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Abstract

We present a method to obtain the solutions to the general-
ized 6-point relative pose problem. The problem is to find
the relative positions of two generalized cameras so that six
corresponding image rays meet in space. Here, a general-
ized camera is a camera that captures some arbitrary set
of rays and does not adhere to the central perspective pro-
jection model. The cameras are assumed to be calibrated,
which means that we know the image rays in Euclidean
camera coordinate systems. Mathematically, the problem
is therefore, given two Euclidean configurations consisting
of six lines each, to find a rigid transformation of the first
six lines so that each transformed line intersects its corre-
sponding line from the second set.
We show that the problem has 64 solutions in general and
solve it by computing a

���������
matrix on closed form and

then extracting its eigen-vectors. Hence we present a solver
that corresponds to the intrinsic degree of difficulty of this
minimal problem.
Our numerical experiments show that the presented solver
can be used in a RANSAC-implementation.

1. Introduction
Solving for the relative positions of two images given corre-
sponding points is one of the fundamental tasks in computer
vision in general and in structure from motion in particular.
Solutions exist for most cases arising with traditional cam-
era models, such as calibrated perspective [6], uncalibrated
perspective [12] and uncalibrated affine [13].

In the case of a calibrated perspective camera, Kruppa
[14] showed that there are at most eleven solutions for
two images and five points. Later is has been shown that
there are only ten solutions. Solutions for such minimal
cases have proven useful in practice as hypothesis genera-
tors in hypothesize-and-test algorithms such as RANSAC
[7], where the solutions from a large number of randomly
selected minimal point samples are robustly scored based
on their support over the whole data set.

Recently, there has been intense interest in generalized
cameras, i.e. non-central cameras that, due to their geome-

Figure 1: Top: The minimal classical relative pose prob-
lem is to find the solutions for relative pose of two cam-
eras so that five corresponding image rays meet in space.
Bottom: We solve the minimal generalized problem, which
is to find the solutions for relative pose of two generalized
cameras given six corresponding points. The image rays of
the generalized cameras do not go through a common pro-
jection center. It is therefore also possible to solve for the
scale of the translation, which is the reason for the addi-
tional point. The generalized solution lets us deal with any
of the recently very popular camera geometries that do not
adhere to a central perspective model, such as for exam-
ple a camera made up of several rigidly attached cameras
moving together, or a camera facing an arbitrarily shaped
mirror.



try, do not have a projection center [2, 17, 15]. For example,
we can consider a bug-eye camera or multi-camera rig of
rigidly attached cameras moving together as a single cam-
era. This lets us obtain larger coverage and potentially more
stable motion estimation, but in order to achieve this, we
have to use the generalized camera model. Another exam-
ple of a generalized camera is an omni-directional camera
created with a regular camera facing an arbitrarily shaped
mirror. The image rays from such a camera are not in gen-
eral concurrent in a single point.

The information about all light in a scene is embedded in
the plenoptic function [1]. Extreme generality is obtained
by just considering a generalized camera as a device that
samples in an arbitrary fashion from the plenoptic function.
We are able to work with this level of generality simply by
assuming that we have a mapping from image points to rays
in the camera coordinate system [9, 19].

Assuming that the camera coordinate system is Eu-
clidean is equivalent to assuming a calibrated camera. In
this manner we can relegate the specifics of the camera to
a prior calibration procedure. Hence, the proposed method
solves generalized relative pose for any generalized camera
provided calibration is known.

Note that if one wanted to create a generalized analogue
for uncalibrated relative pose, one almost inevitably would
have to assume some parametric model for the unknowns
and one then loses the ability to create a one-fits-all solution,
one possible such alternative is the pushbroom camera [11].

However, there is another type of analogue to the cali-
brated case, which is to assume that the camera calibration
is known up to an affine transformation. In Section 3 we
indicate that this is what leads to the uncalibrated frame-
work in the classical case. In the classical case this leads in
general to simpler equations. We investigate the complexity
of the affine formulation for the generalized case and find
that for minimal problems it leads to very large numbers of
solutions.

The minimal pose problem for generalized cameras has
been solved [3, 16], as well as the minimal relative pose
for pure planar motion [18]. Pless generalized the epipolar
constraint in [17] and also investigated infinitesimal motion
for generalized cameras.

However, to the best of our knowledge, none of the mini-
mal relative orientation problems with finite motion of gen-
eralized cameras have previously been solved. We cata-
logue six different minimal generalized camera problems
and solve the most feasible of the relative orientation prob-
lems.

The remainder of the paper is organized as follows: In
Section 2 we introduce the generalized epipolar constraint,
in Section 3 we catalogue the minimal cases. The solver is
presented in Section 4.

2 Generalized Camera Model

Figure 1 shows the difference between classic and general-
ized cameras. In the classic camera, all rays pass through a
common point, the camera center, while in the generalized
camera this is not the case.

The conventional camera model has difficulties in treat-
ing problems involving systems of multiple cameras or
cameras looking through a non-planar mirror. In such a case
it is impossible to find a common camera center.

With a calibrated generalized camera we know how each
image point corresponds to a unique line. The problem is
posed using lines in 3D and they are here parameterized
using Plücker coordinates. A Plücker vector is a six-vector����������
	���
����
consisting of two three-vectors � � ��� where ������� ���

. Any
point � on the line described by � � � ����� satisfies� � � � � ��� (1)

The vector
�

is only defined up to scale, and if this scale is
fixed by � � � ���

, then all points � on the line described by� � � ��� � can be parameterized as

�!�#" � � � � � �%$ " � � " �'& � (2)

The image space of the generalized camera consists of
rays � � � � � � in the camera coordinate system. This model
does not distinguish if the generalized camera is a multi-
camera system or a camera viewing the world through a
non-parabolic mirror. as long as the system is calibrated.
Equation (1) is valid if the world point is given in the coor-
dinate system of the camera; however, this is not often the
case, and there is an unknown transformation between the
world coordinate system and the camera coordinate system.
If the transformation from the world coordinate system to
the camera coordinate system is given by ( � �*) �,+ � then
for a point �.- in the world coordinate system equation (2)
becomes � �-0/ � � -
/ $ " -0/ � -0/ � ) / � - $ + / � (3)

where 1 indexes over points and 2 over views.
In this paper the following problem will be studied,

Problem 2.1. Given image rays3 � � � � � � -0/�4 � 1 ��� � �5�6� �,78� 2 �9� � �5�6� �,:;�
find cameras

3 ( /�4 , points
3 � -<4 and depths

3 " -0/�4 so that
equation (3) holds.



In [17] Pless derives a generalized epipolar constraint,
where the first camera position is set to ��� � � � . We will here
derive the same constraint without this restriction.

We will now study the constraint that two corresponding
image rays place on the camera geometry. For two image
rays to be in correspondence, they must intersect in a point.
Two rays in Plücker coordinates,���%� � � ����� 	 and

��� � � � ����� 	 �
intersect if and only if���� � �� $ ���� � �� � � � (4)

However, if these two lines are given in a local camera coor-
dinate system they must first be transformed to the world co-
ordinate system. In order to be consistent with Equation (3),
points on the two lines will be tranformed by (	� ��

and (
� ��
respectively. Then the transformed line

�� �
is given by

����%� � �� ��� �� 	 � � ) � � � �) � � ���� $ ) � ��
 + ����� � � 	 �
and similarly for

����
. Here


 � ���
is the skew-symmetric

cross-product matrix so that


 � ����� � � � � �
Equation (4) then becomes���� ) � ) � � � �� $ ���� ) � ) �� � �� $$ � �� �*) � ) � ��
 + � � ��� 
 + � � � ) � ) � � � � � � � � (5)

We will use quaternions to represent rotations. A quater-

nion is a four-vector � � � � � ����� � � , which will be

written �"! � �#� � where ! is a three-vector. Quaternions
can be used to parameterize rotations according to

$ ) �&% � !�! � � �'
 ! ��� � $ � � � � ! � ! ��( � (6)

where $ is chosen so that )+* , ) �9�
and ( is the - � - iden-

tity matrix. If !/.0! $ � � � �
then $ � �

in Equation (6).
Rescaling a quaternion will give a different $ but the same) . Subsequent equations (8) are homogeneous in ) , so the
norm of ) is unimportant. We will parameterize ) by set-
ting

� ���
in equation (6), i.e.)21 % � !�! � � 
 ! ��� � $ � � � ! � ! �0( � (7)

3 Minimal Cases

We will here catalogue the minimal cases for pose and rel-
ative pose for generalized cameras. The key observation is

that observing a ray in a generalized camera gives two equa-
tions and that a point in space has three degrees of freedom.
For generalized pose and generalized relative pose we wish
to solve Problem 2.1.

For the generalized relative pose problems that we have
been unable to solve we have formulated analogous prob-
lems over 354 where p is a large prime number and tested
these in Macaulay 2 [8]. This gives an indication of what
number of solutions to expect.

Relative Pose with a Euclidean Generalized
Camera

Each camera has six degrees of freedom, but the world coor-
dinate system can only be determined up to a rigid motion.
With : camera positions and 7 rays observed in all images
there are a total of

% :'7 � - 7 � � : $ � excess constraints.

Euclidean Generalized Camera
n

m 1 2 3 4 5 6 7 8
1 -1 -2 -3 -4 -5 -6 -7 -8
2 -5 -4 -3 -2 -1 0 1 2
3 -9 -6 -3 0 3 6 9 12
4 -13 -8 -3 2 7 12 17 22
5 -17 -10 -3 4 11 18 25 32

Minimal cases are when the number of equations equals
the number of unknowns. In the table above there are two
zeros and these are the only two minimal cases for this prob-
lem. Using the the algebraic geometry software Macaulay
2 [8], we compute the number of solutions for the analo-
gous problem over 3 4 , this number usually corresponds to
the number of solutions over & . For : �6%

and 7 � �
we

get 64 solutions and for : � - and 7 � �
we get 1320

solutions.

Relative Pose with an Affine Generalized Cam-
era

By an affine generalized camera we mean a camera for
which poses are affine transformation matrices. In this case
there are

% :�7 � - 7 � �7% : $ �8%
excess constraints.

Affine Generalized Camera
n

m 5 6 7 8 9 10 11 12
1 -5 -6 -7 -8 -9 -10 -11 -12
2 -7 -6 -5 -4 -3 -2 -1 0
3 -9 -6 -3 0 3 6 9 12
4 -11 -6 -1 4 9 14 19 24
5 -13 -6 1 8 15 22 29 36

There are two minimal cases



� Two positions and twelve rays for which the analogous
problem over 3�4 problem has 348 solutions.� Three positions and eight rays. We expect the number
of solutions to be very high as we have not been able
to compute the number of solutions to the analogous
problem.

Generalized Pose

In [16] Nist ér solves the pose problem for Euclidean gener-
alized cameras.

We observe here that generalized pose for affine cameras
is a linear problem with a unique solution in general. It
is a direct generalization of the DLT for the classical case
[12]. In the generalized case the problem is exactly minimal
instead of overdetermined by one.

4 Solving Two Cameras and Six Rays

Theorem 1. For two (calibrated) generalized cameras tak-
ing images of six labeled points in space there are in general
64 solutions, (not up to scale), to Problem 2.1.

Proof. We will in the following give a solver which has this
number of solutions with zero residual.

The coordinate system can be chosen up to a rigid trans-
formation, i.e. a rotation and a translation. The rotation is
set by choosing ) �%� ( , the - � - identity matrix.

With ) �%� � , the generalized epipolar constraint (5) be-
comes� �� ) � � �� $ � �� �#) � 
 + � � � � 
 + � � � ) � � � � $ � �� ) �� � �� � � � (8)

Equation (8) is linear in the rotation ) �
. This means that we

can scale ) �
with any non-zero factor without violating (8)

and use Equation (7).

4.1 Removing the Translation Parameters

In order to be able to eliminate the translation parameters+ � and + � in (8) a special parameterization is used. This
parameterization is asymmetric and by repeatedly choosing
different asymmetries an increasing number of linearly in-
dependent equations can be obtained.

Until now only the rotation of the coordinate system has
been set. By choosing one of the world points as the origin,

i.e. ��� � � � � � � � for some
� � � � �6�6� � � � the transla-

tional part of the coordinate system is set. Now, consider
equation (3) for ���

� �� / � � � / $ "�� / � � / � ) / �� ���
�	 $ + / � (9)

This can be simplified to

+ / � � �� / � � � / $ " � / � � / 2 ��� � % � (10)

We have used point
�

to express the six translation parame-
ters, + / , as linear expressions in the two unknown depth pa-
rameters

3 "�� /�4�/�
 �
� � and the measured � � � / � ���� / � . Inserting
the expressions for + � and + � in Equation (8) for the remain-
ing points gives five equations in the unknown rotation ) �
(represented by the quaternion ! ) and the two depths " � �
and " � � . These equations are linear in " � � and " � � and can
be rewritten

� � � ! �� ��� �� � �
�� " � �" � ��

�	 � � � (11)

The entries in
� � � ! � are quadratic in ! , and depend other-

wise only on measured image data.
Equation (11) has non-trivial solutions, and therefore������� � � � � ! � ��� %

, that is, all - � - submatrices of
� � � ! �

must have determinant zero. There are ten such subma-
trices. This gives ten equations of degree six in the un-
knowns � � � � � � � � � � . This set of ten equations has two one-
dimensional families of false roots.

Computing
� � and the resulting equations for several

different values of
� � � � �6�5� � � � gives ten new equations

for each value of
�

. The number of linearly independent
equations will grow with the number 7 of different values
of
�

used. For 7�� �
the false roots are eliminated.

7 1 2 3 4 5 6
equations 10 20 30 40 50 60

lin. indep. eqs. 10 14 15 15 15 15
false roots y n n n n n

We chose to use 7 � - but all 7�� �
work well. The order

of elimination is a little more elegant for 7 � %
but the

numerical stability is a little better for 7 � - as is shown in
Figure 6.

4.2 Creating a Gröbner-Basis

In the following steps we will create and use a Gröbner-
basis. More information and theory on Gröbner-bases can
be found in textbooks on Algebraic Geometry, for example
[4, 5].

Our Gröbner-basis is built with respect to GrevLex order
in order to avoid the heavy calculations necessary to build
a lex-order base. When working with only up to 6th degree
monomials, the 84 monomials are ordered in pure GrevLex.
When working with the 120 coefficients of monomials up
to degree 7, the order is altered so that

�! � is placed as the
64th smallest element. The reason for altering the order is



that we know which monomials will be indivisible by the
leading terms of the Gröbner-basis.
All polynomials are replaced by rows in matrices with the
columns sorted according to the above modified monomial
order.

1. Choosing 7 � - when performing the elimination of
depths gives 30 equations. From these equations it is
possible to choose 15 linearly independent equations
either by prior knowledge or Gauss-Jordan elimina-
tion. There are now 15 equations of degree 6.

2. The results of multiplication by
�
,
� �

,
� �

and
� �

are
stacked into a

� � � �7% �
matrix. This matrix (gener-

ally) has rank 56. Gauss-Jordan elimination is applied.
After elimination there are 56 polynomials of degree 7
and lower.

3. This matrix contains 27 of the 28 elements needed for
a Gröbner-basis.

4. To get the last element in the basis, the polynomial
represented by row 6 is multiplied by

� �
and is sub-

tracted from the polynomial in row 4 multiplied by
�'�

.
This is done by using the multiplication matrices for
the parts of the polynomials that are of degree � � and
separately handling the 4 elements of degree 7. The re-
mainders of this polynomial are computed with respect
to all old polynomials.

Now a GrevLex Gröbner-basis has been calculated. Let� be the ideal formed by our polynomials. A basis for the
ring ) � & 
 � � � � � � ��� ��� � containing 64 monomials is then
chosen. Using the Gröbner-basis it is straightforward to
compute the action matrix :���� for the linear operator( ����� )
	���
� � � � � ) �
For some basis monomials � the product � � � is still in the
basis so the corresponding column contains a single non-
zero entry. For other monomials the results will be mono-
mials outside the matrix. Here the Gröbner-basis is used
to find a representative of the equivalence class � � � with
monomials in the basis of ) . The transpose of the action
matrix is shown in Figure 5.

The eigen-values of : �� � are the solutions for
� �

and as
long as these solutions are distinct (generic case) the eigen-
vectors give solutions to � � � � � � � � � � , cf. [5]. The argument
is briefly as follows. Denote � � the row vector of mono-
mials and ��� the coordinates (or coefficients) of the poly-
nomial � , i.e. we can think of the polynomial � as � � ��� .
Now

� � � � ��� is in the same equivalence class as � � : � � ���
for each choice of ��� . This means that : ���� � ��

� � � � �� for
each point

� ��� . This is, however, an eigen-value problem
for the transposed action matrix : ���� .
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Figure 2: The 30 equations we begin with. Here there are
84 monomials with non-zero coefficients and only these are
represented.
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Figure 3: After the first elimination.
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Figure 4: After multiplying by
�
,
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. There are
now 120 monomials.
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Figure 5: The transpose of the action matrix.
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Figure 6: Numerical error when using 7 � %
and 7 � - .

The mean error is
� � � % �5� ��� for 7 � %

and
� � %�� �5� ��� for7 � - . The median error is

� � ��� �5� ��� for 7 � %
and� � � � ��� �	� for 7 � - . Using 7 � - is a little better.

When the eigen-values are not distinct it is possible to
consider the action matrix : � for a random linear combi-
nation � of � � � � � � � � � � instead.

The solutions for the translations have to be computed
using back substitution, i.e. from Equation (8). This prob-
lem is linear in the translation parameters � + � � + � � .

By studying specific instances of the problem it can be
shown that (i) there are examples of image data with 64 so-
lutions. The functional determinant of the problem is non-
degenerate and the equations are continuous in the parame-
ters. Using the inverse function theorem there is an open
neighborhood of instances with 64 solutions. This com-
pletes the proof of Theorem 1.

4.3 Degenerate Situations

With a setup where each point is observed for both times
from the same point in the camera coordinate system and
the motion is a pure translation, then it is impossible to solve
for the scale of the translation. This is typically the case for
a multicamera setup.
If all cameras in a multicamera setup all lie on a line and all
points are observed by the same camera both in image-set
one and image set two, then there is a one-dimensional fam-
ily of solutions consisting of the line rotating around itself
with all points at depth zero. If these false roots are removed
then the corresponding analogous problem over 3 4 has 56
solutions.

4.4 Numerical Experiments

As this is a minimal case solver, the errors must be divided
into two parts. Part one is the numerical stability of the
solver itself and part two is the stability of the solution un-
der noise. The floating point calculations are performed as
double. When no noise is applied the errors are usually
small, 97.8% of the estimated rotation matrices have errors
of less than

�
degree. This is shown in Figure 7.

In order to test if this solver can be used for RANSAC
implementation we have set up some test with synthetic
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Figure 7: Error (in degrees) in rotation matrix for random points
and movements.

data. The setup is as follows: The room has side-length
two and has 100 points per wall. The camera rig is in the
center of the room at the time of image one and rotated by) and translated by + at the time of image two. There is one
camera on the rig for each observed point and each camera
make an observation for image one and one observation for
image two. The cameras lie in a plane in the camera co-
ordinate system and half of them point forward and half of
them points backwards. The cameras have a mean distance
of

� � �7% � to the camera coordinate system center.

When observing points each camera can only see points
within - ��


from it principal direction.

The measured directions to the points are disturbed by
Gaussian noise centered at the correct point with standard
deviation in degrees given in the plots. In order to get an
estimate from degrees to pixel, consider a camera with a
field of view of

� ��

with a resolution of

� � �
pixels. Then

one pixel is
� � ��
 .

We perform 100 iterations in the RANSAC loop and the
solutions are scored based on the re-projected errors of the
intersected points, the target function is computed as

� �
� � - � � - $ � � � � � � where � - is the norm of the image error
of observation 1 computed in normalized image coordinates.
No iterative adjustment is performed.

In Figure 8 the error in estimating the rotation and the
translation are shown. The estimates for the size of the
translations is not of comparable quality and getting good
estimates for the translation size requires good precision,
this is presented in Figure 9.

In Figures 10 and 11. we present the same experiment as
in Figures 8 and 9 but with

�5��

outliers added. No attempt

to remove the outliers.
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Figure 8: Error in determining the rotation matrix. No outliers,�����
rotation. No outlier removal attempted. Note that one pixel

corresponds to
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Figure 9: Error in determining the translation scale. No outliers,�����
rotation. No outlier removal attempted. Note that one pixel
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. The presented error is calculated as the mean
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Figure 10: Error in determining the translation scale. 10% out-
liers,
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rotation. No outlier removal attempted. Note that one
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����� �

. The presented error is calculated as the
mean of �
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Figure 11: Error in determining the translation scale. 10 % out-
liers,

��� �
rotation. No outlier removal attempted. Note that one

pixel corresponds to
����� �

. The presented error is calculated as the
mean of �
	������%�������
	����������������
�&������ �!"��#$# .

4.5 Time Requirements

The eigen-value calculation takes 85% of the time in the
current implementation and this fraction can only be ex-
pected to increase if the other parts are further optimized.
Execution time to get ! is

%�� : �
on a Celeron

% � �('*),+
.

5. Conclusion
We have shown how to solve the generalized minimal case
of 2 positions and 6 points in a practical way.
Performing the eliminations in a matrix formulation has al-
lowed us to use pivoting in the elimination, whereas straight
Buchberger would not permit this. To the best of our knowl-
edge this is the first minimal solution to any of the general-
ized relative orientation problems.
In the experiments we have shown that this solver can be
used for a RANSAC implementation for generalized cam-
eras. This gives the solver a practical value.
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