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High-throughput sequencing (HTS) technologies have revolution-
ized the field of genomics, enabling rapid and cost-effective genome
analysis for various applications. However, the increasing volume
of genomic data generated by HTS technologies presents signifi-
cant challenges for computational techniques to effectively analyze
genomes. To address these challenges, several algorithm-architecture
co-design works have been proposed, targeting different steps of the
genome analysis pipeline. These works explore emerging technolo-
gies to provide fast, accurate, and low-power genome analysis.
This paper provides a brief review of the recent advancements

in accelerating genome analysis, covering the opportunities and
challenges associated with the acceleration of the key steps of the
genome analysis pipeline. Our analysis highlights the importance
of integrating multiple steps of genome analysis using suitable
architectures to unlock significant performance improvements and
reduce data movement and energy consumption. We conclude by
emphasizing the need for novel strategies and techniques to address
the growing demands of genomic data generation and analysis.

1. Introduction
Genome analysis plays a crucial role in various fields such as per-
sonalized medicine [1], agriculture [2], evolutionary biology [3],
pharmacogenomics [4], infectious disease control [5, 6], cancer
research [7] and microbiome studies [8]. The advent of high-
throughput sequencing (HTS) technologies, such as sequencing-
by-synthesis (SBS) [9], Single Molecule Real-Time (SMRT) [10],
and nanopore sequencing [11–13], has revolutionized genome
analysis, enabling faster and more cost-effective sequencing of
genomes by generating a large amount of genomic data at rel-
atively low cost [14]. However, the analysis of genomic data
is challenging due to a variety of reasons: 1) HTS technologies
can only sequence relatively short fragments of genomes, called
reads, whose locations in the entire genome are unknown, 2) these
reads can contain sequencing errors [14,15], leading to differences
from their original sequences, 3) the sequenced genome may not
(and usually does not) exactly match recorded genomes in a ref-
erence database, known as reference genomes, due to variations
between individuals within and across species. Despite signifi-
cant improvements in computational tools since the 1980s [16] to
overcome such challenges, the rapid growth in genomic data [17]
has led to ever larger computational overheads in the genome
analysis pipeline, posing large challenges for efficient and timely
analysis of genomes [18, 19].

A genome analysis pipeline consists of multiple key steps, each
of which affects the accuracy, speed, and energy consumption
of genome analysis. First, basecalling translates the raw sequenc-
ing data that HTS generates (e.g., measured electrical signals in
nanopore sequencing) into sequences of genomic characters (e.g.,
A, C, G, and Ts in DNA). Basecalling is time-consuming because it
relies heavily on compute-intensive approaches that process large
chunks of noisy and error-prone raw data to accurately infer the
actual nucleotide sequences [13, 19–24]. Second, real-time anal-
ysis of raw sequencing data [5, 25–34] aims to analyze the reads
simultaneously while the read is being sequenced using a particu-
lar sequencing technology (e.g., nanopore sequencing). Although
real-time analysis of raw sequencing data provides enormous
advantages in significantly reducing the overall genome analysis
time and cost [25], it introduces unique challenges as the analysis
needs to match stringent throughput and latency requirements
to satisfy real-time requirements [34]. Third, read mapping aims
to find similarities and differences between genomic sequences
(e.g., between sequenced reads and reference genomes of one
or more species). Read mapping includes several steps such as

sketching [35–40], seeding [41–49], and alignment [50–55], which
demand considerable processing power and memory due to the
large scale of genomic sequences [16, 56, 57]. Fourth, subsequent
steps of the genome analysis (i.e., downstream analysis) use the
output generated in the read mapping step. An example of such
downstream analysis is known as variant calling [58–64], which
aims to identify genetic differences, known as variants, between
an individual’s genome and a reference genome. Variant calling is
often followed by additional steps, such as gene annotation [65–69]
and enrichment analysis [70–73]. These steps aim to generate in-
sights from the identified variants and determine if these variants
show an unexpectedly high or low statistical correlation with
specific functional behavior (e.g., association with a disease) that
can be used in a clinical report [74].
Many pure algorithmic and software techniques aim to ad-

dress the computational challenges in the genome analysis
pipeline. These works improve the performance and accu-
racy of the computational tools by 1) reducing overall compu-
tational and space complexity [55, 75], 2) eliminating useless
work [38, 43–45, 56, 57, 76–78], 3) optimizing data structures and
memory access patterns [79–81], 4) exploiting parallelism inmulti-
core, many-core, and SIMD architectures [38, 44, 77, 78, 82–86],
and 5) employing machine learning techniques [15, 64, 77, 78].
These works fall short on greatly improving performance and
energy consumption due to at least three major reasons. First,
many of these approaches incur significant data movement be-
tween computation units and memory units [18, 87]. Second, a
large portion of the data becomes useless in downstream genome
analysis [88], and performing computation on it wastes time and
energy. Third, HTS technologies produce sequencing data at an
increasingly high rate, which makes it challenging to keep up
with the throughput of these sequencing technologies, especially
in time-critical scenarios [18, 34].
Since software techniques alone are not effective enough at

coping with huge amounts of genomic data and the stringent
requirements of genome analysis, it is critical to design software-
hardware cooperative techniques to accelerate genome analysis.
To this end, several works co-design algorithms and architec-
tures to substantially improve the performance and energy effi-
ciency of the genome analysis pipeline. These works 1) reduce
data movement overheads by employing processing in memory
(PIM) [2, 89–106], or processing near storage (e.g., solid-state
drives) [87] and 2) efficiently co-design and execute computa-
tionally complex algorithms with massive parallelism and effi-
cient hardware design using specialized architectures, e.g., field
programmable gate arrays (FPGAs) and application-specific inte-
grated circuits (ASICs) [31, 46, 48, 49, 54, 84, 107–123]

In this paper (and the associated invited talk), we review the re-
cent advancements in accelerating genome analysis via algorithm-
architecture co-design and discuss emerging challenges that high-
light the need for new acceleration techniques. We aim to provide
a brief yet comprehensive overview of the current state of the
field and inspire future research directions to further improve the
efficiency of genome analysis and hopefully enable new use cases
and computing platforms.
2. Accelerating Basecalling
HTS technologies produce raw sequencing data, the content of
which depends on the type of sequencing technology employed.
There are three main types of sequencing technologies: sequenc-
ing by synthesis (SBS) [9], Single Molecule Real-Time (SMRT) [10],
and nanopore sequencing [11]. SBS generates images where the
color intensity at a particular position of an image represents
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the base of the read. Basecalling after SBS aims to accurately
associate these colors with their corresponding bases while cor-
recting sequencing errors [124]. SMRT sequencing generates
continuous images in a movie format by sequencing the same
read multiple times via a strategy known as circular consensus
sequencing (CCS) [125]. Although these images can be quickly
converted to their corresponding bases, the high noise associated
with SMRT sequencing requires additional steps to correct se-
quencing errors [125]. These techniques include alignment [47],
consensus assembly construction [125], and polishing [15, 126].
Nanopore sequencing generates raw electrical signals as DNA
or RNA molecules pass through tiny pores (i.e., nanoscale holes)
called nanopores [11]. Changes in ionic current, measured as
nucleotides pass through, are sampled in real-time and used to
perform 1) basecalling and 2) real-time genome analysis.
Recent basecalling works [22, 24, 77, 78, 127–132] especially

focus on basecalling raw nanopore signals due to two major
reasons. First, the measured signal represents a combination
of multiple nucleotides passing through the nanopore, making
the basecalling task more challenging compared to the relatively
simpler and more direct signal-to-base conversion in SBS and
SMRT sequencing methods [19,78]. Second, nanopore sequencing
provides unique opportunities for real-time genome analysis that
can be used to reduce the time and cost of sequence analysis [19,
34], as we discuss in §3.
Basecalling techniques developed for nanopore sequencing

mainly use deep neural networks (DNNs) [78] to achieve high
accuracy. However, these methods are computationally expen-
sive to train and use with large amounts of raw electrical signal
data [88]. To address this issue, several algorithm-architecture co-
design works have been proposed. First, some works accelerate
the execution of DNN operations using graphics processing units
(GPUs) [22, 24, 127–132]. GPUs can substantially improve base-
caller performance by providing massive parallelism for perform-
ing matrix multiplications in DNNs. Second, RUBICON [78] and
TargetCall [77] reduce unnecessary computations in GPU-based
basecallers by 1) reducing the DNN parameters and precision [78]
or 2) introducing pre-basecalling filters [77]. Third, several works
use processing-in-memory (PIM) [88, 96, 133], or FPGAs [119] to
accelerate basecalling and reduce power consumption. A recent
work that uses PIM, GenPIP [88], shows that a significant portion
of useless data can propagate to downstream analysis, causing
unnecessary data movement, compute cycles, and energy con-
sumption. To eliminate such useless operations, GenPIP combines
both basecalling and read mapping in PIM to quickly identify un-
necessary reads without fully basecalling them, thereby reducing
both data movement overheads and overall execution time spent
in basecalling and read mapping.

We believe that integrating multiple steps of genome analysis
using suitable architectures, such as PIM, can unlock significant
opportunities for 1) reducing data movement overheads, 2) elimi-
nating useless basecalling, and 3) avoiding useless data movement
and computation in downstream analysis. These approaches have
the potential to substantially enhance the performance and energy
efficiency of the entire genome analysis pipeline.
3. Accelerating Real-Time Genome Analysis
Real-time genome analysis aims to perform the steps in the
genome analysis pipeline (e.g., read mapping) while the raw se-
quencing data is generated [25, 34]. The main challenges of real-
time genome analysis are to 1) match the throughput at which
the raw sequencing data is generated, 2) tolerate the noise in the
raw sequencing data to provide accurate results, and 3) meet the
latency and energy consumption requirements of target appli-
cations. Among the HTS technologies, nanopore sequencing is
uniquely suited for real-time genome analysis due to its ability to
eject reads from nanopores without fully sequencing them, known
as adaptive sampling or Read Until [25]. This feature can signifi-
cantly reduce the overall sequencing time and cost and reduce the
latency of genome analysis by 1) avoiding full sequencing of reads
that will be useless in downstream analysis and 2) overlapping

the latency of sequencing with steps in downstream analysis.
To enable real-time genome analysis, several works propose

pure algorithmic techniques or algorithm-hardware co-design so-
lutions. First, ReadFish [29], ReadBouncer [134], and RUBRIC [26]
use costly basecalling mechanisms for adaptive sampling. These
techniques require costly and energy-hungry computational re-
sources. Such a requirement may cause practical challenges in
1) scaling genome analysis to lower energy and cost levels and
2) performing in-the-field sequencing using mobile sequencing
devices such as ONT MinION [34]. Second, many works such as
UNCALLED [27], Sigmap [28], and RawHash [34] use efficient
techniques to utilize adaptive sampling in low-power devices
with usually lower accuracy than the basecalling mechanisms.
Among these works, RawHash can provide high accuracy for
large genomes with an efficient and accurate hash-based similar-
ity identification technique. Third, several algorithm-architecture
co-designs use FPGAs [31] or ASICs [121] to provide fast, accurate,
and low-power real-time genome analysis. However, these works
are applicable only to small genomes, such as viral genomes, as
their algorithm designs lack efficient scalability to larger genomes.

We believe that achieving accurate and real-time genome anal-
ysis still requires substantial developments in both efficient al-
gorithms and architecture. This can be achieved by 1) designing
efficient software that can be used in low-power devices for adap-
tive sampling and real-time genome analysis, 2) new techniques
for genome analysis that do not require translating the raw se-
quencing data to nucleotide bases, and 3) combining and paral-
lelizing several steps in real-time genome analysis using efficient
algorithm-architecture co-designs to minimize the latency (and
energy) of time-critical genomics applications.
4. Accelerating Read Mapping
The goal of read mapping is to identify similarities and differences
between genomic sequences, such as between a read and a repre-
sentative sequence of a species, known as a reference genome. Due
to genomic variants and sequencing errors, differences and simi-
larities between these sequences (i.e., matches, substitutions, in-
sertions, and deletions) are identified using an approximate string
matching (ASM) algorithm to generate an alignment score that
quantifies the degree of similarity between a pair of sequences.
This process is known as sequence alignment. A pair of sequences
is said to be aligned when their alignment score shows a suffi-
ciently high degree of similarity. However, ASM algorithms often
have quadratic time and space complexity, making them computa-
tionally challenging for both long genomic sequences and a large
number of sequence pairs. To ease the identification of similarities
within vast amounts of sequencing data, read mapping includes
multiple steps, such as: 1) sketching [35–40], 2) indexing and seed-
ing [41–45, 47], 3) pre-alignment filtering [46, 48, 49, 76, 90, 135],
and 4) sequence alignment (i.e., ASM) [50–55].

Since read mapping is a crucial and computationally expensive
step in many genome analysis pipelines, numerous works focus
on accelerating it in various ways. First, a significant fraction
of sequence pairs do not align, which leads to wasted compu-
tation and energy during alignment [90]. To avoid this useless
computation, several works propose pre-alignment filtering, an-
other step in read mapping that can efficiently detect and elim-
inate highly dissimilar sequence pairs without using alignment.
Most pre-alignment filtering works [46, 48, 49, 76, 90, 135] provide
algorithm-architecture co-design using FPGAs, GPUs, and PIM
to substantially accelerate the entire read mapping process by
exploiting massive parallelism, efficient bitwise operations, and
specialized hardware logic for detecting similarities among a large
number of sequences.

Second, GenStore [87] observes that a large amount of sequenc-
ing data unnecessarily moves from the solid-state drive (SSD) to
memory during read mapping, significantly increasing latency
and energy consumption. To eliminate this wasteful data move-
ment, GenStore uses specialized logic within the SSD to identify
two sets of reads: 1) reads that do not align due to high dissimilar-
ity with the reference genome, and 2) reads that align by exactly

2



matching the reference genome. Such reads are processed in
the storage system and not moved to main memory or the CPU,
thereby eliminating unnecessary data movement in the system.
Third, numerous studies, including GenASM [54] and Dar-

win [117], focus on accelerating the underlying ASM algorithm
employed in sequence alignment through efficient algorithm-
architecture co-design. They do so by exploiting systolic ar-
rays [115], GPUs [86], FPGAs [115, 118, 120], ASICs [116], high-
bandwidth memory (HBM) [123], and PIM [89,97,105,106]. These
works provide substantial speedups of up to several orders of mag-
nitude compared to software baselines. Among these works, SeG-
raM [123] is the first to accelerate aligning sequences to graphs
that are used to reduce population bias and improve genome anal-
ysis accuracy by representing a large population (instead of a few
individuals) within a single reference genome.

Despite recent advancements, read mapping remains a compu-
tational bottleneck in genome analysis [18, 19]. This is primarily
due to the vast amount of sequencing data generated at an ever-
increasing rate by sequencing machines, which puts significant
pressure on the mapping step due to numerous unnecessary calcu-
lations between dissimilar pairs of sequences. Avoiding wasteful
1) data movement, 2) computation, and 3) memory space usage
using efficient algorithm-architecture co-design is critical for min-
imizing the high energy, time, and storage costs associated with
read mapping and the entire genome analysis pipeline.
5. Accelerating Variant Calling
The objective of variant calling is to identify genomic variants
between an individual’s genome and a reference genome [58–
64]. These variants are mainly categorized as single-nucleotide
polymorphisms (SNPs), insertions, deletions, and larger structural
variations (SVs). Accurate and efficient detection of these variants
is vital for understanding of the genetic basis of diseases [7],
population genetics [63], evolutionary studies [3], personalized
medicine [136] and pharmacogenomics [137].
Variant calling involves processing the read mapping output

and detecting variants. First, read mapping output is processed
by sorting and optionally identifying duplicate information to
minimize bias introduced during the polymerase chain reaction
(PCR) step of sample preparation [138]. Second, mapped reads
are analyzed to distinguish genuine variants from sequencing
errors or misalignments using resource-intensive statistical tech-
niques [59, 61, 63] or machine learning techniques [64].

Variant callers like GATK HaplotypeCaller [63] use costly prob-
abilistic calculations to analyze the likelihood of specific variants
in large sequencing datasets. DeepVariant [64], a DNN-based
variant caller, processes read alignment information as images,
demanding substantial GPU resources and memory. Reducing
computational requirements through algorithmic optimizations,
parallelization, and efficient data representation is crucial for
faster, more accurate genetic variant analyses.

To accelerate variant calling, several works propose algorithm-
architecture co-designs. These include fast execution of Pair
HiddenMarkovModels (Pair HMMs) in FPGAs or ASICs [139,140],
reducing data movement overheads in GPUs [141], and pipelining
processing steps with tools like elPrep [142] and system-on-chip
designs [143].
Although several works focus on accelerating variant calling,

there is an urgent need for further acceleration, e.g., for DNN-
based variant callers that can provide highly accurate results
while bypassing certain processing steps, potentially accelerating
the entire genome analysis pipeline.
5.1. Analysis of Variants
Following variant calling, it is critical to analyze the identified
variants to understand their functional impact on the organism
and their role in diseases, population genetics, or evolution. This
analysis involves gene annotation [65–69] and enrichment analy-
sis [70–73]. Gene annotation provides relevant information about
variants, while enrichment analysis tools identify associations
with biological processes, molecular functions, or cellular com-
ponents. Although these tools need to handle large volumes of

data, there is, to our knowledge, little work on accelerating these
steps in the genome analysis pipeline. We believe these steps are
critical for acceleration using hardware-software co-design.
6. Conclusion and Future Outlook
Rapid advancements in genomic sequencing technologies have
led to an exponential increase in generated genomic data. As data
generation continues to grow, data movement bottlenecks will
increasingly impact performance and waste energy [144,145]. Fu-
ture research in genome analysis acceleration should focus on at
least three main directions. First, addressing data movement and
storage challenges is crucial for reducing energy consumption and
improving performance. Second, integrating and pipelining mul-
tiple genome analysis steps using hardware-software co-design
can enhance efficiency by reducing both useless computation and
data movement. Third, significant potential exists in enabling
accurate and fast real-time genome analysis by co-developing
efficient algorithms together with specialized hardware, result-
ing in low-power, high-performance and cost-effective (portable)
sequencing with low latency.
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