# Optimizing Collective Communication on Multicores

Rajesh Nishtala<sup>1</sup> Katherine Yelick<sup>1</sup>

<sup>1</sup>University of California, Berkeley

(2009)

## Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors

John M. Mellor-Crummey, Michael L.Scott (1991)

## **PGAS Languages**

► Focus on Partitioned Global Address Space languages

## Partitioned Addresspace



#### One Sided Communication



### **PGAS Languages**

- UPC, Unified Parallel C
- CAF, Co-array Fortran
- ► Titanium, a Java dialect

#### Context

The gap between processors and memory systems is still enormous



http://images.bit-tech.net/content\_images/2007/11/the\_secrets\_of\_pc\_memory\_part\_1/hei.png



| Processor        | GHz  | Cores (Threads) | Sockets |
|------------------|------|-----------------|---------|
| Intel Clovertown | 2.66 | 8 (8)           | 2       |
| AMD Barcelona    | 2.3  | 32 (32)         | 8       |
| Sun Niagara 2    | 1.4  | 32 (256)        | 4       |

Table: Experimental Platforms

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores

## Sun Niagara 2



http://www.rz.rwth-aachen.de/aw/cms/rz/Themen/hochleistungsrechnen/rechnersysteme/beschreibung\_der\_hpc\_systeme/ultrasparc\_t2/rba/ultrasparc\_t2\_architectural\_details/?lang=de



## Intel Single-Chip Cloud Computer (48 Cores)







#### Collective Communication

 Communication-intensive problems often involve global communication

### **Broadcast**



## Gather





1 2 3 4 5 6 7 8 9 10



Every worker sums up it's part of the vector



► The main thread gathers the partial results and sums them up



#### Pseudocode (main thread):

```
double [] vector = read_vector();
Thread [] workers = spwan_workers();
start_workers(workers);
double result = calculate_result(workers);
```

#### Pseudocode (main thread):

```
double [] vector = read_vector();
Thread [] workers = spwan_workers();
start_workers(workers);
wait_until_everything_finished(workers);
double result = calculate_result(workers);
```

#### Barrier

- Synchronization method for a group of threads
- ► A thread can only continue it's execution after every thread has called the barrier



#### **Collective Communication Operation**

"... group of threads works together to perform a global communication operation ..."

#### Reduce

- Divide a problem into smaller subproblems
- Every thread contributes it's part to the solution
- Example: Calculate the smallest entry of a vector

#### Flat vs. Tree

 For communication among threads, different topologies can be used

## Flat Topology

- Example: we have a reduce operation
- ▶ in the end the main thread  $W_{main}$  has to wait for every worker thread  $W_1, ..., W_7$

$$W_{main}$$
  $W_1$   $W_2$   $W_3$   $W_4$   $W_5$   $W_6$   $W_7$ 















#### Tree Topology

- Example: we have a reduce operation
- in the end the main thread W<sub>main</sub> has to wait for every worker thread W<sub>1</sub>,..., W<sub>7</sub>

$$W_{main}$$
  $W_1$   $W_2$   $W_3$   $W_4$   $W_5$   $W_6$   $W_7$ 







# **Analysis**



Figure: Barrier Performance

#### **Barrier Implementation**

```
#define N 4
pthread t threads[N];
volatile int ready[N];
volatile int go[N];
void barrier(int id) {
    if (id == 0) {
        //wait for each thread
        for (int i = 1: i < N: i++)
            while (ready[i] == 0);
        //reset the ready flags
        for (int i = 0; i < N; i++)
            ready[i] = 0;
        //signal each thread
        for (int i = 0; i < N; i++)
            qo[i] = 1;
    else {
        ready[id] = 1;
        //wait until thread is signalled
        while (go[id] == 0);
       go[id] = 0;
```

# **Experiment: Barrier Implementation**





Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores

# Strict Synchronization



#### Loosening Synchronization Requirements

 Loose synchronization: Data movement can begin as soon as any thread has entered the collective and continue until the last thread leaves the collective

# Loose Synchronization







*T*<sub>7</sub>





Figure 5: Optimal Algorithm Selection on Niagara2 (32 cores, 256 threads)



Figure 6: Optimal Algorithm Selection on Clovertown

(8 cores, 8 threads)

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores



Figure 4: Optimal Algorithm Selection on Barcelona (32 cores, 32 threads)

Nishtala, R., Yelick, K. Optimizing Collective Communication on Multicores

#### Summary

- Best strategy depends on the hardware and on the problem
- Using a library that can automatically adapt to a given situation can bring a great performance improvement, since hand tuning takes far too long

#### Words on the Paper

- Very high level
- Description of the problem without concrete solution
- No implementation
- Plots aren't always clear and precise