) · ci(1 : 4) = U2(:, 1 : 4) · −ci(5 :
8) (i = 1, 2). It is easy to see thatt1 and t2 are in
both span(Ui(:,1 : 4) (i = 1, 2), i.e. in the subspace of
Wi (i = 1, 2). Moreover, the intersection of the subspaces
of W1 andW2 is of rank2. So it isspan(t1, t2).

3.1.2 The constraint of the motion subspace of a point
on the axis

We need to find a motion vectort in span(t1, t2) such that
it represents the image positions in all frames of a point on
the rotation axis. There are infinite number oft correspond-
ing to the infinite number of points on the axis.

The constraint fort in span(t1, t2) is that the motion
matrix (W1, t) must be of the same rank asW1, which is
of rank4, because a point on the rotation axis is also a rigid
part of that articulated part.

3.1.3 Computing the motion subspace of a point on the
axis

In the following, we will describe our procedure to compute
all thet = α · t1 + β · t2 using this constraint. We form a
new motion matrix fromW1 andt.

W = (W1, t) (8)

The average of the sums of the rows ofW is:

W =
⊕

W
n + 1

=
⊕

W1 + t
n + 1

(9)

After subtractingW from every column ofW, W∗ should
be of rank3.

W∗ = W −W · 11×(n+1)

= (W1, t)−
⊕

W1 + t
n + 1

· 11×(n+1)

= (W1 −
⊕

W1

n + 1
· 11×n,−

⊕
W1

n + 1
)

+ t(− 1
n + 1

· 11×n,
n

n + 1
)

We write W∗ into two partsW∗
1 andW∗

2. W∗
1 does not

does not contain unknownt while W∗
2 does.

W∗
1 = (W1 −

⊕
W1

n + 1
· 11×n,−

⊕
W1

n + 1
)
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W∗
2 = t(− 1

n + 1
· 11×n,

n

n + 1
)

= (t1, t2)
(

α
β

)
K

K = (− 1
n + 1

· 11×n,
n

n + 1
)

W∗
1 is of rank 4. Using SVD,

W∗
1 = UW∗

1
·DW∗

1
·VW∗

1

T (10)

Then we transformW∗
2 to the same space ofDA.

W∗
2 = UW∗

1
(:, 1 : 4)(m1,m2)

(
α
β

)
nT VW∗

1
(:, 1 : 4)T

where

mi = UW∗
1
(:, 1 : 4)T · ti

nT = K ·VW∗
1

In order forW∗ to be of rank 3, a necessary and sufficient
condition is that

det(UW∗
1
(:, 1 : 4)T ·W∗ ·VW∗

1
(:, 1 : 4)) = 0

i.e.

det(DW∗
1
(1 : 4, 1 : 4)+(m1,m2)

(
α
β

)
nT ) = 0 (11)

We will show (11) is a linear equation ofα andβ. To do
that, we are going to use the following rule of determinant
to decompose (11):

det(a + b, c,d) = det(a, c,d) + det(b, c,d)

We rewrite (11) as

det




DW∗
1
(1 : 4, 1) + (αm1 + βm2)n(1),

DW∗
1
(1 : 4, 2) + (αm1 + βm2)n(2),

DW∗
1
(1 : 4, 3) + (αm1 + βm2)n(3),

DW∗
1
(1 : 4, 4) + (αm1 + βm2)n(4)


 = 0

DenoteDW∗
1
(1 : 4, i) asdi and(αm1 + βm2)n(i) asfi.

So we have

det




d1 + f1
d2 + f2,
d3 + f3,
d4 + f4


 = 0

Keep decomposing the above. All the determinant terms
that has more than onefi result in0 because allfis are the
same column(αm1 + βc2) multiplied by a different scalar
e(i). The nonzero terms left are

det




d1,
d2,
d3,
d4


 + det




f1,
d2,
d3,
d4


 + det




d1,
f2,
d3,
d4


 +

det




d1,
d2,
f3,
d4


 + det




d1,
d2,
d3,
f4


 = 0

This leads to the linear equation ofα andβ.
Finally, we have the motion vector of any point on the

rotation axis:

t = (t1, t2)
(

α
β

)
(12)

3.2 Finding the joint

Let us discuss the later case of finding the joint now. It is
similar to finding the rotation axis.

3.2.1 The intersection ofW1 and W2

We decomposeW1 intoU1 ·D1 ·V1 andW2 intoU2 ·D2 ·
V2. There is only one null vector of(U1(:, 1 : 4),U2(:
, 1 : 4)). We denote it asc1. Let t1 = U1(:, 1 : 4) ·
c1(1 : 4) = U2(:, 1 : 4) · −c1(5 : 8) (i = 1, 2). t1 is in
both span(Ui(:,1 : 4) (i = 1, 2), i.e. in the subspace of
Wi (i = 1, 2). Moreover, the intersection of the subspaces
of W1 andW2 is of rank1. So it isspan(t1).

3.2.2 The constraint of the motion subspace of the joint

To find the motion vector of the joint in the image coordi-
nates, we need to findt = α · t1. There is only one possible
t corresponding to the uniqueness of the joint.
The constraint fort is thatrank(W1, t) = 4.

3.2.3 Computing the motion subspace of the joint

Our procedure to computet is very similar to Section 3.1.3.
The difference is

W∗
2 = α · t1 ·K

After transformingW∗
2 to the same space ofDW∗

1
(1 : 4, 1 :

4).

W∗
2 = UW∗

1
(:, 1 : 4) ·m · α · nT ·VW∗

1
(:, 1 : 4)T (13)

where

m = UW∗
1
(:, 1 : 4)T · t1

nT = K ·VW∗
1
(:, 1 : 4).

In order forW∗ to be of rank 3,

det(DW∗
1
(1 : 4, 1 : 4) + m · α · nT ) = 0 (14)

After decomposing (14) and discarding the zero determi-
nant terms, we will have the linear equation ofα like (12)
wheredi = DW∗

1
(1 : 4, i) andfi = m · α · n(i).

The motion vector of the joint is

t = α · t1 (15)
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4. Articulated Motion Recovery
We summarize our approach to recover articulated motion
from a single-view image sequence in this section.

• Tracking
We use a KLT tracker to track features in image se-
quences and build the motion matrix. Then we impose
the rank constraints of the articulated motion on the
motion matrix.

• Subspace Clustering
The motion subspace of each articulated part is in-
tersecting with that of other parts that connect to
it. These subspaces may not be orthogonal to each
other. We use a generalized principle component
analysis(GPCA)[6][7] to cluster and segment these
subspaces.
GPCA is an algorithm to find out a mixture of linear
subspaces within a data set and then segment the data
according to the underlying linear subspaces. Unlike
PCA, it does not require the linear subspaces to be or-
thogonal to each other.

• Shape and Motion Recovery
Each segmented subspace is the motion subspace of
an articulated part. Any robust rigid motion recovery
algorithm[1][2] can be used to recover the shape and
motion of each part from these segmented subspaces.

4.1 Outlier Rejection

We reject outliers of feature trajectories in the motion ma-
trix at two different stages. One is carried out on the raw
motion matrix and the other, after the subspace clustering is
done.

For the first outlier rejection, we impose the rank con-
straint of the articulated motion on the motion matrix and
iteratively reject a column, i.e. one feature trajectory, that
deviates from the constrained motion subspace most until
the largest deviation is below a certain threshold. Without
degenerate motion, the actual rank depends on the number
of articulated parts, the rigid shapes(either1D, 2D or 3D) of
these parts, and their connections. It can be derived using
the subspace properties of articulated motion discussed in
Section 2.3. Another possibility is to automatically detect
an effective rank, which will be discussed in Section 4.2.

For the second outlier rejection, we impose the rank con-
straint of a rigid object on each segmented motion subspace.
This rank constraint may be2, 3 or 4 corresponding to a1D,
2D or 3D shape of the articulated part. Or we may try to de-
tect it automatically(Section 4.2) without any prior knowl-
edge.Again, we iteratively reject one feature trajectory that
deviates from the constrained motion subspace most until

Figure 1: The GPCA algorithm identifies two subspaces
from the feature tracks and segments the tracks accordingly.
The color of the feature shows the subspace it belongs to

the largest deviation is below a certain threshold, then we
stop the rejection process.

4.2 Effective Rank Detection

In practice, the motion matrix is corrupted by noise and out-
liers and thus its rank is usually full. Without prior knowl-
edge of the scene and object, we may use a model selection
algorithm to detect an effective rank.

rn = arg minr
λ2

r+1∑r
k=1 λ2

k

+ κ r

with λi the ith singular value of the matrix andκ a pa-
rameter.

5. Experiments
In this experiment, a toy truck with a moving shovel is
videotaped. A KLT tracker successfully tracks 99 features
over 70 frames while the truck moves and the shovel rotates
along an axis on the truck.87 features are left after the first
stage of outlier rejection by imposing the rank constraint,
rank 6 in this case, of the articulated motion. The GPCA
algorithm identifies two subspaces from the feature tracks
and segment the feature tracks accordingly(Figure 1).74
features remain after the second outlier rejection by impos-
ing the rank constraint of a rigid object to each articulated
part. A rotation axis is identified by intersecting the motion
subspaces of the articulated parts. Its image positions across
all the frames are recovered using our algorithm(Figure 2).
The shape and motion of each articulated part can be recov-
ered from each subspace individually. But putting each part
into the camera coordinates, the shape and motion of the
whole articulated object gets recovered. Furthermore, with
the axis recovered in the camera coordinates, we are ready
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Figure 2: (left) A rotation axis is identified by intersecting
the motion subspaces of the articulated parts. (middle and
right) The image coordinates of the axis across all frames
gets recovered.

to reanimate the articulated motion by rotating the articu-
lated part around the axis and generate not only novel views
but also novel motions. (Figure 3).

6. Conclusions and Future Works

With the rank constraints on articulated motion subspace,
we may explore the possibility of dealing with missing data.
There are also all kinds of degenerate shape and motion
cases that we will look into in the future. Besides, by as-
suming a perspective cameral model, a wider class of scenes
may be better recovered using the idea of this paper.
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Figure 3:The shape and motion of the truck get recovered
and reanimated. Black dots shows the original position of
the shovel. Not only novel views but also novel motions can
be generated by rotating the shovel around the axis.
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Figure 5: (left) A rotation joint is identified by intersecting
the motion subspaces of the articulated parts. (middle and
right) The image coordinates of the joint across all frames
gets recovered.
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