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PGAS Languages

» Focus on Partitioned Global Address Space languages
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Partitioned Addresspace

one address space
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One Sided Communication

read

write

5/57



PGAS Languages

» UPC, Unified Parallel C
» CAF, Co-array Fortran
» Titanium, a Java dialect
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Context

» The gap between processors and memory systems is still
enormous
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» Today: processors don’t get faster, but we see more and more
processors on a single chip



Processor GHz | Cores (Threads) | Sockets
Intel Clovertown | 2.66 8 (8) 2
AMD Barcelona | 2.3 32 (32) 8

Sun Niagara 2 1.4 32 (256) 4

Table: Experimental Platforms
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» The number of processors on a chip grows at an exponential
pace
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Intel Single-Chip Cloud Computer (48 Cores)

http://techresearch.intel.com/ProjectDetails.aspx?ld=1




» Communication in its most general form is the movement of data
within cores, between cores or within memory systems

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores
14/57



CPU CPU CPU CPU CPU CPU CPU CPU

RAM RAM RAM RAM

communication network



Collective Communication

» Communication-intensive problems often involve global
communication
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Broadcast
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Gather
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» These operations are thought of as collective communication
operations
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Example: Sum of Vector Elements
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Example: Sum of Vector Elements

» Create workers

1 2 3 4 5 6 7 8 9 10

W Wo Ws Wy Ws
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Example: Sum of Vector Elements

» Every worker sums up it’s part of the vector

VYV AY
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Example: Sum of Vector Elements

» The main thread gathers the partial results and sums them up
1 2 3 4 5 6 7 8 9 10
’ \\ | / "

55
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Example: Sum of Vector Elements

Pseudocode (main thread):

double [] vector = read_vector();
Thread [] workers = spwan_workers ();

start_workers (workers);
double result = calculate_result(workers);
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Example: Sum of Vector Elements

Pseudocode (main thread):

double [] vector = read_vector();
Thread [] workers = spwan_workers ();

start_workers (workers);

wait_until_everything_finished(workers);
double result = calculate_result(workers);
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Barrier

» Synchronization method for a group of threads

» A thread can only continue it's execution after every thread has
called the barrier
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Collective Communication Operation

“... group of threads works together to perform a global
communication operation ...”
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Reduce

» Divide a problem into smaller subproblems
» Every thread contributes it’s part to the solution
» Example: Calculate the smallest entry of a vector
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Flat vs. Tree

» For communication among threads, different topologies can be
used
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Flat Topology

» Example: we have a reduce operation

» in the end the main thread W,,,i, has to wait for every worker
thread Wy,..., Wy

Winain Wi Wo Wz W, Ws W Ws
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Tree Topology

» Example: we have a reduce operation

» in the end the main thread W,,,i, has to wait for every worker
thread Wy,..., Wy

Wiain Wi Wo Wz W, Ws W W5
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Analysis

[ Pthread Lib [ Flat I Tree|

Barrier Latency (ns)

Intel Clovertown (8) AMD Opteron (32) ‘Sun Niagara2 (256)
Machine (Threads)

Figure: Barrier Performance
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Barrier Implementation

#define N 4

pthread_t threads[N];
volatile int ready[N];
volatile int go[N];

void barrier(int id) {

if (id == 0) {
//wait for each thread
for (int i = 1; i < N; i++)

while (ready[i] == 0);

//reset the ready flags

for (int i = 0; i < N; i++)
ready[i] = 0;
//signal each thread
for (int i = 0; i < N; i++)
go[i] = 1;
}
else {
ready[id] = 1;
//wait until thread is signalled
while (go[id] == 0);
go[id] = O;
}
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Experiment: Barrier Implementation
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» Strict synchronization: Data movement can only start after all
threads have entered the collective and must be completed
before the first thread exits the collective
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Strict Synchronization
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Loosening Synchronization Requirements

» Loose synchronization: Data movement can begin as soon as
any thread has entered the collective and continue until the last
thread leaves the collective
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Loose Synchronization
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Figure 5: Optimal Algorithm Selection on Niagara2

(32 cores, 256 threads)
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Figure 6: Optimal Algorithm Selection on Clovertown

(8 cores, 8 threads)
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Figure 4: Optimal Algorithm Selection on Barcelona
(32 cores, 32 threads)
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Summary

» Best strategy depends on the hardware and on the problem

» Using a library that can automatically adapt to a given situation
can bring a great performance improvement, since hand tuning
takes far too long
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Words on the Paper

v

Very high level

v

Description of the problem without concrete solution

v

No implementation

v

Plots aren’t always clear and precise
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