A Deeper Look into RowHammer’s Sensitivities

Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa Abdullah Giray Yağlıkçı
Haocong Luo Ataberk Olgun Jisung Park
Hasan Hassan Minesh Patel Jeremie S. Kim Onur Mutlu

SAFARI

ETH zürich TOBB ETÜ University of Economics & Technology
DRAM Organization

DRAM Chip

Chip I/O

Bank

DRAM Bank

Subarray

Bitline

DRAM Cell

Wordline

DRAM Subarray

Row Buffer

SAFARI

2
1. **Row Activation**: Fetch the row’s content into the row buffer

2. **Column Access**: Read/Write a column in the row buffer

3. **Precharge**: Disconnect the row from the row buffer

Refresh: Restores the capacitor voltage with a time period called refresh window
The RowHammer Vulnerability

Repeatedly **opening** (activating) and **closing** (precharging) a DRAM row causes **RowHammer bit flips** in nearby cells.
Executive Summary

• **Motivation:**
 - Denser DRAM chips are **more vulnerable** to RowHammer
 - Understanding RowHammer enables designing **effective and efficient solutions**, but no rigorous study demonstrates how vulnerability varies under different conditions

• **Goal:** Provide insights into **three fundamental properties** of RowHammer that can be leveraged to design **more effective and efficient attacks and defenses**
 1) DRAM chip **temperature**
 2) The time that an aggressor row stays active
 3) Victim DRAM cell’s **physical location**

• **Experimental study:** 272 DRAM chips from four major manufacturers

• **Key Results:** We provide **6 takeaways** from **16 novel observations**
 A RowHammer bit flip is **more likely to occur**
 1) in a **bounded range of temperature**
 2) if the aggressor row is **active for longer time**
 3) in **certain physical regions** of the DRAM module under attack

• **Conclusion:** Our novel observations can inspire and aid future work
 - Craft **more effective attacks**
 - Design **more effective and efficient defenses**
Outline

Motivation and Goal

Experimental Methodology

Temperature Analysis

Aggressor Row Active Time Analysis

Spatial Variation Analysis

Implications on Attacks and Defenses

Conclusions
Outline

Motivation and Goal

- Experimental Methodology
- Temperature Analysis
- Aggressor Row Active Time Analysis
- Spatial Variation Analysis
- Implications on Attacks and Defenses

Conclusions
Motivation

- Defenses are becoming prohibitively expensive
- A deeper understanding is needed
- No rigorous experimental study on fundamental properties of RowHammer to find effective and efficient solutions

It is critical to gain insights into RowHammer and its fundamental properties
Our Goal

Provide insights into **three fundamental properties**

- Temperature
- Aggressor Row Active Time
- Victim DRAM Cell’s Physical Location

To find **effective and efficient** attacks and defenses
Outline

Motivation and Goal

Experimental Methodology

Temperature Analysis

Aggressor Row Active Time Analysis

Spatial Variation Analysis

Implications on Attacks and Defenses

Conclusions
DRAM Testing Infrastructures

Two separate testing infrastructures

1. **DDR3**: FPGA-based SoftMC (Xilinx ML605)
2. **DDR4**: FPGA-based SoftMC (Xilinx Virtex UltraScale+ XCU200)

- Fine-grained control over **DRAM commands**, **timing parameters** and **temperature** (±0.1°C)
DRAM Testing Methodology

To characterize our DRAM chips at **worst-case** conditions:

1. **Prevent sources of interference during core test loop**
 - No DRAM refresh: to avoid refreshing victim row
 - No DRAM calibration events: to minimize variation in test timing
 - No RowHammer mitigation mechanisms: to observe circuit-level effects
 - Test for less than a refresh window (32ms) to avoid retention failures

2. **Worst-case access sequence**
 - We use **worst-case** access sequence based on prior works’ observations
 - For each row, repeatedly access the two physically-adjacent rows as fast as possible
DRAM Chips Tested

<table>
<thead>
<tr>
<th>Mfr.</th>
<th>DDR4 DIMMs</th>
<th>DDR3 SODIMMs</th>
<th># Chips</th>
<th>Density</th>
<th>Die</th>
<th>Org.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Micron)</td>
<td>9</td>
<td>1</td>
<td>144 (8)</td>
<td>8Gb (4Gb)</td>
<td>B (P)</td>
<td>x4 (x8)</td>
</tr>
<tr>
<td>B (Samsung)</td>
<td>4</td>
<td>1</td>
<td>32 (8)</td>
<td>4Gb (4Gb)</td>
<td>F (Q)</td>
<td>x8 (x8)</td>
</tr>
<tr>
<td>C (SK Hynix)</td>
<td>5</td>
<td>1</td>
<td>40 (8)</td>
<td>4Gb (4Gb)</td>
<td>B (B)</td>
<td>x8 (x8)</td>
</tr>
<tr>
<td>D (Nanya)</td>
<td>4</td>
<td>-</td>
<td>32 (-)</td>
<td>8Gb (-)</td>
<td>C (-)</td>
<td>x8 (-)</td>
</tr>
</tbody>
</table>

- **Two DRAM standards**
- **4 Major Manufacturers**
- **272 DRAM Chips in total**
A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa
ETH Zürich

A. Giray Yağlıkçı
ETH Zürich

Haocong Luo
ETH Zürich

Ataberk Olgun
ETH Zürich, TOBB ETÜ

Jisung Park
ETH Zürich

Hasan Hassan
ETH Zürich

Minesh Patel
ETH Zürich

Jeremie S. Kim
ETH Zürich

Onur Mutlu
ETH Zürich

Table 4: Characteristics of the tested DDR4 and DDR3 DRAM modules.

<table>
<thead>
<tr>
<th>Type</th>
<th>Chip Manufacturer</th>
<th>Chip Identifier</th>
<th>Module Vendor</th>
<th>Module Identifier</th>
<th>Freq. (MT/s)</th>
<th>Date Code</th>
<th>Density</th>
<th>Die Rev.</th>
<th>Org.</th>
<th># Modules</th>
<th>#Chips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1843</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1844</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>C: SK Hynix</td>
<td>D1028AN9CGRK [72]</td>
<td>Kingston</td>
<td>K9V924N75S/8 [75]</td>
<td>2400</td>
<td>2046</td>
<td>8Gb</td>
<td>C</td>
<td>x8</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>DDR3</td>
<td>A: Micron</td>
<td>MT41K512M8A-167/F [22]</td>
<td>Crucial</td>
<td>CT51264BF160B.M0FP</td>
<td>1600</td>
<td>1703</td>
<td>4Gb</td>
<td>P</td>
<td>x8</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B: Samsung</td>
<td>K4B4G0846Q</td>
<td>Samsung</td>
<td>M471B51759H0-YK0 [131]</td>
<td>1600</td>
<td>1416</td>
<td>4Gb</td>
<td>Q</td>
<td>x8</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>C: SK Hynix</td>
<td>H5TC4G83RFR-PBA</td>
<td>SK Hynix</td>
<td>HMT4G5156BFR-A [139]</td>
<td>1600</td>
<td>1535</td>
<td>4Gb</td>
<td>B</td>
<td>x8</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>
Outline

Motivation and Goal

Experimental Methodology

Temperature Analysis

Aggressor Row Active Time Analysis

Spatial Variation Analysis

Implications on Attacks and Defenses

Conclusions
Key Takeaways from Temperature Analysis

Key Takeaway 1

To ensure that a DRAM cell is not vulnerable to RowHammer, we must characterize the cell at all operating temperatures.

Key Takeaway 2

RowHammer vulnerability tends to worsen as DRAM temperature increases. However, individual DRAM rows can exhibit behavior different from the dominant trend.
Impact of Temperature on DRAM Cells

The fraction of vulnerable DRAM cells, experiencing bit flips at all temperature levels within their vulnerable temperature range

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>99.1%</td>
<td>98.9%</td>
<td>98.0%</td>
<td>99.2%</td>
</tr>
</tbody>
</table>

OBSERVATION 1

Most DRAM cells are vulnerable to RowHammer throughout a continuous temperature range
Different DRAM cells are vulnerable to RowHammer within specific temperature ranges.
Impact of Temperature on DRAM Cells

OBSERVATION 2

A **significant fraction** of vulnerable DRAM cells exhibit bit flips at **all tested temperatures**

29.8% of the cells experience bit flips at all tested temperatures.
A small fraction of all vulnerable DRAM cells are vulnerable to RowHammer only in a very narrow temperature range.

0.2% of the cells experience bit flips only at 70°C.
Impact of Temperature on DRAM Rows

More cells experience bit flips as temperature increases.
Impact of Temperature on DRAM Rows

A DRAM row’s bit error rate can either **increase** or **decrease** with **temperature** depending on the DRAM manufacturer.
Also in the Paper

The **minimum activation count** at which a victim row experiences a bit flip \((HC_{\text{first}}) \) when **temperature changes**:

OBSERVATION 5

DRAM rows can show either **higher** or **lower** \(HC_{\text{first}} \) when **temperature increases**

OBSERVATION 6

\(HC_{\text{first}} \) tends to generally **decrease** as **temperature change** \((\Delta T) \) increases

OBSERVATION 7

The \(HC_{\text{first}} \) change \((\Delta HC_{\text{first}}) \) tends to be **larger** as **temperature change** \((\Delta T) \) increases
Also in the Paper

The minimum activation count at which a victim row experiences a bit flip ($H_{C_{first}}$) when temperature changes:

KEY OBSERVATION 5

A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa*
ETH Zürich

A. Giray Yaşlıkçı*
ETH Zürich

Haocong Luo
ETH Zürich

Ataberk Olgun
ETH Zürich, TOBB ETÜ

Jisung Park
ETH Zürich

Hasan Hassan
ETH Zürich

Minesh Patel
ETH Zürich

Jeremie S. Kim
ETH Zürich

Onur Mutlu
ETH Zürich

KEY OBSERVATION 7

The $H_{C_{first}}$ change ($\Delta H_{C_{first}}$) tends to be larger as temperature change (ΔT) increases.
Outline

Motivation and Goal

Experimental Methodology

Temperature Analysis

Aggressor Row Active Time Analysis

Spatial Variation Analysis

Implications on Attacks and Defenses

Conclusions
Key Takeaways from Aggressor Row Active Time Analysis

Key Takeaway 3

As an aggressor row stays active longer, victim DRAM cells become more vulnerable to RowHammer.

Key Takeaway 4

RowHammer vulnerability of victim cells decreases when the bank is precharged for a longer time.
Memory Access Patterns in Aggressor Row Active Time Analysis

- Baseline access pattern:

 ![Baseline Access Pattern Diagram](image)

- Increasing **aggressor row active time**:

 ![Increasing Aggressor Row Active Time Diagram](image)

- Increasing **bank precharged time**:

 ![Increasing Bank Precharged Time Diagram](image)
As the **aggressor row stays active longer**, more **DRAM cells** experience RowHammer bit flips.
As the aggressor row stays active longer, more DRAM cells experience RowHammer bit flips.
Increasing Aggressor Row Active Time

Fewer activations are required to cause RowHammer bit flips when aggressor rows stay active for longer time.
Increasing Aggressor Row Active Time

As the aggressor row stays active longer, more DRAM cells experience RowHammer bit flips and they experience RowHammer bit flips at lower activation counts.
Also in the Paper

The **variation** in aggressor row active time’s effects across DRAM rows and the effect of increasing **bank precharged time**

OBSERVATION 9

As the **aggressor row stays active longer**, the RowHammer vulnerability **consistently worsens** across tested DRAM rows

OBSERVATION 10

As the **bank stays precharged longer**, **fewer DRAM cells** experience RowHammer bit flips and they experience RowHammer bit flips **at higher activation counts**

OBSERVATION 11

As the **bank stays precharged longer**, the RowHammer vulnerability **consistently reduces** across tested DRAM rows
Also in the Paper

The variation in these behaviors across DRAM rows and the effect of increasing bank precharged time

key observation 9

A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa*
ETH Zürich

A. Giray Yağlıkçı*
ETH Zürich

Haocong Luo
ETH Zürich

Ataberk Olgun
ETH Zürich, TOBB ETÜ

Jisung Park
ETH Zürich

Hasan Hassan
ETH Zürich

Minesh Patel
ETH Zürich

Jeremie S. Kim
ETH Zürich

Onur Mutlu
ETH Zürich

key observation 11

As the bank stays precharged longer, the RowHammer vulnerability consistently reduces across tested DRAM rows
Key Takeaways from Spatial Variation Analysis

Key Takeaway 5

RowHammer vulnerability **significantly varies** across DRAM rows and columns due to **design-induced** and **manufacturing-process-induced** variation.

Key Takeaway 6

The distribution of **the minimum activation count to observe bit flips** (HC_{first}) exhibits **a diverse set of values in a subarray** but **similar values across subarrays** in the same DRAM module.
Spatial Variation across Rows

The minimum activation count to observe bit flips (HC_{first}) across DRAM rows:

The RowHammer vulnerability significantly varies across DRAM rows
Spatial Variation across Rows

The RowHammer vulnerability significantly varies across DRAM rows
Spatial Variation across Rows

Minimum Activation Count to Observe a Bit Flip (HC_{first})

DRAM Rows (sorted by reducing HC_{first})

OBSERVATION 12

A small fraction of DRAM rows are significantly more vulnerable to RowHammer than the vast majority of the rows
Spatial Variation across Columns

OBSERVATION 13

Certain columns are significantly more vulnerable to RowHammer than other columns.
Spatial Variation across Columns

High RowHammer vulnerability across all chips → design-induced variation

High variation in vulnerability across chips → manufacturing-process-induced variation
Spatial Variation across Columns

Both manufacturing process and design affect a DRAM column’s RowHammer vulnerability.

OBSERVATION 14
Also in the Paper

The **minimum activation count** at which a victim row experiences a bit flip \((HC_{first})\) across rows in a subarray and across subarrays in a DRAM module:

OBSERVATION 15

The most vulnerable DRAM row in a subarray is **significantly more vulnerable** than the other rows in the subarray

OBSERVATION 16

\(HC_{first}\) distributions of subarrays within a DRAM module are **significantly more similar** to each other than those of subarrays from different modules
Also in the Paper

The minimum activation count at which a victim row experiences a bit flip (HC_{first}) across rows in a subarray and across subarrays in a module:

A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa*
ETH Zürich

A. Giray Yaşlıkçı*
ETH Zürich

Haocong Luo
ETH Zürich

Ataberk Olgun
ETH Zürich, TOBB ETÜ

Jisung Park
ETH Zürich

Hasan Hassan
ETH Zürich

Minesh Patel
ETH Zürich

Jeremie S. Kim
ETH Zürich

Onur Mutlu
ETH Zürich

HC_{first} distributions of subarrays within a DRAM module are significantly more similar to each other than those of subarrays from different modules.
Implications on Attacks and Defenses

Our observations can be leveraged to craft more effective RowHammer attacks

Our observations can be leveraged to design more effective and efficient RowHammer defenses
Attack Improvement 1: Making DRAM Cells More Vulnerable

An attacker can manipulate temperature to make the cells that store sensitive data more vulnerable.

DRAM cells are vulnerable in a bounded temperature range.

Heating up chip temperature

Cooling down chip temperature
1. Identify **abnormal increase** in temperature to attack a data center **during its peak hours**

2. **Precisely measure** the temperature to trigger an attack **exactly at the desired temperature**

Example fraction values from Mfr. C
Attack Improvement 3: Bypassing Defenses with Aggressor Row Active Time

Activating aggressor rows as frequently as possible:

[Diagram showing Row A is active, Row B is active, Row A is active, with Time on the right]

Keeping the aggressor rows active for a longer time:

[Diagram showing Row A is active, Row B is active, with Time and a downward arrow labeled 36% reduction in HC_{first}]

Reduces the minimum activation count to induce a bit flip by *36%*

Bypasses defenses that do not account for this reduction
Defense Improvements

• Example 1: Leveraging the variation across DRAM rows

- A DRAM cell experiences bit flips within a bounded temperature range
- A row can be disabled within the row’s vulnerable temperature range

Breakdown of DRAM Rows

- 10% \(HC_{first} \)
- 90% \(2 \times HC_{first} \)

Aggressiveness can be reduced:
- 33% area reduction for BlockHammer [Yağlıkçı+, HPCA'21]
- 80% area reduction for Graphene [Park+, MICRO'20]

• Example 2: Leveraging the variation with temperature

- A DRAM cell experiences bit flips within a bounded temperature range
- A row can be disabled within the row’s vulnerable temperature range

Vulnerable Temperature Range

80% area reduction for Graphene [Park+, MICRO'20]
More Defense Implications in the Paper

- Leveraging the similarity across subarrays in a DRAM module can reduce the module’s profiling time for RowHammer errors.

- Monitoring and limiting the aggressor row active time from the memory controller can reduce the RowHammer vulnerability and make defenses more efficient.

- ECC schemes can target the non-uniform bit error distribution caused by design-induced variation across DRAM columns.

- Cooling DRAM chips can reduce overall bit error rate.
More Defense Implications in the Paper

- Leveraging the similarity across subarrays in a DRAM module to speed up profiling the module for RowHammer errors

A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lois Orosa*</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>A. Giray Yağlıkçı*</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>Haocong Luo</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>Ataberk Olgun</td>
<td>ETH Zürich, TOBB ETÜ</td>
</tr>
<tr>
<td>Jisung Park</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>Hasan Hassan</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>Minesh Patel</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>Jeremie S. Kim</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>Onur Mutlu</td>
<td>ETH Zürich</td>
</tr>
</tbody>
</table>

- Cooling DRAM chips can reduce overall bit error rate
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation and Goal</td>
</tr>
<tr>
<td>Experimental Methodology</td>
</tr>
<tr>
<td>Temperature Analysis</td>
</tr>
<tr>
<td>Aggressor Row Active Time Analysis</td>
</tr>
<tr>
<td>Spatial Variation Analysis</td>
</tr>
<tr>
<td>Implications on Attacks and Defenses</td>
</tr>
</tbody>
</table>

Conclusions
Conclusion

• **Motivation:**
 - Denser DRAM chips are more vulnerable to RowHammer
 - Understanding RowHammer enables designing effective and efficient solutions, but no rigorous study demonstrates how vulnerability varies under different conditions

• **Goal:** Provide insights into three fundamental properties of RowHammer that can be leveraged to design more effective and efficient attacks and defenses
 1) DRAM chip temperature
 2) The time that an aggressor row stays active
 3) Victim DRAM cell’s physical location

• **Experimental study:** 272 DRAM chips from four major manufacturers

• **Key Results:** We provide 6 takeaways from 16 novel observations
 A RowHammer bit flip is more likely to occur
 1) in a bounded range of temperature
 2) if the aggressor row is active for longer time
 3) in certain physical regions of the DRAM module under attack

• **Conclusion:** Our novel observations can inspire and aid future work
 - Craft more effective attacks
 - Design more effective and efficient defenses
A Deeper Look into RowHammer’s Sensitivities

Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa Abdullah Giray Yağlıkçı
Haocong Luo Ataberk Olgun Jisung Park
Hasan Hassan Minesh Patel Jeremie S. Kim Onur Mutlu

SAFARI

ETH Zürich

TOBB ETÜ
A Deeper Look into RowHammer’s Sensitivities

Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

BACKUP SLIDES

Lois Orosa Abdullah Giray Yağlıkçı
Haocong Luo Ataberk Olgun Jisung Park
Hasan Hassan Minesh Patel Jeremie S. Kim Onur Mutlu

SAFARI

ETH Zürich

TOBB ETÜ
University of Economics & Technology
Distribution of the Change in HC_{first}
Distribution of the Change in $H C_{\text{first}}$

OBSERVATION 5

DRAM rows can show either higher or lower $H C_{\text{first}}$ when temperature increases.
Distribution of the Change in HC_{first}

OBSERVATION 6

HC_{first} tends to generally **decrease** as temperature change (ΔT) increases.
OBSERVATION 7

The HC_{first} change (ΔHC_{first}) tends to be larger as temperature change (ΔT) increases.
Circuit-Level Justification
Temperature Analysis

We hypothesize that our observations are caused by the non-monotonic behavior of charge trapping characteristics of DRAM cells.

3D TCAD model [Yang+, EDL'19]

Fig. 6. Hammering threshold N_{RH} vs. temperature from 250 to 350°K for different traps. Location in row and column refers to matrix in Fig. 2b.

HC_{first} decreases as temperature increases, until a temperature inflection point where HC_{first} starts to increase as temperature increases.

A cell is more vulnerable to RowHammer at temperatures close to its temperature inflection point.
Increasing Aggressor Row Active Time (t_{AggOn})

OBSERVATION 8

As the **aggressor row stays active longer**, more DRAM cells experience RowHammer bit flips and they experience RowHammer bit flips **at lower hammer counts**

We analyze how the **coefficient of variation** values for BER and HC_{first} change across rows when the **aggressor row stays active longer**

OBSERVATION 9

RowHammer vulnerability **consistently worsens** as t_{AggOn} **increases** across all tested DRAM rows**

*Coefficient of Variation (CV) = Standard Deviation/Average

** Please refer to the full paper for coefficient of variation-based (CV) analysis
Increasing Bank Precharged Time (t_{AggOff})

Bit Error Rate

- **OBSERVATION 10**
 As the bank stays precharged longer, fewer DRAM cells experience RowHammer bit flips and they experience RowHammer bit flips at higher hammer counts.

- We repeat the coefficient of variation* analysis for BER and HC_{first} change across rows when the bank stays precharged longer.

OBSERVATION 11
RowHammer vulnerability consistently reduces as t_{AggOff} increases across all tested DRAM rows**

*Coefficient of Variation (CV) = Standard Deviation / Average

**Please refer to the full paper for coefficient of variation-based (CV) analysis.
Circuit-Level Justification
Aggressor Row Active Time Analysis

Two possible circuit level justifications for RowHammer bit flips:

1. Electron injection in the victim cell [Walker+, TED'21][Yang+, TDMR'16]

2. Wordline-to-wordline cross-talk noise between aggressor and victim rows that occurs when the aggressor row is being activated [Ryu+, IEDM'17][Walker+, TED'21]

We hypothesize that increasing the aggressor row’s active time \(t_{AggOn} \) has a larger impact on exacerbating electron injection to the victim cell, compared to the reduction in cross-talk noise due to lower activation frequency. Thus, RowHammer vulnerability worsens when \(t_{AggOn} \) increases.

Increasing a bank’s precharged time \(t_{AggOff} \) decreases RowHammer vulnerability because longer \(t_{AggOff} \) reduces the effect of cross-talk noise without affecting electron injection (since \(t_{AggOn} \) is unchanged).
Spatial Variation across Rows

Minimum Activation Count to Observe a Bit Flip (HC_{first})

DRAM Rows (sorted by reducing HC_{first})

HC_{first} worst-to-best ratio in this range: $P100/P90$

OBSERVATION 12

A small fraction of DRAM rows are **significantly more vulnerable** to RowHammer than the **vast majority** of the rows.
Spatial Variation across Columns

We analyze BER variation across DRAM columns

OBSERVATION 13

Certain columns are **significantly more vulnerable** to RowHammer than other columns
Spatial Variation across Subarrays

Observation 15

The most vulnerable DRAM row in a subarray is **significantly more vulnerable** than the other rows in the subarray.
Spatial Variation across Subarrays

OBSERVATION 16

HC_{first} distributions of subarrays **within a DRAM module** are **significantly more similar** to each other than those of subarrays **from different modules**

We analyze the similarity between Hcfirst distributions of different subarrays based on Bhattacharyya distance in the paper
Spatial Variation across Subarrays
Bhattacharyya Distance Analysis

HC_{first} distributions of subarrays within a DRAM module exhibit significantly more similarity to each other than HC_{first} distributions of subarrays from different modules.
Circuit-Level Justification
Spatial Variation Analysis

Variation across rows, columns, and chips:

Manufacturing process variation causes differences in cell size and bitline/wordline impedance values, which introduces variation in cell reliability characteristics within and across DRAM chips.

Design-induced variation causes cell access latency characteristics to vary deterministically based on a cell’s physical location in the memory chip (e.g., its proximity to I/O circuitry).

Similarity across subarrays:

Cell’s access latency is dominated by its physical distance from the peripheral structures (e.g., local senseamplifiers and wordline drivers) within the subarray, causing corresponding cells in different subarrays to exhibit similar access latency characteristics.
Example Attack Improvements

- The attacker can reduce HC_{first} (by 36%) by performing (10-15) additional READ commands targeting the aggressor row to bypass RowHammer defenses that do not account for this reduction.

These observations can be leveraged to craft more effective RowHammer attacks.
DRAM Operation

1. **Row Activation**: Fetching the row’s content into the **row buffer**

2. **Column Access**: Read/Write a column in the row buffer

3. **Precharge**: Disconnect the row from the row buffer

I/O Circuitry

![Diagram of DRAM operation](image)

- **Row Buffer**: The area where the row’s content is fetched.
- **Column Access**: The process of reading or writing a column.
- **Precharge**: Disconnecting the row from the row buffer.

Capacitor Voltage

- **V_{min}**: Minimum voltage level.
- **REF**: Reference points for refresh.
- **Refresh Window**: The time period during which refresh occurs.

SAFARI
Example Attack Improvements

• **Example 1: Temperature-dependent trigger**
 An attacker can measure DRAM chip’s current temperature
 • To identify when the DRAM chip is at a certain temperature
 • To precisely measure temperature for covert channels
 • To identify abnormal operating conditions (e.g., warmer than usual)
 • To attack a data center during its peak hours
 • To spy on an end-user’s behavioral patterns

• **Example 2: Manipulating temperature to make chips more vulnerable**
 An attacker can heat up or cool down a DRAM chip to a temperature level where the victim cells are vulnerable

![Graph showing temperature dependence and bit flip percentages for different manufacturers and temperature bounds. The graph highlights that 76.6% of DRAM cells exhibit bit flips above 70°C, while 0.4% exhibit bit flips only at 70°C.](image-url)