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Abstract—Given the growth of Internet photo collections we now have a visual index of all major cities and tourist sites in the
world. However, it is still a difficult task to capture that perfect shot with your own camera when visiting these places, especially
when your camera itself has limitations, such as a limited field of view. In this paper, we propose a framework to overcome the
imperfections of personal photos of tourist sites using the rich information provided by large scale Internet photo collections.
Our method deploys state-of-the-art techniques for constructing initial 3D models from photo collections. The same techniques
are then used to register personal photos to these models, allowing us to augment personal 2D images with 3D information.
This strong available scene prior allows us to address a number of traditionally challenging image enhancement techniques, and
achieve high quality results using simple and robust algorithms. Specifically, we demonstrate automatic foreground segmentation,
mono-to-stereo conversion, field of view expansion, photometric enhancement, and additionally automatic annotation with geo-
location and tags. Our method clearly demonstrates some possible benefits of employing the rich information contained in on-line
photo databases to efficiently enhance and augment one’s own personal photos.

Index Terms—Image enhancement, internet photo collections, segmentation, 2D to 3D conversion, field of view expansion,
photometric enhancement, geo-tagging and locating
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1 INTRODUCTION

With the seminal work by Snavely et al [1] that used
Internet photo collections (IPCs) for 3D reconstruc-
tion and visualization, many image editing operations
have been developed to unlock the rich information
contained in IPCs. Examples include colorization, im-
age inpainting, and geo-tagging etc. In this paper, we
present a comprehensive framework that uses IPCs to
enhance one’s personal photo collections (photographs
generally containing unique individuals) taken at
landmark locations. As demonstrated in Figure 1, by
using the rich IPCs taken at Notre-Dame, a casual
cellphone image suffering from over-exposure on the
background and very limited field of view, can be dra-
matically enhanced or even turned into a stereoscopic
image with minimal user interaction.

We expand upon the success of recent Internet-
photo-based 3D scene reconstruction methods [2], [3]
to automatically register one’s photo to 3D models
reconstructed from IPCs. Once registered, a regular
photo is immediately augmented with 3D depth in-
formation and a rich set of registered images taken
under varying illumination conditions. The extra in-
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formation can lead to a variety of photo enhancement
operations. In this paper we specifically demonstrate
the following enhancement to personal photos taken
at landmark locations:

• 2D to 3D conversion: A single image can be con-
verted to a stereo pair. Compared to the typical
stereo conversion process that simply segments
the image into multiple layers, we demonstrate
more vibrant stereo pairs with a full 3D model of
the background.

• Expanding the field of view: The field of view of
the original photo can be expanded dramatically.
We use a simple method to select color for the
expanded pixels to match the color appearance
of the original image. Our simple method works
remarkably well through leveraging the dense
sampling of lighting conditions represented by
the photos of the IPC.

• Photometric Enhancement: Color artifacts on the
background (e.g., landmarks) can be easily fixed,
including over/under exposure and glare. Using
the rich illumination variations in images of the
IPC, these operations can be done with minimum
user intervention. Given that most cameras set
exposure (and focus) on the face, being able to
automatically fix the problems in the background
is a handy feature.

• Annotation: In typical IPCs approximately 10% of
the images are geo-located [3]. We use this infor-
mation to automatically geo-locate novel photos.
Our method extends the simple geo-location of
models [4], [3] to provide increased accuracy by
also using Google StreetView imagery, unregis-
tered images, and temporal constraints. Our tag
transfer uses a tag analysis to obtain the most
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Fig. 1: Overview of our photo enhancements. From left to right: original image, foreground segmentation, photometric enhancement,
stereoscopic image conversion, field of view expansion, and geo-tagging. The saturation (over-exposure) in right corner of the original
image is removed by photometric enhancement, which is used as input for all the following enhancement applications. The field of view
expansion result is intentionally resized for better figure layout. All photo enhancements are realized using Internet photo collections
of the same landmark, Notre-Dame.

relevant tags for a particular view.
• Segmentation: we propose a novel foreground

and background segmentation that automatically
differentiates foreground based on image appear-
ance statistic obtained from IPCs, surveying the
scene over a variety of different illumination
conditions. Compared to many existing segmen-
tation methods, it requires no user interaction
to obtain a high quality foreground segmenta-
tion. Even for complicated scenes with multiple
foreground layers, tiny user interaction is only
needed for separation of foreground layers.

While some of these effects have been demonstrated
or mentioned previously in different contexts, our
system is the first of using information from IPCs to
solve these problems for personal photos. Our main
observation is that with the abundance of variations in
viewpoint and illumination in IPCs, quite often high-
quality results can be obtained with relatively simple
methods.

One main challenge we have to overcome is the lim-
ited completeness and accuracy found in state-of-the-
art reconstruction methods due to occlusion and noise
in the IPCs. An additional challenge when enhanc-
ing a personal photo is that we typically only have
one view of the foreground in the personal photo.
Therefore, its geometry can not be reconstructed. To
overcome these limitations we propose novel methods
to estimate or interpolate the missing depth values.

With the set of techniques we have adopted and
developed in this paper, we envision a system where
a user can upload his/her trip photos, taken with
a regular camera, into a photo-editing system. The
system will query previously reconstructed 3D mod-
els (from IPCs) and register each photo with the
appropriate data set. After registration, geo-location
as well as tags can be obtained, and a foreground
and background segmentation can be automatically
computed. Then, users can interactively enhance their
trip photos in various ways. Our goal is to create
powerful editing abilities with minimal interaction.
Some methods operate automatically, but in certain
cases some user input is required. We summarize
these steps here, which will be clarified in detail in
the following sections. We require user input to: (a)
fit a ground plane, (b) assigning a depth level for
the foreground layer in 2D-3D conversion, (c) isolate
glare regions for photometric enhancement, (d) select

from top candidates of homography warped images
for FOV expansion to expand regions not covered
by the 3D model (e.g, ground), and (e) isolate single
foreground object from cluttered foregrounds. These
operations only require a few mouse clicks each.

With more and more photos being stored online, we
predict that such a system will with time become more
and more robust to use, require less human interac-
tion, and be able to accomplish an increasing number
of applications over a large range of locations.

2 RELATED WORK

There are three main fields of related work: Internet
photo-based reconstruction, image enhancement, and
image segmentation.

Internet photo-based reconstruction With the preva-
lence of consumer cameras and large scale on-line
photograph storage sites, 3D modeling from IPCs has
become a hot topic in recent years [1], [5], [2], [3].
Snavely et al. [1] presented pioneering work using
photographs from IPCs to compute a 3D model recon-
struction and recovered camera poses. Furukawa and
Ponce [2] presented efficient clustering and filtering
algorithms for parallel reconstruction that enforced
inter-cluster consistency constraints over the entire
reconstruction. Subsequently, Agarwal et al. [5] and
Frahm et al. [3] advanced the state-of-the-art of city
scale reconstruction from IPCs, with both improved
geometric accuracy and computational performance.
Our work adds onto these recent advancements to
better perform incremental updates to these models,
creating new sources of prior information for use in
personal photo enhancement and augmentation.

Image enhancement There have been several tech-
niques for image editing using large quantities of
images downloaded from the web, such as colorizing
gray-scale images [6], [7], enhancing CG images [8],
and enhancing face images using good example prior
photos of the same person [9]. Most related to our
work is image completion [10], [11], [12], [13]. Al-
though impressive results are presented, these com-
pletion methods focus only on image inpainting tasks,
while our field of view expansion task is more general.
Additional differences exist, for example, Hays and
Efros [10] used semantically similar images for the
completion task, but did not attempt to recreate the
original scene. Whyte et al. [11] used photos of the
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same scene, but only applied homography corrections
for the geometric registration of images. Our work on
the other hand, combines 3D geometry information
with homographies for more accurate image registra-
tion. Garg et al. [12] established a theoretical upper
bound on the number of basis images to model real-
world scenes and demonstrated some related applica-
tions including occluder removal and view expansion.
However, their approach is limited when there are
many large random and different foreground objects
appearing in the images, requires manually segment-
ing a large set of images to learn the appearance
bases, and is only able to output pure background
landmark images with no foreground object appears.
Instead, we introduce a novel use of content-aware
scaling for challenging cases where there are many
foreground occluders present. Our method is able to
automatically segment foreground objects that exist in
many personal photos, and create high quality field
of view expansions in more general situations. [14]
proposes a technique for intrinsic image extraction
from photo collections and therefore can be used for
lighting transfer between images. However, it cannot
handle our saturation removal problems, since intrin-
sic image cannot be accurately extracted for saturated
parts. Our proposed methods can solve the problem
by replacing the saturated parts with content from
properly exposed photographs in IPCs.

Our stereoscopic 3D creation application is inspired
by work in the area of virtual view synthesis. View
synthesis from multi-view data is a well established
area. Most work involves computing depth from
multi-view input, and using a depth-image based ren-
dering (DIBR) model to create novel views [15], [16].
While our depth information is computed from multi-
view data, it is all computed a-priori, and mapped to a
single query image, which is used for view synthesis.
In addition, so as to leverage sparse data, and avoid
disocclusion problems, we use a robust image-domain
warping method originally presented for artist-driven
2D to 3D conversion [17].

There are also works on estimating geographic in-
formation from images. [18] computes location dis-
tributions by low-level image matching to a geo-
referenced database. [19] uses some travel priors to
develop the chronological order of the images to find
the location of images. Our geo-tagging method does
not need such priors, and can obtain more precise geo-
tags instead of geo-location distributions.

There has also been related work in the area of 3D
model-based photo enhancement of landscapes and
cityscapes [20]. Their work augments digital terrain
and urban models with user interaction to register
images to the 3D model, while we can achieve fully
automatic 3D model selection and image registration.
More significantly, we propose different enhancement
applications from their work and our enhancement
applications benefit not only from the reconstructed
3D models, but also from photographic appearance

and other information that can be gained from large
scale IPCs.

Image foreground segmentation Interactive image
segmentation brings a user’s prior knowledge of the
location, size, color, and depth boundaries to segment
a target object from an image, for example via a user-
provided bounding box [21], [22] and strokes [23],
[24]. However, even simple labeling tasks such as
dragging a bounding box may still be daunting when
dealing with lots of images. We leverage the oppor-
tunity that IPCs registered to the same model allow,
enabling us to measure color consistency between the
personal photo and IPC and filter out foreground
and background color seeds, obtaining a high quality
segmentation.

3 OVERVIEW

Figure 1 shows an overview of several challenging
photo enhancements made easier by prior information
gained from IPCs. Our approach assumes that IPCs of
the relevant sites have been processed in advance so
that geo-located 3D models of the relevant landmarks
are available.

The proposed method starts by finding a set of
3D landmark models potentially associated to the
personal image. We use an iconic scene graph based
search [3] over the landmark models to identify a
few potentially corresponding landmarks and their
3D information. Next, we identify the corresponding
landmark through geometric verification by regis-
tering the personal photo with respect to the 3D
model using SIFT feature matching and a RANSAC
based robust pose estimation. A bundle adjustment
refines the obtained registration of the personal photo.
Then, a novel automatic foreground segmentation
technique for separating occluding foreground objects
from visible parts of the 3D model is used. After
these pre-processing stages, we proceed to demon-
strate four types of challenging enhancements to the
personal photo: photometric enhancements(saturation
and glare artifacts removal), stereoscopic image syn-
thesis, field of view expansion, and geo-tagging, on
seven different landmarks from man-made architec-
ture to natural scene.

4 MODELING FROM IPCS

In order to verify the applicability of our proposed
method, we apply two commonly used image-based
reconstruction pipelines for testing. For IPCs that
span a unique landmark, we reconstruct the cam-
era locations using Bundler [1], which is an incre-
mental structure-from-motion pipeline. We increase
the density of the obtained point cloud by using
PMVS [2]. For large collections that span several
landmarks across a city, we use an iconic scene graph
approach [3]. We refer to the resulting 3D point cloud
as our 3D model in future tasks. In order to offer
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a scalable solution, each image is represented by
a binarized GIST descriptor [25] and the dataset is
then clustered using K-medoids. Each of the obtained
clusters is geometrically verified in a parallel fashion.
Finally clusters are combined using hierarchical struc-
ture from motion.

We found that both of these solutions proved to
be very successful on many IPCs. Non-rigid objects
such as people in front landmarks are automatically
ignored, and only rigid structures (such as the land-
mark itself) are reconstructed.

To fully exploit the reconstructed 3D model, a
ground model is often necessary. Unfortunately, there
are often too few reliably matched features on the
ground to reconstruct an accurate 3D ground model
from the photo collections. As a result, we design
a simple interactive fitting tool that is used when
no ground points are available in the 3D model.
A RANSAC based automatic facade plane fitting is
firstly applied on landmark, and then we specify the
intersection line of this facade plane with the ground
by selecting two points in the 2D image. The ground
plane is derived by assuming that the facade plane
and the ground plane are perpendicular in the real
world. This assumption is valid in most man-made
structures, and provides sufficiently accurate ground
planes for our methods with little user interaction
(only two clicks).

5 PERSONAL IMAGE REGISTRATION

Given a new image Q from one’s personal photo col-
lection (PPC), in order to perform image enhancement
we first need to register Q to the reconstructed 3D
landmark model M. This can be considered as per-
forming an incremental update of the reconstructed
model.

In order to offer a scalable registration process for
photos to an IPC, we propose a hierarchical matching
approach, which first identifies a small set of po-
tentially corresponding landmarks and then verifies
registration to these landmarks. We use global image
descriptors as shown in [3] to search for the k-nearest
neighbors of image Q in the binarized GIST space [25].
This identifies a set of potential matching landmarks.

Then, a SIFT matching [26] between the candidate
image Q and the collective SIFT descriptors of the 3D
points of images registered within corresponding 3D
model of each of the landmarks M is performed. To
improve the robustness and the efficiency we used a
mean-shift clustering [27] of the SIFT descriptors of
the IPC model along the lines of Irschara et al. [28].
Next the images are registered into the IPC model
using an efficient RANSAC [29] with a three-point
registration [30]. This camera pose is further refined
non-linearly to obtain the optimized camera pose of
Q.

While this method is efficient, it does not offer a
satisfactory registration rate due to the fact that it

Fig. 2: For images that initially failed to register to a 3D
model(first image in second row), we search for a match in the
temporally neighboring images(second and third images in second
row). After constraining their locations nearby, we are able to
successfully register the input image to one of the reconstructed
models(Among the three reconstructed models in first row, the
input image is registered to the right one).

only registers to views that contributed to the 3D
models, and the surrounding areas of the landmark
are often not represented in the 3D models. The key
insight we use is that contrary to the un-ordered IPCs,
personal photos are often a stream of images acquired
during a tour of a city based on the referenced clock
of a single camera. Hence the registration can be
improved by jointly registering images from the PPC
taken around the same time, as they are likely taken
in close spatial proximity. Accordingly, for images that
do not directly register with any model, we register
them through robust fundamental matrix estimation,
if they have overlap with registered images captured
within a time range of up to an hour. Please note
the choice of this range is not sensitive. If an overlap
to a registered image in the PPC is found we use
transitivity to propagate the registration. Examples of
images registered using the time constraint are shown
in Figure 2 for images taken over a time frame of 10
min.

6 IMAGE FOREGROUND AND BACKGROUND
SEGMENTATION

One important prerequisite for many photo editing
operations is the segmentation of the foreground. As
opposed to interactive segmentation methods that
rely on user interaction to learn the foreground and
background appearance models, our method can ac-
quire training data automatically based on the IPC.
The fundamental assumption we make is that a
pixel belonging to the background landmark is likely
to be photometrically consistent across other views,
whereas a foreground pixel usually is not.

Our method first projects the 3D model M onto
the image Q denoted by m. The next step finds a
set of images from the database that are captured
at nearby locations under similar camera poses and
image conditions of Q, denoted by S . Suppose a
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visible 2D point p ∈ m is projected from the 3D
point P and we denote its neighboring 3D point set
as N(P ) = {P ′ : ‖P − P ′‖2 ≤ 3 · l}, where l is the
average spacing between two closest 3D points. We
then compute NCC(p, Ii), the normalized cross corre-
lation of the color values of the projection of N(P ) on
the image Q and the projection on an image Ii ∈ S .
We consider p is consistent between the image Q and
the image Ii if NCC(p, Ii) ≥ 0.6 or p is inconsistent
if NCC(p, Ii) ≤ 0.2. If NCC(p, Ii) is low because the
projection of N(P ) lies on occlusion boundary, we
still treat p as inconsistent between image Q and Ii.
If p is consistent with the majority, i.e., over 80% of
total number of images in S , p is classified into the
background seed set B; similarly, if p is inconsistent
with majority, p is classified into the foreground seed
set F .

We revise the initial setup of Grabcut [21] frame-
work in two aspects: (1) we use automatically gen-
erated training data F and B to initially build the
Gaussian Mixture Models for foreground and back-
ground instead of user-provided bounding box; (2)
we add a constant penalty to the unary term of each
pixel p ∈ F (or p ∈ B) if p is labeled as background
(or foreground) at the first run. We then perform
the iterative energy minimization from Grabcut [21]
to compute the segmentation. Figure 3 and Figure 5
compare fully automatic segmentation results from
our method with Grabcut. Due to our precise color
seeds used to train the appearance models for both
foreground and background, our automatic approach
achieves more accurate and meaningful segmentation
than Grabcut.

Fig. 3: Segmentation results: (top left) the original image super-
imposed with the bounding box prior for Grabcut, (top right) red
dots for foreground color seeds and blue dots for background color
seeds, (bottom left) the result of Grabcut, (bottom right) the result
of our automatic approach.

7 PHOTO ENHANCEMENT

After the above pre-processing steps, we have a
foreground-segmented image with a detailed 3D
model. This rich representation allows us to perform
a number of enhancements to the input image.

7.1 Stereoscopic Image Synthesis

Recently, stereoscopic 3D has seen a huge boom in
popularity due to its ability of providing users with a

more immersive viewing experience. Due to a com-
bination of technological advances and the success
of 3D movies in cinemas, home 3D displays have
become increasingly commonplace. However, the pro-
duction of personal stereoscopic content is still far
from prevalent. Though Fujifilm stereo camera has
started guidance for personal stereoscopic content
creation, options for personal stereoscopic content
creation are still limited, and general-case automatic
2D to 3D conversion is an unsolved and highly under-
constrained problem. In this section, we propose a
framework for generating a convincing stereoscopic
pair from a single 2D personal photograph using prior
information derived from large scale IPCs.

Depth Assignment In order to generate a stereo pair
from a single image, we must first compute depth
values for input image. We first apply the automatic
foreground segmentation described in Section 5, and
the depth values of background pixels are computed
by projecting 3D model M to image plane. Note that
sparse depth values are enough for our stereoscopic
view synthesis described later.

Assigning depth values to foreground pixels how-
ever, usually requires user interaction. For images
with a computed ground plane, we can assign
the depth value for the foreground layer by back-
projecting the ground contact point, e.g., one’s feet,
onto the 3D ground plane. However, for images
without a visible ground plane, we allow the user
to adjust its depth value interactively. In the most
difficult case of multiple layers in the foreground, we
developed a simple UI to allow further separation of
the foreground. Our system supports strokes [24] and
bounding boxes [21] to interactively separate different
foreground objects. One such example is shown in
Figure 5. It should be emphasized that this interactive
step is only needed for images with complex fore-
ground. Please see the supplemental material for an
additional example of this interaction.

Fig. 5: Segmentation results for an image taken in a cluttered
scene: from left to right, the original image superimposed with the
bounding box prior for Grabcut, the result of Grabcut, the result
of our automatic approach and interactively separated different
(color coded) foreground objects.

After depth values for the scene are estimated,
a virtual camera pose is computed such that the
resulting stereo pair provides users with a natural
and comfortable 3D viewing experience. It is indi-
cated that for typical desktop displays with a viewing
distance in the region of 700mm, the comfortable
perceived depth range is 50mm in front and 60mm
behind the display surface [31]. Similarly, we can
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Fig. 4: Single-view personal photo to stereoscopic 3D conversion. Input images (top) are converted to stereo pairs (bottom) using
depth information computed from IPCs. Note: As with any stereo 3D viewing situation, the perceived depth is related to the distance
of the viewer to the screen. These images have been optimized for zoomed-in on screen display. Please view zoomed-in on screen for
best results.

use the same method to retarget the photo to any
other display. We compute a virtual camera pair with
an optimal baseline such that the disparity range
is mapped into this comfort zone of human visual
perception using the mathematical derivation from
the same work. We choose to synthesize both left and
right views centered around the original image, rather
than creating one virtual camera at twice the distance,
as the reduced size of disocclusion regions lead to less
artifacts and more convincing stereo results. Given
the left and right camera poses and the depth map,
we project pixels from known points into both views,
computing a sparse set of disparities, which is used
to synthesize the stereo pair.

Virtual view generation Stereoscopic view genera-
tion is a special case of the general virtual view syn-
thesis problem, for which several classes of solutions
exist. The most common of these is depth-image based
rendering (DIBR), where a dense depth map is used
to project each pixel into a novel view. However, these
methods require per-pixel depth values, which can
be difficult to compute, especially in untextured (sky)
and unknown (disocclusion) regions.

Instead, we adopt a recent approach designed for
2D-3D conversion from scribble input [17] which we
describe here for completeness. This method makes
a piecewise continuous assumption that allows for
discontinuities (determined automatically by our fore-
ground segmentation) to appear at depth bound-
aries. To avoid disocclusions at these discontinuities,
a two-step process is used. The first step computes
a piecewise continuous image warp driven by our
sparse disparity constraints. The second step stretches
the background, using a content and disparity-aware
retargeting method to fill in any disocclusions that
have arisen. This method allows us to automatically
generate high quality stereo pairs using our IPC com-
puted depth prior.

Figure 4 shows some results of our stereo view gen-
eration. We also provide a comparison showing the
naive approach of using a simple planar background
after segmenting the foreground, as shown in Figure

6. We can see that our model M provides a more
realistic and convincing depth impression by giving
shape to the background regions. In addition, in cases
where no foreground exists, we can still achieve a
compelling stereoscopic image.

a b c

Fig. 6: Comparison showing the effect of incorporating our 3D
model M into the stereoscopic conversion. a) Original image, b)
result computed using a planar approximation to the background,
c) result computed using M. In the latter case, the rocks on the
right can be seen at their correct depth level. Please view zoomed-
in on screen for best results.

7.2 Field Of View Expansion

A common problem in photos is the limited field
of view (FOV). This is particularly pronounced in
self-portraits, such as the one shown in Figure 1.
Here we discuss our approach to expand the origi-
nal image’s FOV using the background model from
an IPC. Compared to the stereoscopic synthesis, the
expanded image can contain a significant amount of
missing data. Therefore a different synthesis method
is presented.

Geometric registration The first step for FOV ex-
pansion is to warp similar images from the IPC to
the query image’s camera pose. The expanded region
is then filled in mainly by the content from warped
images, as well as texture synthesized using repetitive
content.

Specifically, for pixels that exist in the 3D model
M, we use forward warping, projecting these points
to the pose of the query image. While this accounts
for a majority of registered pixels, projecting 3D point
clouds can lead to holes in the image. In order to fix
these small holes, we use a bilateral interpolation on
the depth map prior to projection, which interpolates
missing depth values weighted by color similarity and
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Fig. 7: Results from FOV expansion, (top) original images (bottom) FOV expanded images. For the third set, the expanded background
is blurred with a low-pass filter to match the input.

spatial distance measurements. For parts of the image
that do not appear in the 3D model, mostly sky or
ground in our scenes, we mainly use texture synthesis
or homography warping from nearby images to fill in
information. Because of the diversity of lighting con-
ditions and foreground objects in IPCs, it is necessary
to select images with high color similarity to use in
FOV expansion. In our work, we use a SSD metric to
measure color similarity of the reference image and
the warped source images. The top 20–50 images with
highest color similarity are automatically selected for
blending.

We choose a simple scheme for blending the se-
lected images, using the median color of the top
ranking matches, projected into the camera pose of
the reference image. Figure 8 shows the quality of the
the median color images after forward warping, and
also the regions which we are not able to model using
the geometry. These areas are then filled either by
texture synthesis or by warping nearby images with
a homography.

Using nearby images Due to the power of large scale
IPCs (or the similarity of people’s vacation photos),
we found that often times we have numerous images
from nearby camera poses. When selecting from these
images, we favor images that have not only similar
camera location and orientation, but also a wider field
of view than image Q, as these images will exhibit
less distortion after warping, and will have a higher
chance of containing the content needed to fill out
our view. From these images, the top candidates are
automatically chosen for blending the median image.
Thanks to the large number of images in our database,
we are often able to automatically find many images
taken with very similar poses, which makes forward
warping fairly accurate. However, for cases where
there are no nearby images with the similar per-
spective, or when the query image has much higher
resolution than source images, the forward warping
naturally leads to blur in the filled image region (see
Figure 18).

Combining sources Once we have geometrically

and photometrically registered the images, the next
step is to fill the expanded areas. To achieve seamless
blending of different registered images, we combine
gradients from all the sources, forming a new gradient
image with expanded FOV. The output gradients are
automatically combined, and the priorities are: origi-
nal image (1st), geometrically registered median im-
age (2nd), homography warped nearby images (3rd)
if we have to use(such as ground). Specifically, to
compose gradients of expanded FOV, we keep gradi-
ents from original image, and then add in gradients
from median image to expanded area. For regions that
median image does not cover, we fill in gradients
from homography warped images. After we com-
pute our combined gradients map, we solve Poisson’s
equation [32] to seamlessly reconstruct the output
image. Texture synthesis will be applied if sky region
is missing, as will be described in next paragraph.
When the background is out of focus, we allow users
to specify a Gaussian blur for the expanded region,
to match the reference image(column 3 in Figure 7).
Figure 7 shows some results from our FOV expansion
application.

Fig. 8: Median color images from selected geometrically registered
images with high photometric consistency.

Content-aware scaling and texture synthesis There
are some extremely challenging cases where impor-
tant occluders, such as people, are cropped by the
image border. In this case there is no way to recon-
struct the remaining portions of these occluders with
our model M or with nearby images. We present a
solution to this problem where we first apply au-
tomatic segmentation to extract the important fore-
ground objects, and then use a content-aware image
resizing technique [33] to stretch the remaining unim-
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portant background regions(such as ground), while
preserving the aspect ratio of foreground objects. This
is used to expand the background, without creating
artifacts due to foreground objects being cut off at the
borders. As shown in the second image of Figure 7,
by our novel usage of seam carving allows a photo-
realistic expansion of original image to be obtained
for a difficult case.

Finally, as mentioned above, for sky regions (seg-
mented using our geometric model) that remain un-
filled after all prior compositing steps, we implement
a texture synthesis approach [34] to fill the remaining
holes. When there is no sky region at all in the original
image, we use an infinite homography to warp the sky
from the other nearby images, and then complete the
region with texture synthesis. By combining a number
of simple approaches, our system is able to achieve
high quality results, filling in convincing information
from a large set of registered images with minimal
user interaction.

7.3 Photometric Enhancement

IPCs also provides an excellent sample set to fix up
problematic areas in personal photos, in particular
these areas on the background (e.g., the landmark). It
should be noted that most cameras determine meter-
ing based on the central content, or even on detected
faces. Therefore it is more likely that the background
part requires photometric correction.

Flawed area identification In this application we
mainly deal with two types of enhancements, remov-
ing saturated regions and glare. We automatically
detect saturated regions (over-exposed and under-
exposed) by simply thresholding r,g,b values of pixels
near 0 and 255. Automatic detection of glare is more
difficult. Therefore we allow a user to identify the
location of these artifacts, as shown in Figure 10.

Image composition We adopt the same scheme as in
Sec 7.2 for computing a median color image over the
registered images with high photometric consistency,
using SSD to measure the color similarity of reference
image and the warped source images (excluding areas
that needs to be enhanced). Under this scheme, we
find a median color image that contains important
image detail within these saturated and glare regions,
while maintaining color similarity to the reference
image. To achieve seamless blending, we again per-
form Poisson blending [32], replacing gradients of the
saturated regions in the personal photograph with
those from median image.

Tone mapping Introducing detail into the saturated
region can result in an HDR image whose dynamic
range is beyond the 8-bits of the input image/display
device. Therefore, as a post-processing step, we apply
a standard tone mapping technique to obtain the final,
viewable image. Figure 9 and Figure 10 shows some
results of our photometric enhancement application

and comparison with results from Photoshop.

a b c

Fig. 9: Comparison showing the effect of our saturation removal
using internet photo collections. a) Original image, b) Result from
Photoshop color adjustment, c) Result from our method. Since
saturated regions have no details, simple color adjustment cannot
fix the problem. Please view zoomed-in on screen for best results.

a b c

Fig. 10: Effect of our glare removal using internet photo collec-
tions. a) Original image with user selected glare region, b) Results
using Photoshop Healing and Clone tools, c) Results from our
method. Please view zoomed-in on screen for best results.

7.4 Transfer of Information

IPCs are not limited to a set of images, they typically
also incorporate meta-data such as geo-location and
text tags. When a PPC is aligned to an IPC, these
meta-data can be automatically transferred. This of-
fers additional ways to browse your PPC either by
displaying your images on a map or for example by
grouping the images by label. In the following section,
we describe how our system transfers geo-locations
and text tags from IPCs to PPCs.

Geo-tagging While geo-location of the PPC photos is
often desired for visualization effects (map of location
of a collection, browsing, etc.) it is a tedious manual
task to localize photos without GPS information. We
find that in an IPC typically more than 99% of the
photos do not contain GPS information. Our system
removes the burden of manual localization from the
user by automatically geo-localizing the photos of
the PPC. We use the embedded tags (automatic and
user clicked) of the images in the IPC. In order
to support more accurate geo-location we also use
Google StreetView panoramas, which have high ac-
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curacy geo-location and orientation1.
First we translate the GPS latitude longitude in-

formation into an approximate local metric coordi-
nate system the Universal Transverse Mercator (UTM)
grid. This conversion allows us to consider Euclidean
distances between geo-tags.

To obtain geo-localization for the PPC, our system
uses a two-stage process. In a first preprocessing
stage executed once for each model in the IPC the
system obtains an accurate geo-localization of the
corresponding IPC model. This accurately localized
model is then used to perform a geo-localization of
the PPC images.

IPC model localization: Our algorithm first obtains an
approximate geo-localization through a kernel voting.
Each image that has a geo-tag votes for its location
through a Gaussian kernel centered at its geo-tag
location and a 3σ cut off distance of 25 meters for
clicked geo-tags (approximate clicking accuracy) or
a 3σ cut off distance of 10 meters for GPS based
geo-tags. To suppress outliers we then select all geo-
locations within the biggest mode as the set of valid
geo-tags. The approximate location of each model is
then obtained by the averaging of the inlier locations.
Alternatively, when there are no geo-tags or no reli-
able geo-tags (no consistent votes) we use the text-
tags of the images of the IPC for a location query on
Google Maps to obtain an approximate geo-location.

The approximate geo-location of the IPC model
is then used to obtain all nearby Google StreetView
imagery (panoramas) available for the refined geo-
localization, whose location is likewise transferred
into the UTM coordinate system. Given that these
images contain mostly road surfaces and cars below
the horizon line we discard all information below the
horizon for the further processing, (the horizon can
be directly obtained from the image orientation). All
panoramas are then registered into the model using
our registration process from Section 5 but instead
of using the standard three-point algorithm we use
a three-point algorithm based on viewing rays given
that the panorama directly provides viewing rays.
Then using a RANSAC approach we transform the
IPC model coordinate system into the UTM coor-
dinate system. We use the known positions of the
panoramas in the IPC model and the UTM coordinate
system of the same panorama as correspondences
to estimate the transformation from the IPC model
coordinate system to the UTM coordinate system.
This step delivers an accurate transformation from the
IPC model coordinate system to the geo-coordinate
system. We apply this transformation to geo-localize
the IPC model, which is then be used in the next step
to geo-localize the images of the PPC.

PPC image geo-loclization: This is using the registra-

1. The panoramas used are automatically downloaded through
the Google StreetView API
http://code.google.com/apis/maps/index.html

tion process discussed in Section 5 with respect to the
geo-located model. This directly obtains geo-location
in the UTM coordinate system for the photos of the
PPC.

Typically there is a large fraction of the IPC images
with geo-tags that are not registered with our model.
These images provide valuable geographic informa-
tion about less popular scenes in an IPC. Therefore
for the images that failed to register to a geo-localized
model, we search for matching images in the set
of geo-tagged images using the same method as in
Section 5 including trying to match images of the
PPC taken at approximately the same time. The ob-
tained geo-tags are then filtered using the same kernel
voting as the IPC model geo-location. Matching to
the complete set of geo-tagged images from the IPC
drastically increases the number of geo-localizable
images in the PPC.

We tested this geo-tagging approach on several
PPCs that were taken in Berlin by three different users.
We used an IPC consisting of 2.8 millions images
retrieved from Flickr (including 353,584 geo-tagged
images) and 467 geo-localized 3D models. In this case
we were able to geo-tag more than 55% of the input
images with an estimated accuracy of approximately
50 meters, which is related to the quality of input
geo-tagged information. Visual geo-tagging results are
shown in Figure 11.

Image labeling Labeling images offers additional
information to ones PPC. It not only allows the user to
search images in his or her PPC based on keywords,
but also to retrieve additional information about a
photo. For example, the tags found for an image of
a monument are usually precise enough for Google
to retrieve the corresponding Wikipedia article.

In order to offer precise tag candidates to the user,
we propose a hierarchical automatic annotation algo-
rithm. First we select the most popular tags from the
complete IPC from which the model was computed.
Then for each image we select the most popular
tags from the particular landmark it was registered
to, excluding the previously attached tags from the
IPC. If an image is registered to several landmarks,
we select the tags that have the highest combined
mean occurrence across the landmarks (number of
times a given tag is represented in the dataset divided
by the total number of tags). Finally we add tags
coming directly from the images the candidate image
registered to, adding a few more localized tags.

In addition to these effects, we could also easily per-
form other enhancements based on the scene depth,
such as refocus, depth-of-field control, etc. These ef-
fects have been demonstrated with depth obtained by
other means, therefore we will not show examples in
this paper.
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52.518611 N 
13.400000 E 

Global tags: Berlin, Germany,      
     Deutschland, Europe 
Local tags:  Berlin Cathedral, Berlin Dom,  
                    Dom, Cathedral 

Fig. 11: Geo- and textual tagging of personal photos using IPCs of Berlin and Notre Dame. Locations depicted with green pins
correspond to the query images that are matched a 3D model, geo-tagged and geo-localized. Blue pins represent images from IPC.

8 EVALUATION

To further evaluate the performance of our system,
two groups of evaluations are conducted. The first
one evaluates the operating range of our methods,
such as how the results depend on the number of
images in database, or the resolution/quality of the
query image. The second evaluates how convincing
users find the enhancement results, as well as our sys-
tem’s processing speed and interaction requirements,
especially by comparing with state-of-the-art image
editing software.

8.1 Operating Range Evaluation

The more images the database contains, the richer
information we can obtain. In this evaluation, we
evaluate how our enhancement results depend on the
number of images in database. We choose the Mount
Rushmore dataset to demonstrate it. We carried out
the same operations, varying only the number of im-
ages in database - 500 images, 250 images, 80 images.
As shown in Figure 12, the first row demonstrate
that with more images in database, the 3D effects
are more realistic. In the result using a 500 image
database, we can see more 3D geometry variance in
the far rock, which disappears when only using 250
images. When only 80 images are used, the depth
effect becomes unnatural in the background. Those
differences are due to the density of the reconstructed
3D point clouds. The second and third rows show
that more images induce more realistic FOV expan-
sion and photometric enhancement, due to a larger
number of photometrically-consistent images that can
be drawn from. This can be seen especially in the area
between the two rightmost faces in FOV expansion
case, and the leftmost face in photometric enhance-
ment case. Similar comparison can be seen in another
dataset(Row 4-6 in Figure 12).

Another factor that affects our system’s perfor-
mance is the resolution/quality of the query image,
especially on FOV expansion application. If the query
image is of high resolution compared to other images
in database, the geometric warping from database im-
ages to reference image will be more blurry, therefore

Original 500 images 250 images 80 images

Fig. 12: Comparison showing how the results depend on the num-
ber of images in database. Row 1-3: Mount Rushmore Dataset.
Row 4-6: Notre Dame Dataset. From top to bottom: 2D to 3D
conversion, FOV expansion, photometric enhancement. Please
view zoomed-in on screen for best results.

producing a more blurry median image and final FOV
expanded image. Conversely, if the query image is
lower resolution than other images in database, the
warped images can appear sharper than the query im-
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age. Generally, the more consistent resolution/quality
a query image has with images in database, the
better performance that our system can achieve. As
shown in Figure 13, an image is expanded at two
different resolutions, using the same IPC. Although
the overall resolution of (b) is much higher than
(d), the expanded region of (d) is more consistent to
the quality of original image(c), therefore looks more
natural, while in (b) the expanded region is more
blurry relative to the quality of original image(a),
which looks a little bit unnatural.

a b

c (downsampled) d (downsampled)

Fig. 13: Performance related to query image resolution. a) Orig-
inal image, b) Result from original image, c) Downsampled
original image(X5), d) Result from downsampled(X5) original
image. The expanded region of (d) is more consistent to the quality
of (c), therefore looks more natural, while the expanded region of
(b) is more blurry relative to the quality of (a), which looks a little
bit unnatural. Please view zoomed-in on screen for best results.

8.2 Performance Evaluation

We conducted a user study to evaluate how realistic
our photo enhancement results are compared to the
processing results from state-of-the-art image editing
tools, e.g., Photoshop. Four Photoshop experts were
asked to process 20 query images from 6 different
scenes, among which 4 images are used for segmenta-
tion, 6 images for 2D to 3D conversion, 4 images for
FOV expansion, 6 images for photometric enhance-
ment.

Based on the design goal of our system, we hypoth-
esize that using our system will be able to complete
the tasks significantly quicker than using Photoshop,
the state-of-the-art image editing tool. The average
time required to complete the four tasks with our sys-
tem and Photoshop are illustrated in Figure 14. We can
see that for all the four tasks, our system takes much
less time than using state-of-the-art image editing

tools. ANOVA tests confirm that the time differences
are statistical significant for all the four tasks(F =
10.87, p-value = 0.008 < 0.01 for “Foreground Seg-
mentation”; F = 30.42, p-value = 0.0002 < 0.01 for
“2D to 3D Conversion”; F = 17.21, p-value = 0.006 <
0.01 for “FOV Expansion”; F = 47.04, p-value =
0.002 < 0.01 for “Photometric Enhancement”), which
further validates our hypothesis.

467 
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Fig. 14: Average time used for processing under our system and
Photoshop.

25 users are asked to compare the Photoshop results
with our enhancements on the same images. To avoid
bias, images from two methods are randomly ordered
and users do not know which image comes from
which method. Users were required to select one of
five preference choices: 1) Image 1 is much better than
Image 2; 2) Image 1 is slightly better than Image 2; 3)
Image 1 is equal to Image 2; 4) Image 1 is slightly
worse than Image 2; 5) Image 1 is much worse than
Image 2.

Ours >> PS 
(much better) 

Ours > PS 
(slightly better) 
 

Ours = PS 
(equal) 

 

Ours < PS 
(slightly worse) 

 

Ours << PS 
(much worse) 

 

Foreground 
Segmentation 

6.00% 22.00% 25.00% 24.00% 23.00% 

2D to 3D 
Conversion 

30.56% 30.56% 19.44% 13.89% 5.56% 

FOV  
Expansion 

61.00% 28.00% 4.00% 5.00% 2.00% 

Photometric 
Enhancement 

26.67% 38.67% 25.33% 4.00% 5.33% 

Evaluation 

Application 

Fig. 15: User study result: Percentage of preference choices
between our results and Photoshop(PS) results. The four rows
represent four different applications. The expert-driven PS seg-
mentation can be deemed as ground truth. Users’ visual evalua-
tions show that our segmentation results are comparable to ground
truth. For the other three applications, our results receive much
higher evaluation scores.

As shown in Figure 15, the user study clearly shows
that our results are either favored over those from
Photoshop, or comparable (for the difficult task of
automatic foreground segmentation). It is worthwhile
to point out that taking Photoshop segmentation as
ground truth, our automatic foreground segmentation
achieves an average error rate of 3%, with mini-
mum error rate of 0.7% and maximum error rate of
8.7%(multiple foreground layers case). This indicates
that our approach is capable of automatically produc-
ing comparable foreground segmentations to hand-
tuned foreground segmentation maps in Photoshop.
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Fig. 16: Normalized evaluations of Our approach vs Photoshop.

The error rate is computed as the percentage of mis-
labeled pixels.

Figure 16 shows a more intuitive diagram of user
preference. We normalize the five statements in Fig-
ure 15 to numerical scores ranging from +2 to -2.
The mean value of these scores lies on the bound-
ary between red bar(ours) and blue bar(Photoshop).
The larger the normalized evaluation score, the more
preferable our approach was to Photoshop. Figure 17
shows some visual comparisons between our ap-
proach and the Photoshop images that we used in
the study. This user study validates our conclusions
again that leveraging IPCs and simple user inter-
action allows us to create more convincing image
enhancements than what is possible with state-of-the-
art image editing tools used by experts.

In terms of geo-tagging and locating evaluation,
unfortunately we are not aware of a system that
tries to geo-localize PPC to IPCs. Most systems only
register images to a geo-registered model. In that our
approach is similar when we can register the input
image to a model, but when this fail we offer a
backup to transfer geo-tag which, as far as we know,
was not proposed before. Therefore we believe that
these results are relevant. As for the geo-registering of
model we offer a robust system based on commodity
panoramas (e.g. Google street view images). Current
system uses accurate GPS or a combination geo-tags
and maps. We currently do not compare to this sys-
tem, but our attempts to geo-register our model using
only the geo-tags have failed because of the amount
of noise in the input.

9 DISCUSSIONS

Like many IPC-based approaches, the success of our
approach depends on the availability of large sets of
photos taken at the same site. Therefore its application
is currently mainly limited to images of touristic sites.
However, there are on-going efforts for large-scale
image acquisition through competitive games [35].
So we are optimistic that the applicability of our
approach will be greatly expanded in the future.

Fully automatic image segmentation is a challeng-
ing task. As shown in Figure 5, our automatic ap-
proach sometime is not sufficient to further separate

a b c

Fig. 17: Comparison showing the effect of our enhancements
using internet photo collections. a) Original image, b) Result from
Photoshop, c) Result from our method. From top to bottom: fore-
ground segmentation, 2D to 3D conversion, FOV expansion and
photometric enhancement. Please view zoomed-in on screen for
best results. To see more photometric enhancement comparisons
with Photoshop, please refer to Figure 9 and Figure 10. More
comparison results are provided in supplemental materials.

foreground layers for 2D-3D conversion. Therefore
we still require user interaction to separate the fore-
ground layers. This is the most time-consuming part
of our entire system (for which we have prepared a
video in the supplementary materials).

FOV expansion is also a difficult case, especially for
areas that have no 3D information (Figure 18(a)) or in-
accurate 3D information (Figure 18(b)). One example
of such areas, are locations that are non-static, such as
a fountain, which cannot be accurately reconstructed
by our 3D model. This causes the corresponding loca-
tion to become blurry when reconstructed from me-
dian color values of nearby IPC images (Figure 18(b)).
One solution to this problem could be by including
manual interaction to select patches where the result
is sampled from a single image.

Generally, our proposed enhancement methods
work on both daytime and nighttime images, how-
ever, personal image registration is more challeng-
ing for nighttime image. As long as there exist
photometrically-consistent photographs to input im-
age in database, the gradient field of created median
image is good to use for our proposed enhancements.
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If the input image is taken under too extreme con-
dition(e.g sunset or glossy scenes), there is high pos-
sibility that very few photos under similar condition
can be retrieved from database, the proposed method
might not work quite well. Another limitation is that
our median image based method might result in
inconsistent lighting, since we didn’t take into account
the lighting direction when creating median image,
especially when there is strong directional lighting in
the input image.

a b

Fig. 18: Limitations of our approach: (a) Missing data behind the
columns caused bad interpolated depth values, and consequently
a low-fidelity synthesized view in the column areas. (b) Another
example of field-of-view expansion. The green box is the original
photo. Note that the flowing water from the fountain on both the
left and right sides, and the fountain rocks are blurry.

10 CONCLUSION

In this paper, we approach personal photo enhance-
ment from a novel direction - using IPCs. Our work
leverages the 3D background models reconstructed
from IPCs of the same landmark. With the rich in-
formation from large scale IPCs, we believe that by
augmenting one’s personal photo with depth infor-
mation, as well as the surrounding appearance in-
formation, a number of interesting photo enhance-
ments can be achieved. Applications that we have
explored vary from automatic image segmentation,
stereoscopic view synthesis, to field of view expan-
sion, photometric enhancement, geo-tagging etc, all
of which show promising results and validate the
potential of our approach.

Although the 3D model is reconstructed from inter-
net photos using the state-of-the-art techniques, the
sparsity and inaccuracy of the 3D model still con-
tribute to some failure cases in photo enhancements.
Newer approaches like Frahm et al. [3] provide dense
geometry which could help overcome the sparsity
limitations. The 3D depth augmentation of 2D images
also enables additional enhancements such as super-
resolution or 3D re-targeting by using the full variety
in resolution and illumination conditions captured by
the IPC.

Finally, in this paper we only focus on single image
enhancement. However one future direction could be
to extend our work to multiple images or even video
sequences for enhancement.
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