Optimizing Collective Communication on
Multicores
Rajesh Nishtala' Katherine Yelick'

"University of California, Berkeley

(2009)

/57

Algorithms for Scalable Synchronization on Shared-Memory
Multiprocessors

John M. Mellor-Crummey, Michael L.Scott
(1991)

PGAS Languages

» Focus on Partitioned Global Address Space languages

57

Partitioned Addresspace

one address space

4/57

One Sided Communication

read

write

5/57

PGAS Languages

» UPC, Unified Parallel C
» CAF, Co-array Fortran
» Titanium, a Java dialect

57

Context

» The gap between processors and memory systems is still
enormous

57

SUPER FAST
SUPER EXPENSIVE
TINY CAPACITY

CPU CACHE

FASTE
EXPENSIVE
SMALL CAPACITY

£D0, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
PRICED REASONABLY

and More... AVERAGE CAPACITY
SOLID STATE MEMORY AVERAGE SPEED

SSD, Flash Drive PRICED REASONABLY

AVERAGE CAPACITY

SLOW

Mechanical Hard Drives CHEAP
LARGE CAPACTITY

http://images.bit-tech.net/content_images/2007/11/the_secrets_of_pc_memory_part_1/hei.png

8/57

» Today: processors don’t get faster, but we see more and more
processors on a single chip

Processor GHz | Cores (Threads) | Sockets
Intel Clovertown | 2.66 8 (8) 2
AMD Barcelona | 2.3 32 (32) 8

Sun Niagara 2 1.4 32 (256) 4

Table: Experimental Platforms

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores

Sun Niagara 2

T
SPARC ..
Corg §

L2 Datar
Bank 7

L2B6

L2 Data
Bank 6

http://www.rz.rwth-aachen.de/aw/cms/rz/Themen/hochleistungsrechnen/

rechnersysteme/beschreibung_der_hpc_systeme/ultrasparc_t2/ rba/ultrasparc_t2_architectural_details/?lang=de
11/57

» The number of processors on a chip grows at an exponential
pace

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores
12/57

Intel Single-Chip Cloud Computer (48 Cores)

http://techresearch.intel.com/ProjectDetails.aspx?ld=1

» Communication in its most general form is the movement of data
within cores, between cores or within memory systems

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores
14/57

CPU CPU CPU CPU CPU CPU CPU CPU

RAM RAM RAM RAM

communication network

Collective Communication

» Communication-intensive problems often involve global
communication

16/57

Broadcast

17/57

Gather

18/57

» These operations are thought of as collective communication
operations

19/57

Example: Sum of Vector Elements

20/57

Example: Sum of Vector Elements

» Create workers

1 2 3 4 5 6 7 8 9 10

W Wo Ws Wy Ws

21/57

Example: Sum of Vector Elements

» Every worker sums up it’s part of the vector

VYV AY

22/57

Example: Sum of Vector Elements

» The main thread gathers the partial results and sums them up
1 2 3 4 5 6 7 8 9 10
’ \\ | / "

55

23/57

Example: Sum of Vector Elements

Pseudocode (main thread):

double [] vector = read_vector();
Thread [] workers = spwan_workers ();

start_workers (workers);
double result = calculate_result(workers);

24/57

Example: Sum of Vector Elements

Pseudocode (main thread):

double [] vector = read_vector();
Thread [] workers = spwan_workers ();

start_workers (workers);

wait_until_everything_finished(workers);
double result = calculate_result(workers);

25/57

Barrier

» Synchronization method for a group of threads

» A thread can only continue it's execution after every thread has
called the barrier

26/57

11111111111

YRRVRYEY
ANpZe

Collective Communication Operation

“... group of threads works together to perform a global
communication operation ...”

28/57

Reduce

» Divide a problem into smaller subproblems
» Every thread contributes it’s part to the solution
» Example: Calculate the smallest entry of a vector

29/57

Flat vs. Tree

» For communication among threads, different topologies can be
used

30/57

Flat Topology

» Example: we have a reduce operation

» in the end the main thread W,,,i, has to wait for every worker
thread Wy,..., Wy

Winain Wi Wo Wz W, Ws W Ws

31/57

Winain Wi Wo Wz W, Ws W W5

vV

Wmain

32/57

Wiain Wi Wo Wiz W, W5 Ws

W57

33/57

Wnain Wy Wo Wz W, Ws Ws
vV
Wmain
Wma/n

Wmain

Wo

34/57

Wihain Wi Wo Wz W, Ws We
>4
Wmain
Wmain
Wmain

Wmain

35/57

Winain Wi Wo Wz W, Ws We

Wy

36/57

Wmain Wi W Wz We Ws Ws
VY

Wmain

v

Wmain

v

W,

37/57

w5

38/57

Tree Topology

» Example: we have a reduce operation

» in the end the main thread W,,,i, has to wait for every worker
thread Wy,..., Wy

Wiain Wi Wo Wz W, Ws W W5

39/57

Wiain Wi Wo Wz W, Ws W W

VARV

Winain Wa Wy We

40/57

ma/n 1 W2 W3 W4 W5 W6 W7

VARVARVARY

</ \/

Wmain W4

41/57

Wiain Wi Wo Wz W, Ws W Ws

VoA A A

maln

\/ \/

42/57

Analysis

[Pthread Lib [Flat I Tree|

Barrier Latency (ns)

Intel Clovertown (8) AMD Opteron (32) ‘Sun Niagara2 (256)
Machine (Threads)

Figure: Barrier Performance

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores
43/57

Barrier Implementation

#define N 4

pthread_t threads[N];
volatile int ready[N];
volatile int go[N];

void barrier(int id) {

if (id == 0) {
//wait for each thread
for (int i = 1; i < N; i++)

while (ready[i] == 0);

//reset the ready flags

for (int i = 0; i < N; i++)
ready[i] = 0;
//signal each thread
for (int i = 0; i < N; i++)
go[i] = 1;
}
else {
ready[id] = 1;
//wait until thread is signalled
while (go[id] == 0);
go[id] = O;
}

44 /57

Experiment: Barrier Implementation

10° T

—+— pthread
—— spin lock barrier

Runtime[cycles]

10" L 1 L L L L

4 5
Number of Threads

» Strict synchronization: Data movement can only start after all
threads have entered the collective and must be completed
before the first thread exits the collective

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores
46/57

Strict Synchronization

\/ \/ \/ \/
\/ \/

N

47/57

Loosening Synchronization Requirements

» Loose synchronization: Data movement can begin as soon as
any thread has entered the collective and continue until the last
thread leaves the collective

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores

48/57

Loose Synchronization

\/ \/ \/ \/
\/ \/

N

49/57

\/ YA \/

. —O- Strict Flat
10°H —— Strict Tree
- Loose Flat
£+ Loose Tree

Reduction Latency (nanoseconds)

L L AR TS LAY TR R SR
12 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Vector Size (Double Precision Words)

Figure 5: Optimal Algorithm Selection on Niagara2

(32 cores, 256 threads)

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores
53/57

-O- Strict Flat
—— Strict Tree
10°H Loose Flat
Loose Tree

Reduction Latency (nanoseconds)

R S SR R R
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Vector Size (Double Precision Words)

Figure 6: Optimal Algorithm Selection on Clovertown

(8 cores, 8 threads)

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores
54/57

-©- Strict Flat :
10°t| —+— Strict Tree 4
Loose Flat | :

o

Loose Tree

Reduction Latency (nanoseconds)

S S W
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Vector Size (Double Precision Words)

Figure 4: Optimal Algorithm Selection on Barcelona
(32 cores, 32 threads)

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores
55/57

Summary

» Best strategy depends on the hardware and on the problem

» Using a library that can automatically adapt to a given situation
can bring a great performance improvement, since hand tuning
takes far too long

56/57

Words on the Paper

v

Very high level

v

Description of the problem without concrete solution

v

No implementation

v

Plots aren’t always clear and precise

57/57

	Putting the paper in the right context
	PGAS Languages
	Problems Today

	Introduction to collective communication
	Barrier
	Reduce

	Optimizing collective communication
	Flat vs. Tree
	Loosening Synchronization Requirements

