
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-019-00514-6

SP IN 2017

Stateless model checking of the Linux kernel’s read–copy update (RCU)

Michalis Kokologiannakis1 · Konstantinos Sagonas2

© The Author(s) 2019

Abstract
Read–copy update (RCU) is a synchronization mechanism used heavily in key components of the Linux kernel, such as the
virtual filesystem (VFS), to achieve scalability by exploiting RCU’s ability to allow concurrent reads and updates. RCU’s
design is non-trivial, requires a significant effort to fully understand it, let alone become convinced that its implementation
is faithful to its specification and provides its claimed properties. The fact that as time goes by Linux kernels are becoming
increasingly more complex and are employed in machines with more and more cores and weak memory does not make the
situation any easier. This article presents an approach to systematically test the code of the main implementation of RCU
used in the Linux kernel (Tree RCU) for concurrency errors, both under sequentially consistent and weak memory. Our
modeling allows Nidhugg, a stateless model checking tool, to reproduce, within seconds, safety and liveness bugs that have
been reported for RCU. Additionally, we present the real cause behind some failures that have been observed in production
systems in the past. More importantly, we were able to verify both the publish–subscribe and the grace-period guarantee,
with the latter being the basic and most important guarantee that RCU offers, on several Linux kernel versions, for particular
configurations. Our approach is effective, both in dealing with the increased complexity of recent Linux kernels and in terms
of time that the process requires. We hold that our effort constitutes a good first step toward making tools such as Nidhugg
part of the standard testing infrastructure of the Linux kernel.

Keywords Software model checking · Linux kernel · Read–copy update · Nidhugg

1 Introduction

The Linux kernel is used in a surprisingly large number of
devices: from PCs and servers to routers and smart TVs.
For example, in 2015, more than one billion smart phones
used a modified version of the Linux kernel [1] and, in 2017,
all modern supercomputers used Linux as well [2]. Now,
with many IoT devices shifting their operating system to a
Linux-based one [3], this number is only bound to increase.
Therefore, it is self-evident that the correct and reliable opera-
tion of the Linux kernel is of great importance, which renders
thorough testing and verification of its components a neces-
sity.

B Michalis Kokologiannakis
michalis@mpi-sws.org

Konstantinos Sagonas
kostis@it.uu.se

1 Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern Saarbrücken, Germany

2 Department of Information Technology, Uppsala University,
Uppsala, Sweden

Naturally, this process needs to span all of the kernel’s
components and subsystems. One particular subsystem with
a non-trivial implementation is the read–copy update (RCU)
mechanism [4,5]. RCU is a synchronization mechanism that
provides excellent scalability by enabling concurrent reads
and updates. RCU’s implementation is quite involved, as
RCU interacts with many other subsystems of the Linux
kernel, making the precise modeling of RCU’s environment
arduous. Moreover, the lockless design of its fastpaths, and
the fact that it needs to operate in heavily concurrent environ-
ments, renders the modeling and verification process even
more challenging. The relatively short release cycle of the
Linux kernel (currently, there is a new release every approx-
imately 2months), the number of changes that are involved
in each release, and the increasing complexity of the ker-
nel’s code call for thorough and automatic testing. In fact,
the Linux code base already contains a fair number of regres-
sion test suites, including a so-called torture test suite for its
RCU component [6]. Still, the fact that concurrency bugs
manage to survive—maybe only under particular configura-
tions, architectures and memory models—even after heavy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00514-6&domain=pdf
http://orcid.org/0000-0002-7905-9739
http://orcid.org/0000-0001-9657-0179

M. Kokologiannakis, K. Sagonas

stress testing underlines the need for employingmore power-
ful bug-finding techniques, such as softwaremodel checking,
that are able to operate on as big a percentage of the actual
code of the Linux kernel as possible.

This article reports on the use of stateless model checking
(also known as systematic concurrency testing) for testing the
core of Tiny RCU and Tree RCU, both being RCU imple-
mentations used in the Linux kernel.

First, after a brief introduction to RCU (Sect. 2) and state-
less model checking (Sect. 3), we demonstrate how we used
the tool Nidhugg [7] to verify the grace-period guaran-
tee, which is the basic guarantee that RCU offers, for Tiny
RCU, an implementation of RCU for uniprocessor systems
(Sect. 4).

Next, after describing the implementation of Tree RCU
(Sect. 5), we show how we obtained a reusable model for
the kernel’s environment (Sect. 6), necessary for the veri-
fication procedure. Using this model, as well as the source
code from five different kernel versions directly, we veri-
fied both a part of the publish–subscribe guarantee (Sect. 7)
and the grace-period guarantee (Sect. 8) for Tree RCU, the
main RCU implementation used in the Linux kernel. Our
effort concentrated on particular kernel configurations (non-
preemptible builds), but we also investigated the effects that
weak memory models (TSO and PSO) may have on RCU’s
operation.

In order to strengthen our verification claim, we injected
concurrency bugs similar to ones that have been reported
throughout the development ofRCUand, in all cases, our tool
was able to come up with scenarios in which they occur. In
particular, we were also able to demonstrate that a submitted
patch, intended to impose a locking design, in reality fixed
a much more serious bug that was responsible for failures
observed in production systems some years back, a fact that
was previously unknown.We report on this issue and present
the exact conditions under which this bug occurs (Sect. 9).

Finally, we discuss some limitations of our approach, as
well as the main lessons learned from the verification proce-
dure (Sect. 10).As demonstrated byour results, our technique
handles real code employed in today’s production systems in
an efficient and scalable way, especially compared to other
tools (Sect. 11), raising hopes regarding the inclusion of a
stateless model checking tool such as Nidhugg in the stan-
dard testing infrastructure of the Linux kernel.

This article is the journal version of a conference paper
[8] that has appeared in the proceedings of SPIN 2017. Com-
pared with that paper, this article contains the following
additional material:

– Stateless model checking is described inmore detail, giv-
ing insights on how tools such as Nidhugg operate.

– More intuition on the kernel’s environment modeling is
provided, via the case study of Tiny RCU.

– The publish–subscribe guarantee is described and veri-
fied.

– The grace-period guarantee is verified also under the PSO
memory model.

– More details regarding the reproduced bug are given.
– The limitations of our approach are discussed, and more
details regarding the model have been added.

2 Read–copy update (RCU)

Read–copy update is a synchronization mechanism invented
by McKenney and Slingwine [4,5] that is a part of the Linux
kernel since 2002. The key feature of RCU is the good scal-
ability it provides by allowing concurrent reads and updates.
While this may seem counter-intuitive or even impossible at
first, RCU allows this in a very simple yet extremely efficient
way: by maintaining multiple data versions. RCU is care-
fully orchestrated in a way that not only ensures that reads
are coherent and no data will be deleted until it is certain
that no one holds references to them, but also uses efficient
and scalable mechanisms which make read paths extremely
fast. Most notably, in non-preemptible kernels, which are the
ones we focus on this work, RCU imposes zero overhead to
readers.

2.1 How RCUworks

The basic idea behind RCU is to split updates in two phases:
the removal phase and the reclamation phase. During the
removal phase, an updater removes references to data either
by destroying them (i.e., setting them to NULL) or by replac-
ing them with references to newer versions of these data.
This phase can run concurrently with reads due to the fact
that modern microprocessors guarantee that a reader will see
either the old or the new reference to an object, and not a
weird mash-up of these two or a partially updated reference.
During the reclamation phase, the updater frees the items
removed in the removal phase, i.e., these items are reclaimed.
Of course, since RCU allows concurrent reads and updates,
the reclamationphasemust begin after the removal phase and,
more specifically, when it is certain that there are no readers
accessing or holding references to the data being reclaimed.

The typical update procedure using RCU looks as follows
[4].

1. Ensure that all readers accessing RCU-protected data
structures carry out their references from within an RCU
read-side critical section.

2. Remove pointers to a data structure, so that subsequent
readers cannot gain a reference to it.

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

3. Wait until all pre-existing readers complete their RCU
read-side critical section, so that there is no one holding
a reference to the item being removed.

4. At this point, there cannot be any readers still holding
references to the data structure, which may now be safely
freed.

Note that steps 2 (the removal phase) and 4 (the reclamation
phase) in the above procedure are not necessarily performed
by the same thread.

Waiting for pre-existing readers can be achieved either
by blocking (via synchronize_rcu()) or by registering a
callback that will be invoked after all pre-existing readers
have completed their RCU read-side critical sections (via
call_rcu()).

In order to formalize some of the aspects presented above,
we provide some definitions.

Definition 1 (Quiescent state) Any statement that is not
within an RCU read-side critical section is said to be in a
quiescent state.

Statements in quiescent states are not permitted to hold
references to RCU-protected data structures. (In the Linux
kernel, this is checked with the tool sparse [9].) Note that
different RCU flavors have different sets of quiescent states.

Definition 2 (Grace period) Any time period during which
each CPU resides at least once in a quiescent state is called
a grace period.

Consequently, if an RCU read-side critical section started
before the beginning of a specified grace period G P , it would
have to complete before the end of G P . This means that the
reclamation phase has to wait for at least one grace period to
elapse before it begins. Once a grace period has elapsed, there
can no longer be any readers holding references to the old
version of a newly updated data structure (since each CPU
has passed through a quiescent state) and the reclamation
phase can safely begin.

2.2 RCU specifications

Let us nowpresent some requirements that everyRCU imple-
mentation must fulfill. We do not attempt to present a formal
or a complete specification for RCU.1 Instead, we only
present the basic guarantees of RCU.

Grace-period guarantee The fact that in RCU updaters
wait for all pre-existing readers to complete their read-side
critical sections constitutes the only interaction between

1 Requirements for RCU appear at: https://www.kernel.org/doc/
Documentation/RCU/.

Fig. 1 RCU’s grace-period guarantee litmus test

the readers and the updaters. The grace-period guarantee
is what allows updaters to wait for all pre-existing RCU
read-side critical sections to complete. Such critical sec-
tions start with the function rcu_read_lock() and end with
rcu_read_unlock(). These functions do not block or spin,
and in non-preemptible kernels, they are effectively no-ops.

What this guarantee means is that the RCU implemen-
tation must ensure that any read-side critical sections in
progress at the start of a given grace period will have com-
pletely finished (including memory operations) before that
grace-period ends. This very fact allows RCU verification to
be focused; every correct implementation has to adhere to
the following rule:

If any statement in a given RCU read-side critical sec-
tionC S precedes a grace periodG P , then all statements
(including memory operations) in C S must complete
before G P ends.

Memory operations are included here in order to prevent the
compiler or the CPU from undoing work done by RCU.

In order to see what this guarantee really implies, con-
sider the code fragment in Fig. 1. In this code, since
synchronize_rcu() has to wait for all pre-existing read-
ers to complete their RCU read-side critical sections, the
outcome:

r_x == 0 && r_y == 1 (1)

should be impossible. This is what the grace-period guar-
antee is all about. It is the most important guarantee that
RCU provides; in effect, it constitutes the core of RCU.
The description of how this guarantee is achieved though
is deferred to Sects. 4 and 5.

Publish–subscribe guarantee This guarantee is used in
order to coordinate read-side accesses to data structures. The
publish–subscribe mechanism is used for data insertion into
data structures (e.g., lists), without disrupting possible con-
current readers. Since updaters run concurrentlywith readers,
this mechanism should ensure two things: first, that updaters
will have completed all initialization operations before pub-
lishing a data structure, and second, that readers will not see
uninitialized data. Note that the latter may occur even if the

123

https://www.kernel.org/doc/Documentation/RCU/
https://www.kernel.org/doc/Documentation/RCU/

M. Kokologiannakis, K. Sagonas

Fig. 2 RCU’s publish–subscribe guarantee litmus test

updaters publish a data structure after all initializations have
completed and are visible to other CPUs (e.g., by a compiler
that does value-speculation optimizations, or by a CPU that
reorders dependent loads).

In order to achieve this, RCU offers two primitives:
rcu_assign_pointer() and rcu_dereference(). The
primitive rcu_assign_pointer() has similar semantics to
C11’s memory_order_release operation. In effect, it is
similar to an assignment but also provides additional order-
ing guarantees. The second primitive, rcu_dereference(),
on the other hand, can be considered as a subscription to
a value of a specified pointer and guarantees that subse-
quent dereference operations will see any initialization that
took place before the rcu_assign_pointer() (publish)
operation. The rcu_dereference() primitive has seman-
tics similar to C11’s memory_order_consume load and uses
both volatile casts and memory barriers in order to provide
the aforementioned guarantee.

Consider the code fragment in Fig. 2, which constitutes
a classic publish–subscribe scenario. In this example, it is
guaranteed that the subscriber will not see uninitialized val-
ues for the field values of p, i.e., that the outcome:

p->a != 42 || p->b != 42 (2)

is impossible.

3 Stateless model checking

Stateless model checking (SMC) [10], also known as sys-
tematic concurrency testing, is a testing and verification
technique with low memory requirements that is applicable
to programs with executions of finite length. Stateless model
checking tools explore the executions of a program without
explicitly storing the executions they have previously vis-
ited. The technique has been successfully implemented in
tools such as VeriSoft [11], CHESS [12], Concuerror [13],
Nidhugg [7], rInspect [14], CDSChecker [15], and RCMC
[16].

Fig. 3 A concurrent program (its correctness property as assertion) and
two of its interleavings. Shaded nodes are states that are forgotten when
exploring the second interleaving. The blue edge shows the first step of
the next interleaving that could be explored, if needed

At least conceptually, the technique that SMC tools
employ is very simple. Given an entry point to a concurrent
program, whose code possibly contains some assertions that
express its correctness properties, an SMC tool takes con-
trol of the scheduler and systematically explores all different
ways that its threads can be interleaved.

For example, consider the program shown in Fig. 3 in
which amain thread spawns two concurrent threads, p and q,
which issuewrite operations on twodifferent sharedvariables
x and y whose initial value is 0. From the initial state (0, 0),
an SMC tool could start by exploring the interleaving where
the two steps of thread p are performed first, followed by the
two steps of thread q, thereby reaching state (2, 2) that satis-
fies the assertion. The second interleaving which is explored
could be the one in which thread p is preempted after its first
step, and thread q executes at that point. In this interleaving,
execution reaches final state (2, 1) in which the assertion is
violated. At this point, the exploration has detected a con-
currency error and can stop. In contrast, had the assertion
been e.g., assert(abs(x - y) < 2), which would not be
violated by the program, then the exploration would need to
examine all interleavings that reach different states. This is
a general phenomenon in stateless model checking: errors
are typically detected relatively fast, but verification needs to
explore the complete search space and thus can take consid-
erably longer than bug finding.

To combat the combinatorial explosion in the number of
interleavings that need to be examined in order to main-
tain full coverage of all program behaviors, SMC tools
use partial-order reduction [17–19] techniques. Partial-order
reduction is based on the observation that two interleav-
ings can be considered equivalent if one can be obtained
from the other by swapping adjacent, independent execution
steps. Dynamic partial-order reduction (DPOR) algorithms
capture dependencies (conflicts) between steps of concurrent
threads,while the program is running [20,21]. Each interleav-
ingwhich is explored is used to identify dependent operations
and program points where alternative interleavings need to
be explored in order to capture all program behaviors.

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

Statelessmodel checking andDPOR techniques have been
extended to handle effects of architectural or programming
language memory models [7,14–16] in addition to schedul-
ing non-determinism. Nidhugg [7], for example, the tool we
have employed, is a stateless model checker for C/C++ pro-
grams that use pthreads, which incorporates extensions for
finding bugs caused by weak memory models such as TSO,
PSO, and partially, POWER. Nidhugg works on the level
of LLVM intermediate representation and, at the time when
this worked was performed, employed an effective dynamic
partial-order algorithm called source-DPOR [21,22]. We
note in passing that Nidhugg has since been extended with
a wider selection of DPOR algorithms: optimal-DPOR [22]
and optimal-DPOR with observers [23].

However, in stateless model checking, all tests need to be
data-deterministic and finite. Data determinism means that,
in a given state, a given execution step must always lead the
system to the same new state, i.e., the test case cannot depend
on some unknown input or on timing properties (e.g., take
some action depending on the value of the clock). Finiteness
means that, for all test cases, there must be a bound n ∈ N

such that all executions of the program terminate within n
execution steps. In Nidhugg, loops that may in principle
execute for an unbounded number of times (e.g., spin loops
for locks) are either automatically transformed to assume()

statements or need to become bounded by using an appro-
priate unroll=n option, which makes Nidhugg not consider
executions inwhich any loopperformsmore thann iterations.

4 Stateless model checking Tiny RCU

Now that we have laid down the basic foundations of RCU
and statelessmodel checking, let us proceedwith the verifica-
tion of Tiny RCU [24], an implementation of RCU designed
to run on uniprocessor systems, targeting mostly embedded
applications. Although this is not the first verification attempt
for Tiny RCU (cf. Sect. 11), it serves as a good first step
toward understanding how a simple RCU implementation
looks like and how it can be verified, while also providing a
very good intuition on how the Linux kernel’s environment
can be modeled.

4.1 Tiny RCU implementation

Tiny RCU is only offered for non-preemptible uniprocessor
systems.2 This means that the definition of a grace period for
Tiny RCU can be formulated as follows [24]:

2 There also used to be a version of Tiny RCU for preemptible kernels
[25].

Whenever the sole CPU of the system passes through
a quiescent state, a grace period has elapsed.

This greatly simplifies the design of Tiny RCU’s implemen-
tation and renders the memory footprint of Tiny RCU much
smaller than Tree RCU’s, since Tiny RCU requires much
simpler RCU-related data structures.

Now the only question that needs to be answered is how
RCU knows that a processor has passed through a quies-
cent state. For that, Tiny RCU relies on context switches,
scheduling-clock interrupts and idle mode, just like Tree
RCU (albeit in a slightly different way). For example, every
time the sole CPU takes a scheduling-clock interrupt, RCU
checks whether the CPU is in a quiescent state (e.g., in
user-mode execution) and, if that is the case, marks the
pending callbacks of the CPU (that have been registered via
call_rcu()) as ready to invoke. These will be executed at
some later point (not within the interrupt handler), when it is
safe to do so. Of course, this is just a high-level view of how
callbacks are handled, and a lot of details are omitted (e.g.,
how RCU knows which callbacks are ready to be invoked).
We will refrain from presenting these details here and defer
the discussion regarding the callback handling mechanism to
Sect. 5.

Instead, let us focus on synchronize_rcu(), the imple-
mentation of which, unlike Tree RCU, is not based on
callbacks. First, it is important to note that, in general, it
is illegal to invoke synchronize_rcu() within RCU read-
side critical sections, as in that case an updater would wait
for itself to finish its read-side critical section, which would
in turn lead to a deadlock. Consequently, and by also taking
into account the fact that read-side critical sections cannot
be preempted, every time synchronize_rcu() is called,
the CPU is in a quiescent state. This in turn means that
synchronize_rcu() can actually return immediately. In
fact, this is the way this function is implemented3 for Tiny
RCU in recent kernels (following release v4.9.6).

In a similar way, it is easy to see why rcu_read_lock()

and rcu_read_unlock() are effectively no-ops for Tiny
RCU, since no particular actions are needed from the read-
ers’ side, apart from using rcu_assign_pointer() and
rcu_dereference(), of course.

4.2 Kernel environmentmodeling

Now that we laid out the basic details of Tiny RCU’s imple-
mentation, a question that naturally arises is how one can
model the various subsystems that RCU interacts with, in
order to verify that implementation.

Suppose that wewant to use a litmus test similar to the one
of Fig. 1 as part of the verification of the grace-period guaran-

3 Disregarding some deadlock checks that are performed.

123

M. Kokologiannakis, K. Sagonas

tee forTinyRCU.For that,weneed at least one reader andone
updater (two distinct threads) that will run on the sole CPU of
the system. However, Nidhugg, given two threads, will sys-
tematically explore all possible interleavings between these
two threads, disregarding the mutual exclusion the processor
of the system imposes. Thus, we need to somehow restore
this mutual exclusion between the threads. The solution is,
of course, to use a mutex in order to emulate a CPU: a thread
has to acquire the CPU’s lock in order to run on the CPU,
and it releases the lockwhen it (voluntarily) yields. Similarly,
functions that call the scheduler (e.g., cond_resched()) can
be modeled as having a thread drop the CPU’s lock and
then (possibly) re-acquire it. Then, Nidhugg will take care
of exploring all the possible schedulings between the two
threads, while respecting the mutual exclusion enforced by
the CPU. As far as other kernel primitives are concerned,
the definition of these were either copied directly from the
kernel or emulated where copying was not possible (e.g.,
cond_resched()).

Of course, there are other things that one should take
care of (e.g., interactionwith dyntick-idlemode,4 interrupts).
However, the purpose of this section is only to establish a
basic intuition regarding how the kernel’s environment can
bemodeled, and not describe that modeling in full detail; this
is deferred for Sect. 6.

4.3 Results

Using themodelwe constructed,we verified the grace-period
guarantee for Tiny RCU, based on litmus tests similar to the
one of Fig. 1. Due to the simplicity of Tiny RCU’s imple-
mentation, Nidhugg only needed 0.08 s to run our tests. We
only used kernel v3.19 for our tests, since Tiny RCU is not so
interesting compared to Tree RCU, and its implementation
does not change so often.

In addition, we tried other scenarios where bugs were
injected in the code (e.g., having the reader to yield in the
middle of its critical section), to determine whether Nidhugg
would be able to detect those bugs, and, as expected, the
answer was affirmative. Nidhugg provided us with the rele-
vant traces that triggered these bugs.

As a last note, although we did not perform any tests that
involved callback handling for Tiny RCU, doing so would
not be hard; in fact, we did so for Tree RCU, but more on
that in the next sections.

4 The Linux kernel’s dynticks-idlemode [26] (a.k.a. NO_HZ) is amode
inwhich aCPU is idle and scheduling-clock ticks are turned off, in order
to promote energy saving.

5 Tree RCU implementation

The Linux kernel offers many different RCU implementa-
tions, each one serving a different purpose. The first Linux
kernel RCU implementation was Classic RCU. A problem
with Classic RCU was lock contention due to the presence
of one global lock that had to be acquired from each CPU
wishing to report a quiescent state to RCU. In addition, Clas-
sic RCU had to wake up every CPU (even idle ones) at least
once per grace period, thus increasing power consumption.

Tree RCU offers a solution to both these problems since
it reduces lock contention and avoids awakening dyntick-
idle [26] CPUs. It can easily scale to thousands of CPUs,
whileClassicRCUcould only scale to several hundred.Apart
from the original Tree RCU implementation, several flavors
of Tree RCU are provided [27], for example:

RCU-sched, where anything that disables preemption
acts as an RCU read-side critical section. This is use-
ful if code segments with preemption disabled need to be
treated as explicit RCU readers.
RCU-bh, where RCU read-side critical sections disable
softirq processing. This is useful if grace periods need to
complete even when softirqs monopolize one or more of
the CPUs (e.g., if the code is subject to network-based
denial-of-service attacks).
Sleepable RCU (SRCU), which is a specialized RCU
version that permits general sleeping in RCU read-side
critical section.

In this article, we focus on the original Tree RCU implemen-
tation, which is the same as RCU-sched in non-preemptible
builds.

Below we present a high-level explanation of Tree RCU
along with some implementation details, a brief overview
of its data structures, and some use cases that are helpful
in understanding how RCU’s fundamental mechanisms are
actually implemented.

5.1 High-level explanation

In Classic RCU, each CPU had to clear its bit in a field of a
global data structure after passing through a quiescent state.
Since CPUs operated concurrently on this data structure, a
spinlock was used to protect the mask, and this design could
potentially suffer from extreme contention.

Tree RCU avoids this performance and scalability bottle-
neck by creating a heap-like node hierarchy. The key here
is that CPUs will not try to acquire the same node’s lock
when trying to report a quiescent state to RCU; in contrast,
CPUs are split into groups and each group will contend for
a different node’s lock. Each CPU has to clear its bit in the
corresponding node’s mask once per grace period. The last

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

Fig. 4 Tree RCU node hierarchy (adapted from [28])

CPU to check in (i.e., to report a quiescent state to RCU) for
each group will try to acquire the lock of the node’s parent,
until the root node’s mask is cleared. This is when a grace
period can end. A simple node hierarchy for a 6-CPU system
is presented in Fig. 4.

As can be seen in the figure, CPUs 0 and 1 will acquire the
lower-left node’s lock, CPUs 2 and 3 will acquire the lower-
middle node’s lock, and CPUs 4 and 5 will acquire the lower-
right node’s lock. The last CPU reporting a quiescent state
for each of the lower nodes will try to acquire the root node’s
lock, and this procedure happens once per grace period.

The node hierarchy created by Tree RCU is tunable and is
controlled, among others, by two Kconfig options, namely:

CONFIG_RCU_FANOUT_LEAF:Controls themaximum
number of CPUs contending for a leaf-node’s lock.
Default value is 16.
CONFIG_RCU_FANOUT: Controls the maximum num-
ber of CPUs contending for an inner-node’s lock. Default
value is 32 for 32-bit systems and 64 for 64-bit systems.

More information can be found at the init/Kconfig file.

5.2 Data structures

Let us now present three major data structures (rcu_data,
rcu_node, and rcu_state) of Tree RCU’s implementation.

Suppose that a CPU registers a callback that will eventu-
ally be invoked. Tree RCU needs to store some information
regarding this callback. For this, the implementation main-
tains some data organized in the per-CPU rcu_data struc-
ture, which includes, among others:

– the last completed grace-period number this CPU has
seen; used for grace-period endingdetection (completed);

– the highest grace-period number this CPU is aware of
having started (gpnum);

– a Boolean variable indicating whether this CPU has
passed through a quiescent state for this grace period;

– a pointer to this CPU’s leaf of hierarchy; and

– themask thatwill be applied to the leaf’smask (grpmask).

Of course, when aCPU registers a callback, this is also stored
in the respective per-CPU data structure.

Then, when a CPU passes through a quiescent state, it has
to report it to RCU by clearing its bit in the respective leaf
node. The node hierarchy consists of rcu_node structures
which include:

– a lock protecting the respective node;
– the current grace-period number for this node;
– the last completed grace-period number for this node;
– a bit-mask indicating CPUs or groups that need to check
in in order for this grace period to proceed (qsmask);

– a pointer to the node’s parent;
– the mask that will be applied to parent node’s mask
(grpmask); and

– the number of the lowest and the highest CPU or group
for this node.

Lastly, the RCU global state and the node hierarchy are
included in an rcu_state structure. The node hierarchy is
represented in heap form in a linear array, which is allocated
statically at compile time based on the values of NR_CPUS

and other Kconfig options. (Note that small systems have a
hierarchy consisting of a single rcu_node.) The rcu_state

structure contains, among others:

– the node hierarchy;
– a pointer to the per-CPU rcu_data variable;
– the current grace-period number; and
– the number of last completed grace period.

There are several values that are propagated through these
different structures, e.g., the grace-period number. However,
this was not always the case, and it was often the discovery
of bugs that led to such changes in the source code.

Finally, we have already mentioned that Classic RCU had
a suboptimal dynticks interface, and that one of the main rea-
sons for the creation of TreeRCUwas to leave sleepingCPUs
lie, in order to conserve energy. Tree RCU avoids awak-
ening low-power-state dynticks-idle CPUs using a per-CPU
data structure called rcu_dynticks. This structure contains,
among others:

– a counter tracking the irq/process nesting level; and
– a counter containing an even value for dynticks-idle
mode, else containing an odd value.

These counters enable Tree RCU to wait only for CPUs that
are not sleeping, and to let sleeping CPUs lie. How this is
achieved is described below.

123

M. Kokologiannakis, K. Sagonas

5.3 Use cases

The common usage of RCU involves registering a callback,
waiting for all pre-existing readers to complete, and finally,
invoking the callback. During all these, special care is taken
to accommodate sleeping CPUs, offline CPUs and CPU hot-
plugs [29], CPUs in user-land, and CPUs that fail to report a
quiescent state to RCU within a reasonable amount of time.
In the next subsections, we will discuss some use cases of
RCU, as well as the interaction of RCU with the described
data structures, and the functions involved.

5.3.1 Registering a callback

A CPU registers a callback by invoking call_rcu(). This
function queues an RCU callback that will be invoked after a
specified grace period. The callback is placed in the callback
list of the respective CPU’s rcu_data structure. This list is
partitioned in four segments:

1. The first segment contains entries that are ready to be
invoked (DONE segment).

2. The second segment contains entries that are waiting for
the current grace period (WAIT segment).

3. The third segment contains entries that are known to
have arrived before the current grace period ended
(NEXT_READY segment).

4. The fourth segment contains entries that might have
arrived after the current grace period ended (NEXT seg-
ment).

When a new callback is added to the list, it is inserted at
the end of the fourth segment. More information regarding
the callback list and its structure can be found in RCU’s
documentation [30].

In older kernels (e.g., v2.6.x), call_rcu() could start a
new grace period directly, but this is no longer the case. In
newer Linux kernels, the only way a grace period can start
directly by call_rcu() is if there are too many callbacks
queued and no grace period in progress. Otherwise, a grace
period will start from softirq context.

Every softirq is associated with a function that will be
invoked when this type of softirqs is executed. For Tree
RCU, this function is called rcu_process_callbacks().
So, when an RCU softirq is raised, this function will eventu-
ally be invoked (either at the exit from an interrupt handler or
from a ksoftirq/n kthread5) and will start a grace period
if there is need for one (e.g., if there is no grace period in
progress and this CPU has newly registered callbacks, or
there are callbacks that require an additional grace period).

5 ksoftirq/n kthreads are special per-CPU kernel threads that run
when the machine is under heavy softirq load.

RCU softirqs are raised from rcu_check_callbacks()

which is invoked from scheduling-clock interrupts. If there
is RCU-related work (e.g., if this CPU needs a new grace
period), rcu_check_callbacks() raises a softirq.

Thesynchronize_rcu() function,which is implemented
on top of call_rcu() in Tree RCU, registers a callback that
will awake the caller after a grace period has elapsed. The
caller waits on a completion variable and is consequently put
on a wait queue.

5.3.2 Starting a grace period

The rcu_start_gp() function is responsible for starting a
new grace period; it is normally invoked from softirq context
and an rcu_process_callbacks() call. However, in newer
kernels, rcu_start_gp() neither directly starts a new grace
period nor initializes the necessary data structures. It rather
advances the CPU’s callbacks (i.e., properly re-arranges the
segments) and then sets a flag at the rcu_state structure to
indicate that a CPU requires a new grace period. The grace-
period kthread is the one thatwill initialize the node hierarchy
and the rcu_state structure and by extension start the new
grace period.

The RCU grace-period kthread first excludes concurrent
CPU-hotplug operations and then sets the quiescent-state-
needed bits in all the rcu_node structures in the hierarchy
corresponding to onlineCPUs. It also copies the grace-period
number and the number of the last completed grace period in
all the rcu_node structures. Concurrent CPU accesses will
check only the leaves of the hierarchy, and otherCPUsmay or
may not see their respective node initialized. However, each
CPU has to enter the RCU core in order to acknowledge
that a grace period has started and initialize its rcu_data

structure. This means that each CPU (except for the one on
which the grace-period kthread runs) needs to enter softirq
context in order to see the new grace-period beginning (via
rcu_process_callbacks()).

The grace-period kthread resolved many races present
in older kernels. For example, races occurring when CPUs
requiring a new grace period were trying to directly initial-
ize the node hierarchy, something that can potentially lead to
bugs; see Sect. 9.

5.3.3 Passing through a quiescent state

Quiescent states for Tree RCU (RCU-sched) include: (i) con-
text switch, (ii) idle mode (idle loop or dynticks idle), and
(iii) user-mode execution. When a CPU passes through a
quiescent state, it updates its rcu_data structure by invoking
rcu_sched_qs(). This function is invoked from scheduling-
related functions, from function rcu_check_callbacks(),
and from the ksoftirq/n kthreads. However, the fact
that a CPU has passed through a quiescent state does not

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

mean that RCU knows about it. Besides, this fact has
been recorded in the respective per-CPU rcu_data struc-
ture and not in the node hierarchy. Thus, a CPU has to
report to RCU that it has passed through a quiescent state,
and this will happen—again—from softirq context, via the
rcu_process_callbacks() function; see below.

5.3.4 Reporting a quiescent state to RCU

After a CPU has passed through a quiescent state, it has to
report it toRCUvia rcu_process_callbacks(), a function
whose duties include:

– Awakening the RCU grace-period kthread (by invoking
the rcu_start_gp() function), in order to initialize and
start a new grace period, if there is need for one.

– Acknowledging that a newgraceperiodhas started/ended.
Every CPU except for the one on which the RCU grace-
period kthread runs has to enter the RCU core and see
that a new grace period has started/ended. This is done by
invoking the function rcu_check_quiescent_state(),
which in turn invokes note_gp_changes(). The latter
advances this CPU’s callbacks and records to the respec-
tive rcu_data structure all the necessary information
regarding the grace-period beginning/end.

– Reporting that the current CPU has passed through a
quiescent state (via rcu_report_qs_rdp(), which is
invoked from rcu_check_quiescent_state()). If the
current CPU is the last one to report a quiescent state,
the RCU grace-period kthread is awakened once again in
order to clean up after the old grace period and propagate
the new ->completed value to the rcu_node structures
of the hierarchy.

– Invoking any callbacks whose grace period has ended.

As can be seen, the RCUgrace-period kthread is used heavily
to coordinate grace-period beginnings and ends. Apart from
this, the locks of the nodes in the hierarchy are used to pre-
vent concurrent accesses which might lead to problems; see
Sect. 9.

5.3.5 Entering/exiting dynticks-idle mode

WhenaCPUenters dynticks-idlemode,rcu_idle_enter()
is invoked. This function decrements a per-CPU nesting
variable (dynticks_nesting) and increments a per-CPU
counter (dynticks), both of which are located in the per-
CPU rcu_dynticks structure. The dynticks counter must
have an even value when entering dynticks-idle mode.
When a CPU exits dynticks-idle mode, rcu_idle_exit()
is invoked, which increments dynticks_nesting and the
dynticks counter (which must now have an odd value).

However, dynticks-idle mode is a quiescent state for Tree
RCU. So, the reason these two variables are needed is the
fact that they can be sampled by other CPUs so that it can be
safely determined if a CPU is (or has been, at some point) in a
quiescent state for this grace period. The sampling process is
performed when a CPU has not reported a quiescent state for
a long time and the grace period needs to end (see Sect. 5.3.7).

5.3.6 Interrupts and dynticks-idle mode

When a CPU enters an interrupt handler, the function
rcu_irq_enter() is invoked. This function increments the
value of dynticks_nesting and, if the prior value was
zero (i.e., the CPU was in dynticks-idle mode), also incre-
ments the dynticks counter. When a CPU exits an interrupt
handler, rcu_irq_exit() decrements dynticks_nesting,
and if the new value is zero (i.e., the CPU is entering
dynticks-idle mode), also increments the dynticks counter.
It is self-evident that entering an interrupt handler from
dynticks-idle mode means exiting the dynticks-idle mode.
Conversely, exiting an interrupt handlermightmean entrance
into dynticks-idle mode.

5.3.7 Forcing quiescent states

If not all CPUs have reported a quiescent state and several
jiffies have passed, then the grace-period kthread is awak-
ened and will try to force quiescent states on CPUs that have
yet to report one. More specifically, the grace-period kthread
will invoke rcu_gp_fqs(), which works in two phases. In
the first phase, snapshots of the dynticks counters of all
CPUs are collected, in order to credit them with implicit qui-
escent states. In the second phase, CPUs that have yet to
report a quiescent state are scanned again, in order to deter-
minewhether they have passed through a quiescent state from
the moment their snapshots were collected. If there are still
CPUs that have not checked in, they are forced into the sched-
uler in order for them to report a quiescent state to RCU.

6 Kernel environment modeling

In this section, we present the way we scaffolded a non-
preemptible Linux kernel symmetric multiprocessing (SMP)
environment. For this, we had to disable some timing-based
warnings and stub out some primitives used in functions that
were not included in our tests (e.g., RCU-expediting related
functions). However, we note that the only changes we made
in the source code of Tree RCU involved the replacement of
per-CPU variables with arrays; the rest of the source code
remains untouched.

123

M. Kokologiannakis, K. Sagonas

6.1 Modeling an SMP platform

Modeling CPUs Since we emulate an SMP system, we need
some kind of mutual exclusion between threads running on
the sameCPU, for each CPU of the system. Thus, we provide
an array of locks (namely cpu_lock), with each array entry
corresponding to a CPU. When one of these locks is held by
a thread, then this thread is running on the respective CPU.

We assume that all CPUs are online, that there are no
CPU hotplugs, and that the full dynticks system (tickless
operation) is disabled (CONFIG_NO_HZ_FULL=n). All CPUs
are initially idle, and when a thread wishes to acquire/release
a CPU, it acquires/releases the CPU’s lock and exits/enters
idle mode (if necessary).

We also need to emulate per-CPU variables. In the ker-
nel, these variables are created using special compiler/linker
directives, along with some preprocessor directives. How-
ever, since these variables require significant runtime sup-
port, we used arrays to emulate them, with each array entry
representing the respective CPU’s copy of a per-CPU vari-
able.

Lastly, since a thread needs to have knowledge regarding
the CPU it runs on, we implemented twomacros (set_cpu()
and get_cpu()), which manipulate a thread-local variable
indicating the CPU on which a thread runs. The CPU on
which a thread runs has to be manually set, via set_cpu().
The total number of CPUs can be manipulated by setting the
-DCONFIG_NR_CPUS preprocessor option.

Emulating interrupts and softirqs In order to emulate inter-
rupts and softirqs,we used an array of locks (irq_lock),with
each lock corresponding to a CPU. An entry’s lock must be
held across an interrupt handler by the thread servicing the
interrupt on the respective CPU. Of course, the CPU’s lock
must be already held. In a similar manner, when a thread dis-
ables interrupts on a CPU, the same lock has to be acquired.
Since we are dealing with non-preemptible kernels, this lock
is not contended.

We also need to model scheduling-clock interrupts (on
which RCU relies heavily) and rcu_check_callbacks()

function. But, as mentioned, stateless model checking is
performed on deterministic programs, meaning that timing-
based actions cannot be included in our tests. However, the
exact time an interrupt occurs is not so important; what inter-
ests us is the implications a timing interrupt might have at a
certain point of a program’s execution given a concurrency
context. Consequently, our version of the interrupt handler
only invokes rcu_check_callbacks() and then, if an RCU
softirq is raised, the rcu_process_callbacks() function
will be called. Of course, we could have just called the func-
tion rcu_process_callbacks() directly, but in the Linux
kernel this function is not invoked unconditionally, and we
wanted our model to be as precise as possible.

Scheduling The cond_resched() function is modeled by
having the running thread drop the CPU’s lock and then pos-
sibly re-acquire it, but with rcu_note_context_switch()

being invoked before releasing the lock of the incomingCPU,
to mark the passing through a quiescent state.

A better way to model this function would probably have
been to drop the current CPU’s lock, acquire the lock of a
random CPU, and then check that no assertion is violated
for every possible CPU choice. However, doing this requires
support for data non-determinism, at least in the formof some
suitable built-in (like, for example, the VS_toss(n) built-in
that theVeriSoft tool provided).Alas,Nidhugg currently does
not provide such support. This also explains whywe have not
modeled a preemptible kernel’s environment.

This modeling, however, does not affect the correctness
of our modeling for non-preemptible builds. The threads in
our tests represent the CPUs of a system and not kthreads.
Indeed, since a kthread cannot be preempted within its RCU
read-side critical section (and resume on a different CPU),
we do not care about the specific kthread that enters/exits a
critical section or services a softirq; we merely care about
the CPU on which these actions are performed. In that sense,
our tests are CPU-centered and not kthread-centered.

Lastly, we note that we stubbed the resched_cpu() func-
tion; since this is used in scenarios, we did not include in our
tests (e.g., RCU CPU stalls).

6.2 Kernel definitions

Many kernel definitions were copied directly from the Linux
kernel. These include data types like u8, u16, etc., compiler
directives like offsetof(), macros like ACCESS_ONCE(),
list data types and functions, memory barriers, as well as
various other kernel primitives.

On the other hand, many primitives had to be replaced
or stubbed; we supplied empty files for some #include

directives and also provided some definitions based on
specific Kconfig options. These include CPU-related def-
initions (e.g., NR_CPUS), RCU-related definitions (e.g.,
CONFIG_RCU_BOOST) that are normally configured at compile
time, special compiler directives, tracing functions, etc. Some
debugging facilities in the code, like the BUG_ON() macro
(which panics the kernel) and its relatives (e.g., WARN_ON(),
which conditionally logs a message in the kernel logs) were
replaced by assert() statements. Note that we only stubbed
primitives irrelevant to our tests (e.g., primitives used in
grace-period expediting functions) and provided our own
definitions for some other primitives in order for them to
work with our modeling of the CPUs and interrupts. Mem-
ory barriers are provided for a TSO (x86), a PSO-like, and a
POWER configuration. However, the POWER configuration
was not used in the verification of the grace-period guaran-

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

tee, due to Nidhugg’s lack of support for atomic operations
under POWER.

All of the definitions we used reside in separate files; these
can be copied and reused across multiple kernel versions.

6.3 Synchronizationmechanisms

The emulation of the Linux kernel’s synchronization mech-
anisms used in Tree RCU’s implementation is as follows:

Atomic operations Whilewe copied the atomic_t data type
definition directly from the Linux kernel, this is not the case
for atomic operations like atomic_read(), atomic_set(),
since their implementation is architecture dependent. In order
to emulate those, we used some GCC language extension [31]
supported by clang [32], the compiler that produces the
LLVM IR code that Nidhugg analyzes.

Spinlocks andmutexes Because we wanted an architecture-
independent implementation that is supported by Nid-
hugg, we used pthread_mutexes for the emulation of
kernel spinlocks and mutexes. Since many spinlocks and
mutexes are initialized statically in the kernel, the Nidhugg
option --disable-mutex-init-requirement is required
for most tests to run.

Completions In order to emulate completion variables, we
copied the data type definition directly from theLinux kernel,
but we also had to model wait queues.

Since a thread waiting on a completion is put on a wait
queue until some condition is satisfied, we used spin loops
in order to emulate this waiting behavior. Nidhugg automat-
ically transforms all spin loops to __VERIFIER_assume()

statements where, if the condition does not hold, the exe-
cution blocks indefinitely [33]. Before waiting on a spin
loop, the thread drops the corresponding CPU’s lock; it
will try to re-acquire it after the condition has been sat-
isfied. Since this is a quiescent state for RCU, the func-
tion rcu_note_context_switch() (and possibly also the
do_IRQ() function, in order to report a quiescent state to
RCU) could have been invoked before the thread released
the CPU’s lock. However, if the thread waiting on the com-
pletion variable is not the only thread running on the specific
CPU, this is unnecessary; these functions can be called from
other threads running on the same CPU as well.

7 Verifying the publish–subscribe guarantee

Now that we have explained how the kernel’s environment
can be modeled, let us first discuss the verification of the
publish–subscribe guarantee. We tackled only a part of this
guarantee, namely the rcu_assign_pointer().

Since the primitives relevant for this guarantee are part
of RCU’s API and are used by different RCU flavors, their
implementation does not change as often as the core of RCU.
We thus verified the guarantee only for Linux kernel v3.19.

The publish–subscribe guarantee can be undermined by
both the compiler and the CPU. Since Nidhugg cannot detect
compiler-induced errors, we verified the guarantees provided
by rcu_assign_pointer() only as far as the CPU is con-
cerned. To do so,we used themodelwe constructed in Sect. 6.

The litmus test we used is based on the test of Fig. 2 and
involves only a subscriber thread and a publisher thread. The
test is configured to run under SC, TSO (x86), and POWER,
dependingon the preprocessing options used.The actual defi-
nition for rcu_assign_pointer() is copied from the kernel
for the respective architecture.

To generate a buggy test, we pass to Nidhugg the
-DORDERING_BUG preprocessor option, which when used
replaces rcu_assign_pointer() with plain assignments.
Under a memory model that reorders stores (e.g., POWER),
this can lead to bugs. Thus, using a simple BUG_ON() state-
ment we were able to check whether the subscriber can see
uninitialized values.

The results we got are not surprising. In the case of
POWER, the rcu_assign_pointer() primitive was abso-
lutely necessary, whereas it was not required under SC or
TSO (at least from a hardware perspective) because store-
store reordering is not allowed in thesememorymodels. This
is why rcu_assign_pointer() boils down to a plain com-
piler barrier in the case of x86 in the kernel.6 The respective
tests finished in just 0.08 s (compilation and transformation
time included) for all configurations.

As a final comment, note that we have verified (from a
hardware perspective) that rcu_assign_pointer() has a
correct implementation in the Linux kernel for TSO and
POWER. To fully verify the publish–subscribe guarantee
(again from a hardware perspective), we would also need
to verify rcu_dereference()’s implementation, but that
would require support from Nidhugg for an architecture that
allows dependent-load reordering (e.g., DEC Alpha).

8 Verifying the grace-period guarantee

Next, we will verify the grace-period guarantee of Tree RCU
for a non-preemptible Linux kernel environment, using the
model we created in Sect. 6. We have applied this model
to five different Linux kernels (v3.0, v3.19, v4.3, v4.7, and
v4.9.6) and were able to verify that the actual RCU code
satisfies the GP guarantee under SC, TSO, and PSO, using a
litmus test similar to that of Fig. 1.

6 With the exception of the Pentium Pro family of processors.

123

M. Kokologiannakis, K. Sagonas

All experiments have been run on a 64-bit desktop with an
Intel Core i7-3770 processor@3.40GHz and 16GBofRAM
running Arch Linux 4.10.13-1-ARCH. We used Nidhugg’s
--unroll option with an appropriate value in order to put
a bound on loops (e.g., server loops in RCU’s grace-period
kthread) that are unbounded.

8.1 Test configuration

Let us first briefly discuss our modeling of the Linux kernel.
All our experiments focused on theRCU-sched flavor of Tree
RCU (see Sect. 5).

First of all, we model a system with two CPUs, repre-
sented by twomutexes, respectively.We also have three basic
threads: the updater, the reader, and the RCU grace-period
kthread. The RCU-bh grace-period kthread is disabled in
order to reduce the state space, but it can be re-enabled by
setting the -DENABLE_RCU_BH preprocessor option. We can
assume that the updater and the RCU grace-period kthread
run on the same CPU (e.g., CPU0), and that the reader runs
on the other CPU (e.g., CPU1). For RCU initialization, the
rcu_init() function is called. Since there are only two
CPUs in ourmodeling, a single-node hierarchy is created. All
CPUs start out idle (rcu_idle_enter() is called for each
CPU), and rcu_spawn_gp_kthread() is called in order to
spawn the RCU grace-period kthread.

Of course, interrupt context needs to be emulated as well.
In general, even thoughwe do not care about the exact timing
of interrupts, it is the occurrence of an interrupt within a
specific context that causes a grace period to advance. Thus,
we have sprinkled calls to do_IRQ() in various points of the
test code, which enable the advancement of a grace period.
This may not always be the case (i.e., a grace period may
not end for some explored executions), but in fact we want
to enable both of these scenarios.

8.2 Test runs

After running the tests with Nidhugg, the tool reports that
the verification procedure is successful for all five kernel
versions. Moreover, the process is quite fast. As shown on
the first row of Table 1, the verification of the GP guaran-
tee under SC requires less than 18min (for kernels v4.3 and
v4.9.6) and less than 10min for each of the three other ker-
nels. Another set of runs, shown in Table 2, verifying this
guarantee under the TSO memory model does not require
considerably more time. In contrast, verification of the GP
guarantee under Nidhugg’s PSO model takes considerably
longer (up to 2.5h for kernels v4.3 and v4.9.6; cf. Table 3);
for reasons we will explain later. Still, for all five kernel ver-
sions, Nidhugg tells us that there is no possible thread or
memory model interleaving that violates the GP guarantee
in Tree RCU’s implementation. Ta

bl
e
1

R
es
ul
ts
fo
r
T
re
e
R
C
U
lit
m
us

te
st
on

fiv
e
L
in
ux

ke
rn
el
ve
rs
io
ns

(t
im

e
in

se
co
nd
s)
un
de
r
SC

Pr
ep
ro
ce
ss
or

op
tio

ns
v3
.0

v3
.1
9

v4
.3

v4
.7

v4
.9
.6

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

–
22
7.
37

19
,3
98

59
4.
33

24
,7
60

10
41

.8
5

28
,9
96

41
1.
25

11
,0
76

10
33

.1
2

28
,9
96

-
D
A
S
S
E
R
T
_
0

2.
09

14
5

1.
47

37
1.
70

29
1.
93

29
2.
06

29

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
1

2.
11

14
6

1.
51

41
1.
99

33
2.
09

33
2.
13

33

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
2

0.
43

4
0.
63

3
0.
80

3
1.
18

3
1.
14

3

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
3

27
.6
0

23
72

39
9.
89

13
,2
64

33
4.
13

81
14

29
0.
50

81
14

30
7.
72

81
14

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
4

1.
35

84
3.
01

79
1.
87

24
3.
09

43
2.
99

43

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
5

58
.1
5

48
88

1.
18

9
1.
22

9
1.
57

9
1.
60

9

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
6

1.
14

1
3.
34

2
5.
28

2
10

.4
0

2
10

.8
0

2

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
1
-
D
A
S
S
E
R
T
_
0

24
.9
1

20
24

10
.7
3

60
8

11
.2
7

48
8

10
.1
5

48
8

10
.7
7

48
8

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
2
-
D
A
S
S
E
R
T
_
0

50
.2
8

38
88

10
.4
6

60
8

12
.3
0

51
6

11
.5
5

51
6

11
.8
0

51
6

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
3
-
D
A
S
S
E
R
T
_
0

26
.3
8

21
84

12
.4
8

68
8

11
.3
7

48
8

11
.6
6

53
2

11
.8
9

53
2

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

Ta
bl
e
2

R
es
ul
ts
fo
r
T
re
e
R
C
U
lit
m
us

te
st
on

fiv
e
L
in
ux

ke
rn
el
ve
rs
io
ns

(t
im

e
in

se
co
nd
s)
un
de
r
T
SO

Pr
ep
ro
ce
ss
or

op
tio

ns
v3
.0

v3
.1
9

v4
.3

v4
.7

v4
.9
.6

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

–
26
0.
38

19
,3
98

65
1.
32

24
,7
60

11
47

.2
0

28
,9
96

41
6.
03

11
,0
76

11
25

.3
0

28
,9
96

-
D
A
S
S
E
R
T
_
0

2.
30

14
5

1.
66

37
1.
77

29
2.
09

29
2.
16

29

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
1

2.
27

14
6

1.
67

41
1.
97

33
2.
26

33
2.
32

33

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
2

0.
38

4
0.
66

3
1.
03

3
1.
22

3
1.
27

3

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
3

31
.0
2

23
72

43
3.
38

13
,2
64

31
6.
14

81
14

32
9.
10

81
14

33
8.
26

81
14

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
4

1.
46

84
3.
13

79
2.
08

24
3.
17

43
3.
26

43

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
5

64
.8
0

48
88

0.
98

9
1.
39

9
1.
66

9
1.
65

9

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
6

1.
41

1
3.
33

2
5.
13

2
10

.3
4

2
10

.9
3

2

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
1
-
D
A
S
S
E
R
T
_
0

26
.4
2

20
24

11
.3
2

60
8

10
.8
8

48
8

11
.6
4

48
8

11
.8
5

48
8

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
2
-
D
A
S
S
E
R
T
_
0

52
.3
7

38
88

11
.1
3

60
8

11
.9
5

51
6

12
.4
9

51
6

13
.1
8

51
6

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
3
-
D
A
S
S
E
R
T
_
0

28
.9
8

21
84

13
.6
3

68
8

11
.2
3

48
8

12
.7
5

53
2

13
.2
7

53
2

Ta
bl
e
3

R
es
ul
ts
fo
r
T
re
e
R
C
U
lit
m
us

te
st
on

fiv
e
L
in
ux

ke
rn
el
ve
rs
io
ns

(t
im

e
in

se
co
nd
s)
un
de
r
PS

O

Pr
ep
ro
ce
ss
or

op
tio

ns
v3
.0

v3
.1
9

v4
.3

v4
.7

v4
.9
.6

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

T
im

e
T
ra
ce
s

–
25
10

.1
3

89
,0
38

21
16

.8
2

25
,8
24

83
46

.0
2

47
,5
56

27
18

.6
9

15
,8
76

90
81

.3
9

47
,5
56

-
D
A
S
S
E
R
T
_
0

10
.7
9

43
6

2.
32

40
2.
78

29
3.
06

29
3.
25

29

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
1

10
.7
5

43
7

2.
64

44
3.
36

33
3.
69

33
3.
87

33

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
2

0.
40

4
0.
59

3
0.
79

3
0.
95

3
1.
00

3

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
3

73
2.
84

28
,7
00

14
33

.0
8

15
,6
58

14
70

.4
9

81
14

15
23

.1
1

81
14

16
02

.6
6

81
14

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
4

2.
61

84
8.
61

79
5.
21

24
11

.2
1

43
11

.8
0

43

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
5

15
02

.2
8

59
,5
96

1.
15

9
1.
74

9
1.
94

9
2.
02

9

-
D
F
O
R
C
E
_
F
A
I
L
U
R
E
_
6

1.
13

1
3.
42

2
5.
17

2
9.
97

2
10

.5
8

2

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
1
-
D
A
S
S
E
R
T
_
0

56
7.
05

23
,1
32

28
.4
5

71
2

31
.5
6

48
8

32
.5
4

48
8

35
.8
6

48
8

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
2
-
D
A
S
S
E
R
T
_
0

10
44

.5
8

41
,1
00

28
.2
6

71
2

35
.1
9

51
6

36
.3
8

51
6

38
.8
2

51
6

-
D
L
I
V
E
N
E
S
S
_
C
H
E
C
K
_
3
-
D
A
S
S
E
R
T
_
0

58
4.
59

23
,9
76

33
.4
8

79
2

31
.5
6

48
8

37
.0
0

53
2

39
.2
1

53
2

123

M. Kokologiannakis, K. Sagonas

But, canwe really trust these results?After all, theremight
be a bug in our scaffolding of the Linux kernel’s environment,
or there might be a bug in Nidhugg itself. In order to increase
our confidence, we injected a number of bugs similar to ones
that have occurred in real systems in production over the
years. These bugs were added both in the test and the RCU
source code.More specifically,we injected twokinds of bugs:

1. Bugs thatmake the grace period too short, thus permitting
anRCUread-side critical section to span the grace period.

2. Bugs that prevent the grace period from ending.

Both kinds of bug injections represent RCU failures. Injec-
tions of the first kind result in a test failure, since theGP guar-
antee is violated. Injections of the second kind have to be used
with an assert(0) statement after synchronize_rcu(). If
this assertion does not trigger for any execution of the litmus
test, then the grace period does not end for any execution,
which in turn signifies that a successful—as opposed to a
failed—completion of the test is a liveness violation.

Figure 5 contains information about the bug injections
keyedby thedefinemacro that enables each test.Note that, for
theFORCE_FAILURE_6 test, since amulti-level hierarchy for a
system with more than 16 CPUs is created, an --unroll=19

option has been used and CONFIG_NR_CPUS has been set
appropriately, while for all other tests an --unroll=5 option
has been used. All tests had the desired outcome, some-
thing that increases our confidence in our modeling and the
verification result for the GP guarantee of Tree RCU’s imple-
mentation that we report.

8.3 Results and discussion

In Tables 1, 2, and 3, the “Time” columns represent the total
wall-clock time in seconds (compilation and transformation
time are included). As can be seen in Tables 1 and 2, the
number of traces explored under SC and TSO are exactly the
same and there is very little overhead when going from SC
to TSO, which shows the power of stateless model checking
with source-DPOR [21] and chronological traces [7]. The
reason for the same total number of explored executions is
twofold. RCU’s source code does not have many opportu-
nities for store-load reorderings, in the first place. Second,
it also contains a lot of memory fences which prevent these
reorderings from happening. But we also note that even if
such reorderings were possible, all bug injections here do not
rely on the employed memory model; instead, they violate
the assertions algorithmically. As expected, since the model
checking is stateless, the memory requirements are very low,
especially considering the size of the source code under test:
∼35MB for SC and TSO and ∼105MB for PSO. In the
case of FORCE_FAILURE_6, approximately three times more

memory is required for all memory models, due to the higher
unroll value.

Themost interesting row in all tables is the first one, shown
in bold. In all these cases, Nidhugg needs to explore the
complete set of traces in order to verify that the GP guarantee
indeed holds for Tree RCU’s implementation. In rows with
failure injections, exploration stops as soon as the failure
is detected. How fast this happens depends on the order in
which traces are explored. In some cases failures are detected
immediately (in the first few traces and in less than 3s) and
in other cases only after many traces have been explored.

It canbeobserved that the number of explored traces varies
betweendifferent kernel versions.With the exceptionofPSO,
there are fewer traces explored in kernel v3.0 than in v3.19
and v4.3, due to the absence of the grace-period kthread in the
first; this thread contains infinite loops which generate many
races that Nidhugg tries to reverse. Note that in v3.0 the
-DFORCE_FAILURE_3 and -DFORCE_FAILURE_5 injections
are liveness checks due to the absence of the grace-period
kthread. In kernel v4.7 the explored traces decrease dramat-
ically due to the replacement of rcu_gp_kthread_wake()

with swake_up() in rcu_report_qs_rsp(). The former
performed a check which read a variable that was written
by the grace-period kthread (among others) and generated
far too many races. In kernel v4.9.6, however, this change
was reverted and the explored traces are the same as those
of kernel v4.3. Overall, it is obvious that irrespective of the
kernel’s growth in size, Nidhugg provides an efficient and
scalable way to test such a big code base since the number
of traces that need to be explored only depends on races on
shared variables and not on the general complexity or size of
the source code.

We also conducted some tests for a PSO-like architecture,
shown in Table 3. We say “PSO-like” for two reasons: (a)
because the Linux kernel does not support any PSO architec-
tures7 (so we had to provide architecture-specific definitions
ourselves), and (b) because while Nidhugg does support a
PSO memory model, this model is slightly stronger than the
one used by real PSOCPUs.More specifically, Nidhugg does
not provide a store-store fence (which would have similar
semantics to the Linux kernel’s smp_wmb()), thus forcing us
to model the latter as a full memory barrier, and also forbids
the reordering of atomic instructions with stores (in contrast
to SPARC-PSO CPUs), rendering our model stronger than
required. Nevertheless, all the tests had the expected out-
come, and the results are consistent with the ones for SC and
TSO.However, Nidhugg requires significantlymore time (up
to nine times) when operating under PSO, despite the fact
that the traces are increased by a smaller factor (1.5–4). The
reason for this is that, in order to emulate the PSO memory
model, Nidhugg maintains one store buffer per global mem-

7 SPARC CPUs are used in TSO mode.

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

Fig. 5 Description of the bug injections we used, identified by the preprocessor option that enables them

ory location used in the program, which imposes a constant,
yet non-negligible overhead.

9 Presenting the cause of an older kernel
bug

In Sect. 5.3.4, we mentioned that the grace-period kthread
cleans up after grace-period ends. However, in older ker-
nel versions, the RCU grace-period kthread did not exist;
when a CPU entered the RCU core or invoked call_rcu(),
it checked for grace-period ends by directly comparing the
number of the last completed grace period in the rcu_state

structure with the number of the last completed grace period

in the respective rcu_data structure. In newer kernels, the
note_gp_changes() function compares the number of the
last completed grace period in the respective rcu_node struc-
ture with the number of the last completed grace period in the
current rcu_data structure, while holding the node’s lock,
that way excluding concurrent operations on this node.

In kernel v2.6.32, commit d09b62dfa336fixed a synchro-
nization issue exposed by unsynchronized accesses to the
->completed counter in the rcu_state structure [34,35],
which caused the advancement of callbacks whose grace
period had not yet expired. Below we will create a test case
that exposes such a scenario, but this test case will also
demonstrate that the problem is actually deeper: these unsyn-
chronized accesses also lead to too-short grace periods.

123

M. Kokologiannakis, K. Sagonas

Fig. 6 Snippet of the rcu_process_gp_end() function

To construct a test case that exposes this issue, we
started by looking at the rcu_process_gp_end() func-
tion, since the issue was related to it. Figure 6 shows a
relevant portion of its code. As can be seen, the access to
the ->completed counter is completely unprotected. So,
we injected a BUG_ON() statement in the if-body to deter-
mine whether it was possible for a thread to pick up the
->completed value and then use the completed_snap,
while the ->completed variable had changed. The answer
was affirmative. Our next step was to determine whether this
could potentially lead to a CPU starting a new grace period
without having noticed that the last grace period has ended.
Again, an injection of a BUG_ON() statement, comparing the
current grace period’s number with the number of the grace
period whose completion was noticed by the CPU, showed
that this was possible. With these clues, we constructed a
simple test which proved that these unsynchronized accesses
can lead to too-short grace periods. The test has a reader
seeing changes happening before the beginning of a grace
period and after the end of the same grace period within a

single RCU read-side critical section which, of course, is a
violation of the grace-period guarantee. A sequence of events
(produced by Nidhugg) which exposes this bug is shown in
Fig. 7. Observe that these events form a quite involved thread
interleaving.

Interestingly enough, just 2days before the patch that fixed
this bug, commit 83f5b01ffbbafixed an alleged long-grace-
period race between grace-period forcing and initialization
[36], which was supposedly responsible for the failures
observed at the time in multi-node hierarchies. However, we
constructed a test case which showed that an interleaving
such as the one described in the commit log is impossible, and
other variations of our test case also did not expose any bug
as well. Ultimately, it was confirmed to us (Paul E. McKen-
ney, personal communication; also [37]) that the analysis
presented in the commit log was wrong, and that these two
issues were related (also see [38]): commit d09b62dfa336
serendipitously fixed the bug commit 83f5b01ffbba was
supposed to fix.

Let us end this section with some notes regarding this bug:

– In contrast to what the commit log states [36], this bug
does not rely on interactions with the node hierarchy; it
existed in both single-node and multi-level hierarchies.
(A slightly different test casewith the respective Kconfig
options set appropriately was created formulti-level hier-
archies.)

– Nidhugg reports that this bug is not present in kernel
v3.0, which means that it was indeed fixed. In v3.0,
rcu_start_gp() calls__rcu_process_gp_end(), thus

Fig. 7 Sequence of events resulting in an RCU tree bug

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

guaranteeing that a CPU will see a grace-period ending
before a grace-period beginning, something that does not
happen in v2.6.32.1.However, the bugwas present in pre-
vious versions as well, e.g., v2.6.31.1.

– Only two CPUs are required to provoke the bug, and only
one of them has to invoke call_rcu().

– Only one grace period is required to provoke the bug,
meaning that it does not rely on CPUs being unaware of
grace-period ends and beginnings (e.g., when a CPU is
in dynticks-idle mode). However, this bug does require
some actions to occur during and after the ending of a
grace period, meaning that a simple grace-period guar-
antee test would not have exposed this bug.

– force_quiescent_state() is not required to provoke
the bug, although frequent calls to this function would
expose it more easily in real-life scenarios.

– This bug is not caused by weak memory ordering; the
test fails under sequential consistency as well.

– Nidhugg produced the violating sequence of events
in only 0.56 s (compilation and transformation time
included) and used 30.85MB of memory in total.

10 Further discussion

10.1 Threats to validity

As mentioned in Sect. 3, stateless model checking requires
that test cases are data-deterministic and finite: the former
requirement implies that our approach can only detect con-
currency bugs, while the latter implies that our results are
valid only up to the bound up to which all loops have been
unrolled. In addition,Nidhugg operates at the level of LLVM-
IR; it is conceivable that the Clang compiler hides some
bugs in the translation from C to LLVM-IR, or that the back-
end compiler exposes some other bugs when compiling the
LLVM-IR to native code. Naturally, Nidhugg cannot detect
all these. Finally, we note that Nidhugg itself is not verified,
and a bug in its implementation could cause it to miss some
bugs in RCU’s code as well.

A second set of threats to validity stems from limitations
related to the testing procedure and infrastructure. Our efforts
concentrated on specific kernel builds, which led to specific
RCU configurations, and our verification results hold only
for these particular configurations. As a side note, we men-
tion that some of these restrictions were partly imposed by
Nidhugg and its limitations. For example, the fact that we
only handle preemptible kernels is becauseNidhugg does not
support data non-determinism. (Refer to the “Scheduling”
paragraph of Sect. 6 for more explanation of this limitation.)

As far as the grace-period guarantee is concerned, we
focused on 2-CPU systems, single-node hierarchies (which
occur when NR_CPUS < 16), non-preemptible kernels, and

single-grace-period test cases.Althoughourmodel allows for
other configurations (i.e., it is tunable), and we did try other
configurations as parts of our tests (see Sects. 9 and 10.2),
our primary testing infrastructure was the one described in
Sect. 8. Having said that, we note that the code paths acti-
vated in a single-node hierarchy are the same no matter the
exact number of CPUs (i.e., there is no conditional execution
depending on the value of NR_CPUS).

As far as the publish–subscribe guarantee is concerned,we
only verified a part of it. A detailed description is provided
in Sect. 7.

Finally, the last set of threats to validity is due to limitations
related to the modeling of the kernel’s environment. Apart
from errors that might exist in our modeling, the way some
primitives were modeled could have affected the outcome
of the verification procedure. One such case is the modeling
of scheduling-clock interrupts and the do_IRQ() function.
Although we tried different modelings for this function and
we chose the one described in Sect. 6 for efficiency reasons
(see Sect. 10.2), it could be argued that this renders ourmodel
less precise. That is true; however, given enough computa-
tional resources, different modeling of other components, or
intervening in the kernel’s code, the respective needs of each
verification scenario can be met.

10.2 Lessons learned

The verification process itself was very educational. We
gained useful experiences regarding the construction of the
model of the Linux kernel, the model itself, and on how to
deal with the combinatorial explosion in the number of inter-
leavings that a statelessmodel checking tool needs to explore.

Arguably, the most valuable lesson learned was the way
a Linux kernel model can be constructed. Initially, the way
an SMP system should be emulated was not obvious, and the
construction of the model had to be precise. Both of these
posed two non-trivial challenges; with the kernel occupying
more than 15MLOC, the isolation and testing of only the
ingredients we cared about was of extreme importance. Still,
we managed to use the source code from the various ker-
nel versions directly, and the constructed model is reusable,
meaning that it can be used for further RCU testing, and per-
haps for testing other components of the Linux kernel aswell.

Of course, confining the state space was not in any way
an easy task as well. First of all, as far as the model is
concerned, the most important design decision we had to
make was the way the interrupts are modeled. Initially, we
tried to emulate interrupts with per-CPU threads invoking the
interrupt handler repeatedly, but unfortunately this approach
rendered the state space extremely large. Apart from this,
plenty of other design choices were made and most of them
are described in Sect. 6. As far as the verification of Tree
RCU is concerned, multiple different configurations were

123

M. Kokologiannakis, K. Sagonas

tried and did not affect the outcome. We chose the one men-
tioned in Sect. 8.1 because the state space was considerably
smaller. The reason for that, although not obvious from the
beginning, is that the updater and the grace-period kthread
are mutually exclusive and take advantage of each other’s
context switches. In addition, we could have ignored the
RCU grace-period kthread and invoked rcu_gp_init() and
rcu_gp_cleanup() appropriately, in order to further reduce
the state space. However, we wanted our model to be as pre-
cise as possible, so we did not resort to such approximations.

11 Related work

Previous work on RCU verification includes the expression
of RCU’s formal semantics in terms of separation logic [39]
and the verification of user-space RCU in a logic for weak
memory [40]. A virtual architecture to model out-of-order
memory accesses and instruction scheduling has been pro-
posed [41], and a verification of user-space RCU has been
done using the SPIN model checker [42]. Alglave et al. veri-
fied thatRCU’sactual kernel code preserves data consistency
of the object it is protecting [43] using CBMC [44], i.e.,
they verified the combination of rcu_assign_pointer()

and rcu_dereference(). Subsequently, McKenney [45]
verified the grace-period guarantee for Tiny RCU. Finally,
mutation testing strategies have been applied to RCU’s code
[46] as well.

Concurrently with our work, Liang et al. used CBMC to
verify the grace-period guarantee for Tree RCU [47]. How-
ever, compared to the work presented here, their approach
has some limitations.

First of all, due to CBMC’s limited support for lists, their
modeling does not include callback handling, and this has
some implications in the verification procedure. The most
basic one is that bugs in the callback handling mechanism
(e.g., a bug similar to the one we reproduced in Sect. 9)
cannot be exposed. Considering the fact that RCU’s update
side primitives are based on callback handling, this limitation
is a serious one. For example, primitives like call_rcu()

were not included in their tests, and synchronize_rcu()’s
implementation (which, in reality, is based on call_rcu())
had to be emulated. This in turn means that only the under-
lying grace-period mechanism was modeled, and not the
callback mechanism that mediates between that mechanism
and synchronize_rcu().

A second limitation is that the grace-period kthread was
not included in their tests. Although in older kernel versions
the grace-period kthread did not exist, for newer Linux ker-
nels excluding the kthread from the tests implies alteration
of the kernel’s operation. In addition, this thread’s exclusion
means that the way a grace period started and ended also

needs to be changed, since the grace-period kthread plays a
crucial role in these operations.

Finally, the approach of Liang et al. does not include
the emulation of dynticks-idle mode. In our approach, the
dynticks-idle mode is indeed modeled, and our results show
that the basic properties of the dyntick counters do hold.

Despite the simpler modeling and these limitations, Liang
et al. [47] report that CBMC needs more than 11h and 34GB
of memory in order to claim successful verification for Tree
RCU in kernel v4.3 under TSO. In contrast, as we report
in this article, Nidhugg only needs 19min and 102MB of
memory for the same task. More generally, our results are
orders ofmagnitude better, whichwe attribute to the different
algorithms that the two tools employ.

On the other hand, CBMC’s underlying algorithm in prin-
ciple also handles data non-determinism, something that
stateless model checking tools in general, and Nidhugg in
particular, do not consider. Still, we do not see how data
non-determinism plays any role in the verification of the
grace-period guarantee of Tree RCU for the configurations
we tested. Some supporting evidence for this claim offers
the fact that the bug injections we listed in Sect. 8 are a
proper superset of those identified by CBMC.8 Furthermore,
because our approach does include callback handling, we
were able to reproduce an older, real kernel bug that was
caused by premature callback advancements, which could
potentially lead to too-short grace periods that violate the
GP guarantee. As explained, this bug cannot be reproduced
with CBMC, due to its limited support for lists.

12 Concluding remarks

In this article, we described a way to construct a test suite for
the systematic concurrency testing of Linux kernel’s RCU
mechanism. For this, we emulated a non-preemptible Linux
kernel SMP environment and, using the stateless model
checking tool Nidhugg, we managed to verify both a part
of RCU’s API (publish–subscribe guarantee) which is used
by different RCUflavors, and the grace-period guarantee, the
most basic guarantee that RCUoffers for themain implemen-
tation used in the Linux kernel, namely, Tree RCU.

More specifically, we verified the grace-period guarantee
for five different Linux kernel versions, under both a sequen-
tially consistent and weak (TSO and PSO) memory models.
For all our tests, we used the source code from the Linux
kernel directly, with only a handful of changes, which can be
and have been scripted.

8 Injections -DFORCE_FAILURE_1 and -DFORCE_FAILURE_4
are not considered by Liang et al. [47]; the latter due to not model-
ing the dynticks-idle mode.

123

Stateless model checking of the Linux kernel’s read–copy update (RCU)

To show that our emulation of the kernel’s environment is
sound and to further strengthen our results, we injected RCU
failures in our tests, inspired from real bugs that occurred
throughout RCU’s deployment in production, and Nidhugg
was able to identify themall.Moreover,we demonstrated that
a patch that applied a well-defined locking design to a vari-
able in an older kernel [35] resolved a much more complex
issue that was in effect a concurrency bug. We identified and
reproduced this bug, providing the exact circumstances under
which it occurred. In addition, we tested whether the bug
exists in later kernel versions and the answer was negative.

Ourworkdemonstrates that statelessmodel checking tools
like Nidhugg have matured to the point that they can be used
to test real code from today’s production systems with large
code bases. The small time and memory consumption of
our tests, especially considering the size and the dynamic
nature of the code base tested, underlines the strength of our
approach. All the above, along with the fact that our model
of the kernel’s environment was reused across different ker-
nel versions, show that stateless model checking tools can be
integrated in Linux kernel’s regression testing, and that they
can produce useful results.

Still, we are not yet at a point where we can claim with
certainty that the complete implementation of Tree RCU is
bug-free; there may be bugs in components of Tree RCU that
are not included in our modeling and our tests. In addition,
although the GP guarantee is the most significant correct-
ness property of RCU, there are many other requirements
that RCU must meet. Thus, our work could be extended to
include more aspects of RCU and test them under different
architectural memory models (e.g., POWER) or, naturally,
the recently proposed Linux kernel memory model [48]. In
addition, we could construct tests that include quiescent-
state forcing, grace-period expediting, and CPU hotplugs.
The same applies for the full dynticks mode which was fully
merged in the kernel only relatively recently. Last but not
least, the scalability of our results renders the construction
of test cases and techniques aiming at the thorough test-
ing of the preemptible Tree RCU extremely interesting as
well.

Acknowledgements Open access funding provided by Max Planck
Society. We are much obliged to Paul E. McKenney for all his help,
advice, and suggestions throughout this effort. His profound insight
into RCUwas extremely helpful in numerous occasions. Also, this arti-
cle would not have been possible without Nidhugg; we thank its main
developer,Carl Leonardsson, for the hardwork he has put into it. Finally,
we thank the anonymous reviewers of our SPIN 2017 paper and of this
article for their helpful comments and feedback.

Compliance with ethical standards

Data availability The Nidhugg tool is available at https://www.github.
com/nidhugg/nidhugg. The code we used for our experiments and

scripts to reproduce the results we report are available at https://www.
github.com/michaliskok/rcu.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Callaham, J.: Google says there are now 1.4 billion active Android
devices worldwide (2015). http://www.androidcentral.com/
google-says-there-are-now-14-billion-active-android-devices-
worldwide

2. Prakash, A.: Linux now runs on all of the top 500 supercomputers
(2017). https://itsfoss.com/linux-runs-top-supercomputers/

3. Weinberger, M.: For the first time ever, Microsoft will distribute
its own version of Linux (2018). http://www.businessinsider.
de/microsoft-azure-sphere-is-powered-by-linux-2018-4?r=US&
IR=T

4. McKenney, P.E., Slingwine, J.D.: Read–copy update: using
execution history to solve concurrency problems. In: Paral-
lel and Distributed Computing and Systems, pp. 509–518. Las
Vegas, NV (1998). http://www.rdrop.com/~paulmck/scalability/
paper/rclockpdcsproof.pdf

5. McKenney, P.E.,Walpole, J.:What isRCU, fundamentally? (2007).
http://lwn.net/Articles/262464/

6. RCU torture test operation (2017). https://www.kernel.org/doc/
Documentation/RCU/torture.txt

7. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson,
C., Sagonas, K.: Stateless model checking for TSO and PSO. Acta
Inf. 54(8), 789–818 (2017). https://doi.org/10.1007/s00236-016-
0275-0

8. Kokologiannakis, M., Sagonas, K.: Stateless model checking of
the Linux kernel’s hierarchical read–copy–update (Tree RCU). In:
Proceedings of International SPINSymposiumonModelChecking
of Software, SPIN 2017. ACM, New York (2017). https://doi.org/
10.1145/3092282.3092287

9. Sparse—a semantic parser for C. https://sparse.wiki.kernel.org
10. Godefroid, P.: Model checking for programming languages using

VeriSoft. In: Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 147–
186. ACM, New York (1997). https://doi.org/10.1145/263699.
263717

11. Godefroid, P.: Software model checking: the VeriSoft approach.
Form. Methods Syst. Des. 26(2), 77–101 (2005). https://doi.org/
10.1007/s10703-005-1489-x

12. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A.,
Neamtiu, I.: Finding and reproducing heisenbugs in concurrent
programs. In: Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation, pp. 267–280.
USENIX Association, Berkeley (2008). http://www.usenix.org/
events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf

13. Christakis, M., Gotovos, A., Sagonas, K.: Systematic testing for
detecting concurrency errors in Erlang programs. In: 6th IEEE
InternationalConference onSoftwareTesting,Verification andVal-
idation (ICST 2013), pp. 154–163. IEEE Computer Society, Los
Angeles (2013). https://doi.org/10.1109/ICST.2013.50

14. Zhang, N., Kusano, M.,Wang, C.: Dynamic partial order reduction
for relaxed memory models. In: PLDI 2015, pp. 250–259. ACM,
New York (2015). https://doi.org/10.1145/2737924.2737956

123

https://www.github.com/nidhugg/nidhugg
https://www.github.com/nidhugg/nidhugg
https://www.github.com/michaliskok/rcu
https://www.github.com/michaliskok/rcu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
https://itsfoss.com/linux-runs-top-supercomputers/
http://www.businessinsider.de/microsoft-azure-sphere-is-powered-by-linux-2018-4?r=US&IR=T
http://www.businessinsider.de/microsoft-azure-sphere-is-powered-by-linux-2018-4?r=US&IR=T
http://www.businessinsider.de/microsoft-azure-sphere-is-powered-by-linux-2018-4?r=US&IR=T
http://www.rdrop.com/~paulmck/scalability/paper/rclockpdcsproof.pdf
http://www.rdrop.com/~paulmck/scalability/paper/rclockpdcsproof.pdf
http://lwn.net/Articles/262464/
https://www.kernel.org/doc/Documentation/RCU/torture.txt
https://www.kernel.org/doc/Documentation/RCU/torture.txt
https://doi.org/10.1007/s00236-016-0275-0
https://doi.org/10.1007/s00236-016-0275-0
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1145/3092282.3092287
https://sparse.wiki.kernel.org
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1007/s10703-005-1489-x
http://www.usenix.org/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://doi.org/10.1109/ICST.2013.50
https://doi.org/10.1145/2737924.2737956

M. Kokologiannakis, K. Sagonas

15. Norris, B., Demsky, B.: A practical approach for model checking
C/C++11 code. ACM Trans. Program. Lang. Syst. 38(3), 10:1–
10:51 (2016). https://doi.org/10.1145/2806886

16. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effec-
tive stateless model checking for C/C++ concurrency. PACMPL
2(POPL), 17:1–17:32 (2018). https://doi.org/10.1145/3158105

17. Valmari, A.: Stubborn sets for reduced state space generation.
In: Proceedings of the 10th International Conference on Appli-
cations and Theory of Petri Nets: Advances in Petri Nets 1990,
pp. 491–515. Springer, London (1991). http://dl.acm.org/citation.
cfm?id=647736.735461

18. Peled, D.: All from one, one for all: On model checking using
representatives. In: Proceedings of the 5th InternationalConference
on Computer Aided Verification, LNCS, pp. 409–423. Springer,
London (1993). http://dl.acm.org/citation.cfm?id=647762.735490

19. Godefroid, P.: Partial-order methods for the verification of concur-
rent systems: an approach to the state-explosion problem. Ph.D.
Thesis, University of Liège (1996). https://doi.org/10.1007/3-540-
60761-7. Also, volume 1032 of LNCS, Springer

20. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for
model checking software. In: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 110–121. ACM, New York (2005). https://doi.org/
10.1145/1040305.1040315

21. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal
dynamic partial order reduction. In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 373–384. ACM, New York (2014). https://doi.org/
10.1145/2535838.2535845

22. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source sets:
a foundation for optimal dynamic partial order reduction. J. ACM
64(4), 25:1–25:49 (2017). https://doi.org/10.1145/3073408

23. Aronis, S., Jonsson, B., Lång, M., Sagonas, K.: Optimal dynamic
partial order reduction with observers. In: Tools and Algorithms
for the Construction and Analysis of Systems—24th International
Conference, LNCS, vol. 10806, pp. 229–248. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3_14

24. McKenney, P.E.: RCU: The Bloatwatch edition (2009). http://lwn.
net/Articles/323929/

25. McKenney, P.E.: rcu: Remove TINY_PREEMPT_RCU (2013).
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=127781d1ba1ee5bbe1780afa35dd0e71583b143d

26. NO_HZ: Reducing Scheduling-clock Ticks (2017). https://www.
kernel.org/doc/Documentation/timers/NO_HZ.txt

27. What is RCU?—Linux kernel documentation. https://www.kernel.
org/doc/Documentation/RCU/whatisRCU.txt

28. McKenney, P.E.:Hierarchical RCU (2008). http://lwn.net/Articles/
305782/

29. CPU Hotplug in the Kernel (2016). https://www.kernel.org/doc/
Documentation/core-api/cpu_hotplug.rst

30. RCU Linux kernel documentation. https://www.kernel.org/doc/
Documentation/RCU/

31. Built-in Functions for Memory Model Aware Atomic Operations.
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.
html

32. LLVMAtomic Instructions and Concurrency Guide (2017). http://
llvm.org/docs/Atomics.html#libcalls-atomic

33. Beyer, D.: Rules for 4th international competition on software ver-
ification (2015). https://sv-comp.sosy-lab.org/2015/rules.php

34. rcu: Clean up locking for ->completed and ->gpnum fields
(2009). https://lkml.org/lkml/2009/10/30/212

35. Rcu: fix synchronization for rcu_process_gp_end() uses of
->completed counter (2009). https://lkml.org/lkml/2009/11/4/
69

36. Rcu: fix long-grace-period race between forcing and initialization
(2009). https://lkml.org/lkml/2009/10/28/196

37. McKenney, P.E.: Verification challenge 6: Linux-kernel tree RCU
(2017). https://paulmck.livejournal.com/46993.html

38. McKenney, P.E.: Hunting heisenbugs (2009). http://paulmck.
livejournal.com/14639.html

39. Gotsman,A., Rinetzky,N., Yang,H.:Verifying concurrentmemory
reclamation algorithms with Grace. In: Programming Languages
and Systems, LNCS, vol. 7792, pp. 249–269. Springer, Berlin
(2013). https://doi.org/10.1007/978-3-642-37036-6_15

40. Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read–copy–
update in a logic for weak memory. In: Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 110–120.ACM,NewYork (2015). https://
doi.org/10.1145/2737924.2737992

41. Desnoyers, M., McKenney, P.E., Dagenais, M.R.: Multi-core sys-
tems modeling for formal verification of parallel algorithms.
SIGOPS Oper. Syst. Rev. 47(2), 51–65 (2013). https://doi.org/10.
1145/2506164.2506174

42. Desnoyers, M., McKenney, P.E., Stern, A.S., Dagenais, M.R.,
Walpole, J.: User-level implementations of read–copy update.
IEEE Trans. Parallel Distrib. Syst. 23(2), 375–382 (2012). https://
doi.org/10.1109/TPDS.2011.159

43. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for
efficient boundedmodel checking of concurrent software. In: Com-
puter Aided Verification, LNCS, vol. 8044, pp. 141–157. Springer,
Berlin (2013). https://doi.org/10.1007/978-3-642-39799-8_9

44. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C
programs. In: Jensen, K., Podelski, A. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems, LNCS, vol. 2988,
pp. 168–176. Springer, Berlin (2004). https://doi.org/10.1007/978-
3-540-24730-2_15

45. McKenney, P.E.: Verification challenge 4: TinyRCU (2015). http://
paulmck.livejournal.com/39343.html

46. Ahmed, I., Groce, A., Jensen, C., McKenney, P.E.: How verified is
my code? falsification-driven verification. In: Proceedings of the
30th IEEE/ACM International Conference onAutomated Software
Engineering, pp. 737–748. IEEE Computer Society, Washington,
DC (2015). https://doi.org/10.1109/ASE.2015.40

47. Liang, L., McKenney, P.E., Kroening, D., Melham, T.: Verification
of the tree-based hierarchical read–copy update in the Linux kernel
(2016). http://arxiv.org/abs/1610.03052

48. Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.S.:
Frightening small children and disconcerting grown-ups: concur-
rency in the Linux kernel. In: Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS, pp. 405–418. ACM, New York
(2018). https://doi.org/10.1145/3173162.3177156

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/2806886
https://doi.org/10.1145/3158105
http://dl.acm.org/citation.cfm?id=647736.735461
http://dl.acm.org/citation.cfm?id=647736.735461
http://dl.acm.org/citation.cfm?id=647762.735490
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/3073408
https://doi.org/10.1007/978-3-319-89963-3_14
http://lwn.net/Articles/323929/
http://lwn.net/Articles/323929/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=127781d1ba1ee5bbe1780afa35dd0e71583b143d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=127781d1ba1ee5bbe1780afa35dd0e71583b143d
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
http://lwn.net/Articles/305782/
http://lwn.net/Articles/305782/
https://www.kernel.org/doc/Documentation/core-api/cpu_hotplug.rst
https://www.kernel.org/doc/Documentation/core-api/cpu_hotplug.rst
https://www.kernel.org/doc/Documentation/RCU/
https://www.kernel.org/doc/Documentation/RCU/
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
http://llvm.org/docs/Atomics.html#libcalls-atomic
http://llvm.org/docs/Atomics.html#libcalls-atomic
https://sv-comp.sosy-lab.org/2015/rules.php
https://lkml.org/lkml/2009/10/30/212
https://lkml.org/lkml/2009/11/4/69
https://lkml.org/lkml/2009/11/4/69
https://lkml.org/lkml/2009/10/28/196
https://paulmck.livejournal.com/46993.html
http://paulmck.livejournal.com/14639.html
http://paulmck.livejournal.com/14639.html
https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1145/2737924.2737992
https://doi.org/10.1145/2737924.2737992
https://doi.org/10.1145/2506164.2506174
https://doi.org/10.1145/2506164.2506174
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
http://paulmck.livejournal.com/39343.html
http://paulmck.livejournal.com/39343.html
https://doi.org/10.1109/ASE.2015.40
http://arxiv.org/abs/1610.03052
https://doi.org/10.1145/3173162.3177156

	Stateless model checking of the Linux kernel's read–copy update (RCU)
	Abstract
	1 Introduction
	2 Read–copy update (RCU)
	2.1 How RCU works
	2.2 RCU specifications

	3 Stateless model checking
	4 Stateless model checking Tiny RCU
	4.1 Tiny RCU implementation
	4.2 Kernel environment modeling
	4.3 Results

	5 Tree RCU implementation
	5.1 High-level explanation
	5.2 Data structures
	5.3 Use cases
	5.3.1 Registering a callback
	5.3.2 Starting a grace period
	5.3.3 Passing through a quiescent state
	5.3.4 Reporting a quiescent state to RCU
	5.3.5 Entering/exiting dynticks-idle mode
	5.3.6 Interrupts and dynticks-idle mode
	5.3.7 Forcing quiescent states

	6 Kernel environment modeling
	6.1 Modeling an SMP platform
	6.2 Kernel definitions
	6.3 Synchronization mechanisms

	7 Verifying the publish–subscribe guarantee
	8 Verifying the grace-period guarantee
	8.1 Test configuration
	8.2 Test runs
	8.3 Results and discussion

	9 Presenting the cause of an older kernel bug
	10 Further discussion
	10.1 Threats to validity
	10.2 Lessons learned

	11 Related work
	12 Concluding remarks
	Acknowledgements
	References

