
Paper by: Matteo Frigo

MIT Laboratory for Computer Science. February 16, 1999

Presented by: Marco Poltera. November 16, 2011

Software Engineering Seminar

A Fast Fourier Transform Compiler

Introduction and motivation

2

/ Computation of Discrete Fourier transform (DFT) required by
many real world applications

• Look at the internals of FFTW

• Argue that a specialized compiler is a
valuable tool

Goal

real world
application,

i.e. JPEG
compression

DFT program,
i.e. FFTW

result,
i.e.

compressed
image

uses

Recap: DFT

/ linear transform: 𝑦 = 𝑇𝑥

/ DFT:

 with (primitive n-root of unity)

𝑦 = 𝐷𝐹𝑇𝑛𝑥

/ FFT: We can compute 𝑦 = 𝑇𝑥 = (𝑇1(𝑇2.. (𝑇𝑚𝑥)))

3

Recap: DFT

/ DFT4 =

4

Example from: How to write fast numerical code. Markus Püschel. Carnegie Mellon University. Course 18-645. Lecture 17.

FFTW

/ FFTW consists of three parts:

5

Compiler
(genfft)

• run once

• output:
codelets

Planner

• run once for
every
transform
size

• hardware
adaption

• output: plan

• reusable

Executor

• computes
the DFT

• output:
transformed
vector

FFTW

6

graphic from: How to write fast numerical code. Markus Püschel. Carnegie Mellon University. Course 18-645. Lecture 19.

FFTW

7

code to adapt
to hardware

codelets

9
5

 %

5
 %

FFTW code

auto-
generated
by genfft

graph from paper

The four phases of genfft

creation phase simplifier scheduler unparser

8

Creation phase

9

creation phase simplifier scheduler unparser

n is a multiple
of 4

n = n1n2 and
gcd (n1, n2) = 1

n = n1n2 and
ni ≠ 1

n is prime

split-radix
algorithm

prime factor
algorithm

Cooley-Tukey
FFT algorithm

Rader’s
algorithm

application of
DFT definition

ch
o

o
se an

 FFT algo
rith

m

Creation phase

10

creation phase simplifier scheduler unparser

gen
e

rate
 d

ag
acco

rd
in

g to
 FFT

Creation phase

11

creation phase simplifier scheduler unparser

/ Example: Cooley-Tukey algorithm

let rec cooley_tukey n1 n2 input sign =
 let tmp1 j2 = fftgen n1 (fun j1 -> input (j1*n2+j2)) sign in
 let tmp2 i1 j2 = exp n (sign*i1*j2) @* tmp1 j2 i1 in
 let tmp3 i1= fftgen n2 (tmp2 i1) sign
 in (fun i -> tmp3 (i mod n1) (i/n1))

Creation phase

12

creation phase simplifier scheduler unparser

/ DAG representation

 Type node = Num of Number.number | Load of
Variable.variable | Store of Variable.variable * node | Plus of
node list | Times of node * node | Uminus of node

v4 v2

v1

v0 v3

v3 = Plus [v2; Times (Num 3, v0)]
v4 = Plus [Times (Num 2, v2); v1; v0]

2

3

Simplifier

/ algebraic transformations

/ i.e. apply distributive property: 𝑘𝑥 + 𝑘𝑦 → 𝑘(𝑥 + 𝑦)

/ common-subexpressions

/ DFT-specific improvements

/ make numeric constants positive

/ dag transposition

13

creation phase simplifier scheduler unparser

Simplifier: DAG transposition

/ three passes:

14

creation phase simplifier scheduler unparser

simplify

D

E

simplify

F

G

simplify

ET

FT

Simplifier: DAG transposition

15

creation phase simplifier scheduler unparser

a

b

a

b

c

c

2

2

3

3

4

4 𝑐 = 4(2𝑎 + 3𝑏)

 a = 2 ∗ 4𝑐
 𝑏 = 3 ∗ 4𝑐

Scheduler

16

creation phase simplifier scheduler unparser

• maximize register usage Goal

/ schedule is cache-oblivious

Scheduler

17

creation phase simplifier scheduler unparser

Scheduler

/ #register spills = Θ(n log(n) / log(R))

18

creation phase simplifier scheduler unparser

Unparser

/ Schedule is unparsed to C

19

creation phase simplifier scheduler unparser

Conclusion

/ performance

/ rapid turnaround

/ effectiveness

/ derived new algorithms

/ not reduced to a specific language such as C

20

Further information

/ Download FFTW: www.fftw.org

/ Details on FFTW: “FFTW: An Adaptive Software Architecture
For The FFT” by M. Frigo/S. Johnson (1998)

21

22

Usage of FFTW

23

#include <fftw3.h>
...
{
 fftw_complex *in, *out;
 fftw_plan p;
 ...
 in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
 out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
 p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
 ...
 fftw_execute(p); /* repeat as needed */
 ...
 fftw_destroy_plan(p);
 fftw_free(in); fftw_free(out);
}

from the tutorial included in the FFTW distribution 3.3

DFT

/ FFT refers to

/ any O(NlogN) algorithm or

/ the specific Cooley-Tukey algorithm

/ computing a DFT of N points takes

/ in the naive way, using the definition, O(N2) arithmetical
operations

/ O(N log N) operations for a FFT

24

FFTW and Parallelism

/ Parallel versions are available for

/ Cilk

/ Posix threads

/ MPI

25

Simplifier

/ Implementation:

/ simplifier written as if it was an expression tree

/ mapping from trees to DAGs accomplished by
memoization which is performed implicitly by a monad

26

creation phase simplifier scheduler unparser

Pragmatic aspects of genfft

/ running time

/ memory requirements

27

