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Abstract

In this work we present a unified view on Markov random
fields and recently proposed continuous tight convex relax-
ations for multi-label assignment in the image plane. These
relaxations are far less biased towards the grid geometry
than Markov random fields. It turns out that the continu-
ous methods are non-linear extensions of the local polytope
MRF relaxation. In view of this result a better understand-
ing of these tight convex relaxations in the discrete setting
is obtained. Further, a wider range of optimization methods
is now applicable to find a minimizer of the tight formula-
tion. We propose two methods to improve the efficiency of
minimization. One uses a weaker, but more efficient con-
tinuously inspired approach as initialization and gradually
refines the energy where it is necessary. The other one refor-
mulates the dual energy enabling smooth approximations to
be used for efficient optimization. We demonstrate the utility
of our proposed minimization schemes in numerical experi-
ments.

1. Introduction
Assigning labels to image regions e.g. in order to obtain

a semantic segmentation, is one of the major tasks in com-
puter vision. The most prominent approach to solve this
problem is to formulate label assignment as Markov ran-
dom field (MRF) incorporating local label preference and
neighborhood smoothness. Since in general label assign-
ment is NP-hard, finding the true solution is intractable and
approximate ones are determined. One promising approach
to solve MRF instances is to relax the intrinsically difficult
constraints to convex outer bounds. There are currently two
somewhat distinct lines of research utilizing such convex re-
laxations: the direction, that is mostly used in the machine
learning community, is based on a graph representation of
image grids and uses variations of dual block-coordinate
methods [10, 9, 16, 15] (usually referred as message pass-
ing algorithms in the literature). The other set of methods
is derived from the analysis of partitioning an image in the
continuous setting, i.e. variations of the Mumford-Shah seg-

mentation model [12, 1]. Using the principle of biconjuga-
tion to obtain tight convex envelopes, [5] obtains a convex
relaxation of multi-label problems with generic (but met-
ric) transition costs in the continuous setting. Subsequent
discretization of this model to finite grids yields to strong
results in practice, but it was not fully understood what is
optimized in the discrete setting.

In this work we close the gap between convex formu-
lations for MRFs and continuous approaches by identify-
ing the latter methods as non-linear (but still convex) ex-
tensions of the standard LP relaxation of Markov random
fields. This insight has several implications: (a) it becomes
clearer why the model proposed in [5] is tighter than other
relaxations proposed for similar labeling problems, and (b)
a wider range of optimization methods becomes applicable,
especially after obtaining equivalent convex programs uti-
lizing redundant constraints. Thus, the results obtained in
this work are of theoretical and practical interest.

2. Background

In the following section we summarize the necessary
background on discrete and continuous relaxations of multi-
label problems.

2.1. Notations

In this section we introduce some notation used in the
following. For a convex set C we will use ıC to denote the
corresponding indicator function. i.e. ıC(x) = 0 for x ∈ C
and ∞ otherwise. We use short-hand notations [x]+ and
[x]− for max{0, x} and min{0, x}, respectively. Finally,
for an extended real-valued function f : Rn → R∪{∞}we
denote its convex conjugate by f∗(y) = maxx xT y− f(x).

2.2. Label Assignment, the Marginal Polytope and
its LP Relaxation

In the following we will consider only labeling problems
with unary and pairwise interactions between nodes. Let V
be a set of V = |V| nodes and E be a set of edges connecting
nodes from V . The goal of inference is to assign labels Λ :
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V → {1, . . . , L} for all nodes s ∈ V minimizing the energy

Elabeling(Λ) =
∑
s∈V

θΛ(s)
s +

∑
(s,t)∈E

θ
Λ(s),Λ(t)
st , (1)

where θ·s are the unary potentials and θ·st are the pair-
wise ones. Usually the label assignment Λ is represented
via indicator vectors xs ∈ {0, 1}L for each s ∈ V , and
xst ∈ {0, 1}L2

for each (s, t) ∈ E , leading to

EMRF(x) =
∑
s,i

θi
sx

i
s +

∑
s,t,i,j

θij
stx

ij
st (2)

subject to normalization constraints
∑

i∈{1,...,L} xi
s = 1 for

each s ∈ V (one label needs to be assigned) and marginal-
ization constraints

∑
j xij

st = xi
s and

∑
i xij

st = xj
t . In gen-

eral, enforcing xi
s ∈ {0, 1} is NP-hard, hence the corre-

sponding LP-relaxation is considered,

ELP-MRF(x) =
∑
s,i

θi
sx

i
s +

∑
s,t

∑
i,j

θij
stx

ij
st (3)

s.t.
∑

j

xij
st = xi

s,
∑

j

xji
st = xi

t

xs ∈ ∆, xij
st ≥ 0 ∀s, t, i, j,

where ∆ denotes the unit (probability) simplex, ∆ := {x :∑
i xi = 1, xi ≥ 0}. There are several corresponding dual

programs depending on the utilized (redundant) constraints.
If we explicitly add the box constraints xij

st ∈ [−1, 1] the
corresponding dual is

E∗
LP-MRF(p) =

∑
s

min
i

{
θi

s +
∑

t∈Nt(s)

pi
st→s +

∑
t∈Ns(s)

pi
ts→s

}
+

∑
s,t

∑
i,j

min
{
0, θij

st − |pi
st→s + pj

st→t|
}
,

where we defined Nt(s) := {t : (s, t) ∈ E} and Ns(t) :=
{s : (s, t) ∈ E}. The particular choice of (redundant) box
constraints xij

st ∈ [−1, 1] in the primal program leads to
an exact penalizer for the usually obtained capacity con-
straints. Different choices of primal constraints lead to dif-
ferent duals, we refer to Section 3.3 for further details.

2.3. Continuously Inspired Convex Formulations
for Multi-Label Problems

In this section we briefly review the convex relaxation
approach for multi-label problems proposed in [5]. In con-
trast to the graph-based label assignment problem in Eq. 3,
Chambolle et al. consider labeling tasks directly in the (2D)
image plane. Their proposed convex relaxation is formu-

lated as the primal-dual saddle-point energy

ECCP-I(u, q) =
∑
s,i

θi
s(u

i+1
s − ui

s) +
∑
s,i

(qi
s)

T∇ui
s

s.t. ui
s ≤ ui+1

s , u0
s = 0, uL+1

s = 1, ui
s ≥ 0∥∥ j−1∑

k=i

qk
s

∥∥
2
≤ θij ∀s, i, j, (4)

which is minimized with respect to u and maximized with
respect to q. Here u is a super-level function ideally tran-
sitioning from 0 to 1 for the assigned label, i.e. if label i
should be assigned at node (pixel) s, we have ui+1

s = 1 and
ui

s = 0. Consequently, u ∈ [0, 1]V L in the discrete setting
of a pixel grid. q ∈ R2V L are auxiliary variables. The sten-
cil of ∇ depends on the utilized discretization. We employ
forward differences for ∇ as also used in [5] (unless noted
otherwise). θij are the transition costs between label i and
j and can assumed to be symmetric w.l.o.g., θij = θji and
θii = 0. At this point we have a few remarks:

1. The saddle-point formulation in combination with
the quadratic number of “capacity” constraints
‖
∑j−1

k=i qk
s ‖2 ≤ θij

st makes it difficult to optimize ef-
ficiently. In [5] a nested, two-level iteration scheme is
proposed, where the inner iterations are required to en-
force the capacity constraints. In [14] Lagrange mul-
tipliers for the dual constraints are introduced in order
to avoid the nested iterations, leading to a primal-dual-
primal scheme. In Section 3.1 we will derive the cor-
responding purely primal energy enabling a larger set
of convex optimization methods to be applied to this
problem.

2. The energy Eq. 4 handles triple junctions (i.e. nodes
where at least 3 different phases meet) better than the
(more efficient) approach proposed in [17]. Again, by
working with the primal formulation one can give a
clear intuition why this is the case (see Section 3.2).

3. The energy in Eq. 4 can be rewritten in terms of
(soft) indicator functions xs per pixel, leading to the
equivalent formulation (see the supplementary mate-
rial or [14]):

ECCP-II(x, p) =
∑
s,i

θi
sx

i
s +

∑
s,i

(pi
s)

T∇xi
s (5)

s.t.
∥∥pi

s − pj
s

∥∥
2
≤ θij , xs ∈ ∆ ∀s, i, j,

x and p are of the same dimension as u and q.

3. Convex Relaxations for Multi-Label MRFs
Revisited

In this section we derive the connections between the
standard LP relaxation for MRFs, LP-MRF, and the saddle-



point energy ECCP-II, and further analyze the relation be-
tween ECCP-II, and a weaker, but more efficient relaxation.
We will make heavy use of Fenchel duality, minx f(x) +
g(Ax) = maxz −f∗(AT z) − g∗(−z), where f and g are
conex and l.s.c. functions, and A is a linear operator (matrix
for finite dimensional problems). We refer e.g. to [3] for a
compact exposition of convex analysis.

3.1. A Primal View on the Tight Convex Relaxation

It seems that the saddle-point formulation in Eq. 4 and
Eq. 5, respectively, were never analyzed from the purely pri-
mal viewpoint. Using Fenchel duality one can immediately
state the primal form of Eq. 5, which has a more intuitive
interpretation (detailed in Section 3.2):

Etight(x, y) =
∑
s,i

θi
sx

i
s +

∑
s

∑
i,j:i<j

θij‖yij
s ‖2 (6)

s.t. ∇xi
s =

∑
j:j<i

yji
s −

∑
j:j>i

yij
s , xs ∈ ∆ ∀s, i,

where yij
s ∈ R2 represents the transition gradient between

a region with label i and the one with label j. yij
s is 0 if

there is no transition between i and j at node (pixel) s. The
last set of constraints are the equivalent of marginalization
constraints linking transition gradients yij

s and label gradi-
ents ∇xi

s and ∇xj
s. The derivation of Eq. 6 is given in the

supplementary material.
Since xi

s ∈ [0, 1] we have that ∇xi
s ∈ [−1, 1]2 and we

can safely add the additional constraints yij
s ∈ [−1, 1]2 to

obtain an equivalent convex program. We obtain the in-
terpretation that e.g. (yij

s )1 = 1 iff there is a horizontal
transition from label i to label j, and (yij

s )1 = −1 if the
reverse is the case (analogously for the vertical direction).
Consequently, the yij

s variables correspond to signed binary
pseudo-marginals, and proper pseudo-marginals can be ob-
tained by setting (component-wise)

xij
s := [yij

s ]+ and xji
s := −[yij

s ]−

for i < j. xii
s is e.g. given by xii

s = xi
s −

∑
j:j 6=i xij

s . Thus,
the primal program equivalent to Eq. 6, but purely stated in
terms of non-negative pseudo-marginals, reads as

E(x) =
∑
s,i

θi
sx

i
s +

∑
s

∑
i,j:i<j

θij
∥∥xij

s + xji
s

∥∥
2

(7)

s.t. ∇xi
s =

∑
j:j 6=i

xji
s −

∑
j:j 6=i

xij
s , xs ∈ ∆, xij

s ≥ 0.

This is very similar to the standard relaxation of MRFs (re-
call Eq. 3 after eliminating xii

st in the marginalization con-
straints), the only difference being the smoothness terms,
which is

θij
∥∥xij

s + xji
s

∥∥
2

instead of θijxij
s + θijxji

s .

Note that θijxij
s + θijxji

s is equivalent to θij‖xij
s + xji

s ‖1
(the anisotropic L1 norm), since xij

s , xji
s ≥ 0. Hence the

primal model Eq. 7 can be seen as isotropic extension of
the standard model Eq. 3 for regular image grids. Fur-
ther, we have a complementarity condition for every opti-
mal solution xij

s : (xij
s )T xji

s = 0, i.e. (xij
s )1(xji

s )1 = 0 and
(xij

s )2(xji
s )2 = 0. It is easy to see that if the complementar-

ity conditions do not hold, the overall objective can be low-
ered by subtracting the componentwise minimum from xij

s

and xji
s (and therefore satisfying complementarity) without

affecting the marginalization constraint. Hence, we can also
replace θij‖xij

s + xji
s ‖2 in the primal objective by

θij

∥∥∥∥xij
s

xji
s

∥∥∥∥
2

.

Finally, observe that all primal formulations have a number
of unknowns that is quadratic in the number of labels L.
This is not surprising since the number of constraints on the
dual variables is O(L2) per node.

3.2. Truncated Transition Costs

If the transition costs θij have no structure, then one has
to employ the full representations Eq. 6 or 7. In this sec-
tion we consider the important case of truncated smooth-
ness costs, i.e. θij = θ∗ if |i − j| ≥ T for some T , and
θij < θ∗ if |i− j| < T . The two most important examples
in this category are the Potts smoothness model (T = 1),
and truncated linear costs with θij = min{|i− j|, θ∗}.

It is tempting to combine the transition gradients cor-
responding to “large” jumps from label i to label j with
|i− j| ≥ T into one vector yi∗

s , where the star ∗ indicates a
wild-card symbol, i.e.

yi∗
s =

∑
j:j−i≥T

yij
s −

∑
j:i−j≥T

yji
s .

Thus, we can formulate a primal program using at most
O(TL) unknowns per pixel,

Efast(x, y) =
∑
s,i

θi
sx

i
s +

∑
s

∑
i,j:i<j<i+T

θij‖yij
s ‖2

+
θ∗

2

∑
s

∑
i

‖yi∗
s ‖2 (8)

s.t. ∇xi
s =

∑
j:i−T<j<i

yji
s −

∑
j:i<j<i+T

yij
s − yi∗

s

and xs ∈ ∆. Since a large jump is represented twice via yi∗

and yj∗, the truncation value appears as θ∗/2 above. For
the truncated linear smoothness cost the number of required
unknowns reduces further to O(L):

Efast(x, y) =
∑
s,i

θi
sx

i
s +

∑
s,i

‖yi,i+1
s ‖2 +

θ∗

2

∑
s,i

‖yi∗
s ‖2

s.t. ∇xi
s = yi−1,i

s − yi,i+1
s − yi∗

s . (9)



(a) Input image (b) Forward differences (c) Forward differences (d) Staggered grid (e) Staggered grid (f) Geo-cut

Figure 1. The triple junction inpainting example. (b) and (d) use the weaker relaxation Efast, and (c) and (e) are the results of Etight. The
geo-cut solution with a 32-neighborhood is shown in (f).

These models generalize the formulation proposed in [17]
beyond the Potts smoothness cost. It is demonstrated in [5]
that Eq. 8 is a weaker relaxation than Eq. 5 if three regions
with different labels meet (see also Fig. 1). Before we ana-
lyze the difference between those models, we state an equiv-
alence result:

Observation 1 If we use the 1-norm ‖·‖1 in the smoothness
term instead of the Euclidean one (i.e. we consider the stan-
dard LP relaxation of MRFs using horizontal and vertical
edges), the formulations in Eqs. 6 and 8 are equivalent.

More generally, one can collapse the pairwise pseudo-
marginals for standard MRFs on graphs in the case of trun-
cated pairwise potentials, leading to substantial reductions
in memory requirements. We presume this fact has proba-
bly been used in the MRF community, but for completeness
we provide a proof in the supplementary material.

The situation is different in the Euclidean norm setting.
In the following we consider the Potts smoothness cost. If
we use forward differences for the gradient and compare the
smoothness costs assigned by Eq. 8 and Eq. 5 for the dis-
crete label configurations, we find out that for triple junc-
tions the formulation in Eq. 8 underestimates the true cost:
if label i is assigned to a pixel s, and labels j and k are as-
signed to the forward neighbors (see Fig. 2), then we have
yi∗

s = (−1,−1)T , yj∗
s = (1, 0)T and yk∗

s = (0, 1)T , and
the smoothness contribution of s according to Eq. 8 is

1
2

(∥∥∥∥−1
−1

∥∥∥∥
2

+
∥∥∥∥1
0

∥∥∥∥
2

+
∥∥∥∥ 0
−1

∥∥∥∥
2

)
= 1 +

√
2

2

(see also Fig. 2(a)). On the other hand, the transition gra-
dients according to Eq. 5 are yij

s = (−1, 0)T and yik
s =

(0,−1)T , and its smoothness contribution is∥∥∥∥−1
0

∥∥∥∥
2

+
∥∥∥∥ 0
−1

∥∥∥∥
2

= 2

(cf. Fig. 2(b)). It seems that Eq. 8 is a weaker model than
Eq. 5 due to the different cost contributions, but the deeper
reason is, that the former formulation cannot enforce that all
adjacent regions have opposing boundary normals. In the
model Eq. 8 (Efast) only interface normals yi∗

s with respect
to a particular label are maintained, whereas the tighter for-
mulation Eq. 5 (Etight) explicitly represents transition gra-
dients yij

s for all label combinations (i, j). Another way to

express the difference between the formulations is, that Efast
penalizes the length of segmentation boundaries (thereby
being agnostic to neighboring labels), and Etight accumu-
lates the length of interfaces between each pair of regions
separately (i.e. label transitions have the knowledge of both
involved labels, see also Fig. 2(c)). The two models are dif-
ferent (after convexification) when using a Euclidean length
measure, but not when using an anisotropic L1 length mea-
sure.

One might ask how graph cuts with larger neighbor-
hoods (geo-cuts [4]) compare with the continuously in-
spired approaches Eq. 6 and Eq. 8 for the Potts smooth-
ness model. Since in this case geo-cuts will approximate
the interface boundary similar to Eq. 8, similar results are
expected (which is experimentally confirmed in Fig. 1(f)).
In Fig. 1(d) and (e) we illustrate the (beneficial) impact of
using a staggered grid discretization (instead of forward dif-
ferences) for the gradient ∇.

3.3. The Dual View

A standard approach for efficient minimization of MRF
energies is to optimize the dual formulation instead of the
primal one. Recalling Section 2.2 we observe that the dual
energies have a number of unknowns that scales linearly
with the number of labels (and nodes), but a quadratic num-
ber of terms (recall E∗

LP-MRF). Consequently, block coor-
dinate methods for optimizing the dual are very practical,
and those methods are often referred as message passing ap-
proaches (e.g. [9, 16, 10, 15]). Thus, we consider in this sec-
tion dual formulations of the tight convex relaxation Eq. 6
and the more efficient, but weaker one Eq. 8.

The dual energy of Etight can be derived (via Fenchel du-
ality) as

E∗
tight-I(p) =

∑
s

min
i
{div pi

s + θi
s} s.t. ‖pi

s − pj
s‖2 ≤ θij ,

(10)

with the divergence div = −∇T consistent with the dis-
cretization of the gradient. Note that we have redun-
dant constraints on the primal variables yij

s ∈ [−1, 1] ×
[−1, 1] (since xi

s ∈ [0, 1]). One could compute the dual
of θij‖yij

s ‖2 + ı{‖yij
s ‖∞ ≤ 1}, but because of its ra-

dial symmetry the constraint ‖yij
s ‖2 ≤

√
2 seems to



(a) (b) (c)

Figure 2. Three regions meet in one grid point. (a) The situation as handled in Efast. (b) How Etight sees this situation. (c) The different
counting of region boundaries. Top row: Efast simply sums the lengths of region boundaries. Bottom row: Etight considers interfaces
between each pair of regions separately.

be more appropriate. Via
(
x 7→ θ|x|+ ı[0,B](x)

)∗ (y) =
maxx∈[0,B] {xy − θ|x|} = B max{0, |y| − θ} and the ra-
dial symmetry of terms in yij

s we obtain for the dual energy
in this setting

E∗
tight-II(p) =

∑
s

min
i
{div pi

s + θi
s}

+
∑

s

∑
i,j:i<j

√
2 min

{
0, θij − ‖pi

s − pj
s‖2

}
,

(11)

which has the same overall shape as E∗
LP-MRF in Section 2.2.

In contrast to Eq. 10 the dual energy Eq. 11 uses an ex-
act penalizer on the constraints and always provides a finite
value, which can be useful in some cases (e.g. to compute
the primal-dual gap in order to have a well-established stop-
ping criterion when using iterative optimization first-order
methods). We finally state a variant of the dual energy,

E∗
tight-III(p, q) =

∑
s

qs +
∑
s,i

[
div pi

s + θi
s − qs

]
−

+
∑

s

∑
i,j:i<j

√
2 min

{
0, θij − ‖pi

s − pj
s‖2

}
,

(12)

Eq. 12 is much easier to smooth than Eq. 10 (which can
be smoothed via a numerically more delicate log-barrier)
or Eq. 11 (where the exact minimum can be replaced by a
soft-minimum, e.g. using log-sum-exp). We discuss appro-
priate smoothing of Eq. 12 and corresponding optimization
in Section 4.

For completeness we also state the dual of the weaker
relaxation Eq. 8 in the constrained form:

E∗
fast(p) =

∑
s

min
i
{div pi

s + θi
s} (13)

s.t. ‖pi
s − pj

s‖2 ≤ θij ∀s,∀i, j : |i− j| < T

‖pi
s‖ ≤ θ∗/2 ∀s, i.

In the dual the constraints set in Eq. 13 is a superset of the
constraints in the tight relaxation Eq. 10, hence we have

E∗
fast ≤ E∗

tight-I for their respective optimal solutions (recall
that the dual energies are maximized with respect to p).

In contrast to LP-MRF formulations we have non-linear
capacity constraints in the duals presented above. Thus, op-
timizing these dual energies (in particular Eq. 10) via block
coordinate methods is more difficult, and deriving message
passing algorithms appears not promising. In the supple-
mentary material we present the detailed derivations of the
dual energies stated above and report additional forms of
the dual energy.

3.4. First-Order Optimality Conditions

In order to ensure optimality of a primal-dual pair and
to construct e.g. the primal solution from the dual ones, we
state the generalized KKT conditions (see e.g. [3], Ch. 3): if
we have the primal energy E(x) = f(x)+g(Ax) for convex
f and g, and a linear map A, the dual energy is (subject to
a qualification constraint) E∗(z) = −f∗(AT z) − g∗(−z).
Further, a primal dual pair (x∗, y∗) is optimal iff x∗ ∈
∂f∗(AT z∗) and Ax∗ ∈ ∂g∗(−z∗). For the tight relaxation
Eq. 10 these conditions translate to

(x∗)s ∈ ∂ max
i
{−div(p∗)i

s − θi
s} and

(y∗)ij
s ∈ ∂ı

{∥∥(p∗)i
s − (p∗)j

s

∥∥
2
≤ θij

}
.

The first condition means, that −div(p∗)j
s − θj

s <
maxi{−div(p∗)i

s − θi
s} for a label j implies (x∗)j

s = 0
(label j is strictly not assigned in the optimal solution at s).
The second condition states, that ‖(p∗)i

s − (p∗)j
s‖2 < θij

implies (y∗)ij
s = 0 (there is no transition between label

i and j at pixel s). If ‖(p∗)i
s − (p∗)j

s‖2 = θij we have
(y∗)ij

s ∝ (p∗)i
s − (p∗)j

s. These generalized complemen-
tary slackness constraints can be used to set many values in
the primal solution to 0. The second part of the KKT con-
ditions, Ax∗ ∈ ∂g∗(−z∗), just implies that the primal so-
lution has to satisfy the normalization and marginalization
constraints.

4. Scalable Optimization Methods
The primal (Eqs. 6 and 7) and dual (Eqs. 10 and 11) pro-

grams of the tight relaxation are non-smooth convex and



concave energies, and therefore any convex optimization
method able to handle non-smooth programs is in theory
suitable for minimizing these energies. The major compli-
cation with the tight convex relaxation is, that it requires ei-
ther a quadratic number of unknowns per pixel in the primal
(in terms of the number of labels) or has a quadratic num-
ber of coupled constraints (respectively penalizing terms)
in the dual. The nested optimization procedure proposed
in [5] is appealing in terms of memory requirements (since
only a linear number of unknowns is maintained per pixel,
although the inner reprojection step consumes temporarily
O(L2) variables), but as any other nested iterative approach
it comes with difficulties determining when to stop the in-
ner iterations. On the other hand, the methods described
in [11, 14] have closed form iterations, but require O(L2)
variables. This is also the case if e.g. Douglas-Rachford
splitting [8] (see also the recent survey in [7]) is applied ei-
ther on the primal problem Eq. 6 or on the always finite dual
Eq. 11. We propose two methods for efficiently solving the
tight relaxation: the first one addresses truncated smooth-
ness costs (Section 3.2) and starts with solving the efficient
(but slightly weaker) model Eq. 8. It subsequently iden-
tifies potential triple junctions and switches locally to the
tight relaxation until convergence. The second proposed
method applies a forward-backward splitting-like method
on a smoothened version of the dual energy Eq. 11, and
gradually reduces the smoothness parameter (and the al-
lowed time step).

4.1. Subsequent Refinement of the Efficient Model

Our first proposed method to solve the tight convex re-
laxation in an efficient way is based on the intuition given
in Section 3.2: the weaker relaxation Eweak can only be
potentially strengthened where three or more phases meet,
i.e. at pixels s such that yi∗

s 6= 0 for at least three labels
i. For these pixels the weaker model underestimates the
true smoothness costs and does not guarantee consistency
of boundary normals (recall Fig. 2). For a pixel s let As

denote the set of labels with yi∗
s 6= 0, and at potentially

problematic triple junctions we have |As| ≥ 3. The un-
derestimation of the primal smoothness translates to un-
necessarily strong restrictions on pi

s for i ∈ As, i.e. all
constraints ‖pi

s‖ ≤ θ∗/2 are strongly active for i ∈ As

(recall that yi∗
s 6= 0 is a generalized Lagrange multiplier

for ‖pi
s‖ ≤ θ∗/2). Consequently, replacing the constraints

‖pi
s‖ ≤ θ∗/2 by the weaker ones of the corresponding tight

relaxation ‖pi
s − pj

s‖ ≤ θ∗ for all i ∈ As allows the dual
energy to increase. In the primal this means, that for active
labels i the indiscriminative transition gradient yi∗

s is substi-
tuted by explicit transition variables yij

s (for j > i) and yji
s

(for j < i). The marginalization constraint of Efast (Eq. 8)

∇xi
s =

∑
j:i−T<j<i

yji
s −

∑
j:i<j<i+T

yij
s − yi∗

s

is replaced by one in Eq. 6,

∇xi
s =

∑
j<i

yji
s −

∑
j>i

yij
s

for active labels i ∈ As. After augmenting the energy for
the problematic pixels, a new minimizer is determined. In
practice most problematic pixels are fixed after the first aug-
mentation step, but not all, and there is no guarantee (veri-
fied by experiments) that a global solution of the tight model
Eq. 6 is already reached after just one augmentation. Hence,
the augmentation procedure is repeated until no further re-
finement is necessary. This approach is guaranteed to find a
global minimum of the tight relaxation:

Observation 2 If for a primal solution (x∗, y∗) of the aug-
menting procedure the set of active labels As = {i :
(y∗)i∗

s 6= 0} has at most two elements for all pixels s ∈ Ω
(i.e. at most two different labels meet at “non-augmented”
pixels), then x∗ is also optimal for Etight.

This means that all potential triple or higher-order junctions
have been addressed by the augmentation steps. The cor-
rectness of this observation can be shown by verifying the
first-order optimality conditions, i.e. that (x∗, y∗) together
with the dual variables p∗ forms an optimal primal-dual pair
(recall Section 3.4, see the supplementary material for de-
tails).

On planar grids at most four regions can meet in a single
node (only 3 if ∇ is discretized via one-sided finite differ-
ences), one expects the augmentation procedure to termi-
nate with only few pixels being enhanced. In theory, more
phases could meet in a single pixel, since we have to allow
fractional values for xi

s. In a few cases (pixels) we observed
As = {1, . . . , L}. In practice only a few augmentation
steps are necessary leading to a ≈ 10% increase of mem-
ory requirements over the efficient model Eq. 8. We use
the primal-dual method [6] for minimization. See Figs. 3(a-
c) and 4(a,b) for the intermediate results and energy evo-
lution, respectively. All methods reach relatively fast a so-
lution that is visually similar to the fully converged one,
but achieving a significantly small relative duality gap (e.g.
< 0.01%) is computationally much more expensive for all
methods.

4.2. Smoothing-Based Optimization

Recall that the dual energies of the tight relaxation
(Eq. 10 or 11) have only O(L) unknowns per pixel, but a
quadratic number of constraints/terms in the objective. In
terms of efficient memory use, a purely dual or primal-
dual method is desirable. Chambolle et al. [5] utilize a
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Figure 3. Stereo result using absolute color differences and the Potts discontinuity model. We want to emphasize, that not the quality of
the obtained disparity map, but the equivalence between (c), (d) and (e) is of importance.

primal-dual method requiring the projection into the non-
trivial feasible set. This projection has no closed form so-
lution and needs to be solved via inner iterations (requiring
temporarily O(L2) variables per pixel). The dual energies,
e.g. E∗

tight-III with only penalizer terms (recall Eq. 12), al-
lows to smoothen the dual energy in a numerically robust
way. A principled way to smooth non-smooth functions
with bounds on the Lipschitz constant of its gradient is pre-
sented in [13]: for a non-smooth (convex) function f and a
smoothing parameter ε > 0, a smooth version fε of f with
Lipschitz-continuous gradient (and Lipschitz constant 1/ε)
is given by fε = (f∗ + ε‖·‖2/2)∗. In order to have con-
vex instead of concave terms, we minimize −E∗

tight-III with
respect to p and q,

−E∗
tight-III(p, q) =

∑
s

−qs +
∑
s,i

[
qs − div pi

s − θi
s

]
+

+
∑

s

∑
i,j:i<j

√
2
[
‖pi

s − pj
s‖2 − θij

]
+
.

(14)

The second and third sums are non-smooth. First, the [·]+ =
max(0, ·) expressions in the second sum can be replaced by
a soft-maximum function. Especially in the machine learn-
ing literature the logistic soft-hinge, ε log

(
1 + ex/ε

) ε→0→
[x]+, is often employed, but the exponential and logarithm
functions are slow to compute and require special handling
for very small ε. Similar to the Huber cost, which is a
smooth version of the magnitude function, the smooth ver-
sion of [·]+ can be easily derived as

[x]+,ε :=


0 x ≤ 0
x− ε/2 x ≥ ε

x2/2ε 0 ≤ x ≤ ε.

Obtaining a smooth variant of expressions of the shape
hθ(z) :=

√
2[‖z‖2 − θ]+ appearing in the last summation

is more involved, but can be shown to be

hθ
ε(z) =


0 if ‖z‖ ≤ θ
(‖z‖−θ)2

2ε if θ ≤ ‖z‖ ≤ θ +
√

2ε√
2(‖z‖ − θ)− ε if ‖z‖ ≥ θ +

√
2ε.

We refer to the supplementary material for the derivation.
Overall, the smooth energy corresponding to Eq. 14 reads
as

−E∗
tight-III,ε(p, q) =

∑
s

−qs +
∑
s,i

[
qs − div pi

s − θi
s

]
+,ε

+
∑

s

∑
i,j:i<j

hθij

ε (pi
s − pj

s). (15)

By using the chain rule, ∇xf(Ax) = AT∇yf(y)|y=Ax,
for a differentiable function f and a matrix A, the upper
bound of the Lipschitz constant of ∇xf(Ax) is given by
L ≤ ‖A‖22Lf , where Lf is the Lipschitz constant of ∇f
and ‖A‖2 is the respective operator norm of A. Conse-
quently, the Lipschitz constant of∇E∗

tight-III can be bounded
by 5(L + 1)/ε, since ‖A‖2 ≤ 5(L + 1) for the matrix A
mapping (p, q) to their appearances in the respective sum-
mands (see the supplementary material for details). Thus,
the largest allowed timestep in forward-backward splitting
and related accelerated gradient methods is required to be
less or equal than ε/(5(L + 1)) in order to have conver-
gence guarantees. Note that Eq. 15 is completely smooth
and the backward step e.g. in forward-backward splitting
is a no-op. We considered and implemented different dual
energies leading to a smooth and a non-smooth term in the
objective, but none of these appears to be superior to Eq. 15.
Hence, in Fig. 4(c) and (d) we report the energy evolution
of Eq. 15 using the proximal gradient algorithm proposed
in [2], and the Euclidean distance to a converged, ground-
truth solution, respectively. Surprisingly, while the dual en-
ergy and the distance to the true solution seems to favor the
smoothing-based approach over a primal-dual implementa-
tion for Etight, the primal energy evolution is clearly infe-
rior. Our conjecture is, that the marginalization constraints
in the primal are only slowly satisfied in the smooth for-
mulation. The recurring peaks in the energy and distance
graphs Fig. 4(c,d) are due to adjustment of ε in an annealing
scheme. A clear advantage of using FISTA for the smooth
energy is the trivial implementation on GPUs, where we ex-
pect speedups of two orders of magnitude.



(a) Etight vs. Efast+refinement (b) Etight vs. Efast+refinement (c) Etight vs. Etight-III,ε (d) Etight vs. Etight-III,ε

Figure 4. Evolution of the energies and respective Euclidean distances to a converged ground truth solution for the tight model Eq. 5, the
refinement strategy (a,b), and FISTA applied on Etight-III,ε (c,d).

5. Conclusion
In [5] the question is raised, whether there is a simple

primal representation of the convex relaxation Eq. 4 for
multi-label problems. In this work we are able to give an
intuitive answer to that question at least in the discrete,
finite-dimensional setting. Thus, there is now a clearer un-
derstanding what the tight convex formulation optimizes
on a discrete image grid, and how to improve the com-
putational efficiency. There are strong links between the
local polytope relaxation for MRFs and the ones derived
in a continuous and infinite-dimensional setting. We do
not know whether it is easy to state the primal program in
the continuous domain in a similar way to Eq. 6. For in-
stance, the marginalization constraint in its difference form,
∇xi =

∑
j<i yji −

∑
j>i yij , would read just as a linear

PDE, but there is the complication that xi
s is not smooth.

Analyzing the continuous setting and further extensions of
Eq. 6 are subject to future work.1
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