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Abstract—Genome analysis fundamentally starts with a process known as read mapping, where
sequenced fragments of an organism’s genome are compared against a reference genome. Read
mapping is currently a major bottleneck in the entire genome analysis pipeline, because state-
of-the-art genome sequencing technologies are able to sequence a genome much faster than the
computational techniques employed to analyze the genome. We describe the ongoing journey
in significantly improving the performance of read mapping. We explain state-of-the-art algorith-
mic methods and hardware-based acceleration approaches. Algorithmic approaches exploit the
structure of the genome as well as the structure of the underlying hardware. Hardware-based
acceleration approaches exploit specialized microarchitectures or various execution paradigms
(e.g., processing inside or near memory). We conclude with the challenges of adopting these
hardware-accelerated read mappers.

GENOME ANALYSIS is the foundation of
many scientific and medical discoveries, and
serves as a key enabler of personalized medicine.
This analysis is currently limited by the inability
of modern genome sequencing technologies to
read an organism’s complete genome. Instead, se-
quencing machines extract smaller random frag-
ments of an organism’s DNA sequence, known
as reads. While the human genome contains over
three billion bases (i.e., A, C, G, T in DNA), the
length of a read is orders of magnitude smaller,
ranging from a few hundred bases (for short
reads) to a few million bases (for long reads).
Computers are used to perform genome assembly,
which reassembles read fragments back into an
entire genome sequence. Genome assembly is

currently the bottleneck to quickly and accurately
determining an individual’s entire genome, due to
the complex algorithms and large datasets used
for assembly.

A widely-used approach for genome assembly
is to perform sequence alignment, which com-
pares read fragments against a known reference
genome (i.e., a complete representative DNA se-
quence for a particular species). A process known
as read mapping matches each read generated
from sequencing to one or more possible lo-
cations within the reference genome, based on
the similarity between the read and the reference
sequence segment at that location. Unfortunately,
the bases in a read may not be identical to the
bases in the reference genome at the location that
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the read actually comes from. These differences
may be due to (1) sequencing errors (up to 0.1%
in short reads [1] and up to 20% in long reads [2],
[3]) during extraction, and (2) genetic mutations
that are specific to the individual organism’s DNA
and may not exist in the reference genome. Due
to these potential differences, the similarity be-
tween a read and a reference sequence segment
must be identified using an approximate string
matching (ASM) algorithm. The possible genetic
differences between the reference genome and
the sequenced genome are then identified using
genomic variant calling algorithms [4].

The ASM performed during read mapping
typically uses a computationally-expensive dy-
namic programming (DP) algorithm. This time-
consuming algorithm has long been a major bot-
tleneck in the entire genome analysis pipeline,
accounting for over 70% of the execution time
of read mapping [5]. The vast majority of read
mappers, such as the widely-used minimap2 [6],
are implemented as software running on CPUs.
We refer readers to a comprehensive survey [7]
for a discussion of state-of-the-art CPU-based
read mappers. Accelerating ASM can help bridge
the wide performance gap between sequencing
machines and CPU-based read mapping algo-
rithms, but faces four key challenges:

1) Due to the large datasets that a read mapper
operates on, it generates a large amount of
data movement between the CPU and main
memory. The CPU accesses off-chip main
memory through a pin-limited bus known as
the memory channel, and a high amount of
data movement across the memory channel
is extremely costly in terms of both execu-
tion time and energy [8], [9].

2) Modern sequencing machines generate read
fragments at an exponentially higher rate
than prior sequencing technologies, with
their growth far outpacing the growth in
computational power in recent years [10].
For example, the Illumina NovaSeq 6000
system can sequence about 48 human whole
genomes at 30× genome coverage (the av-
erage number of times a genomic base is
sequenced) in about two days. However,
analyzing (performing mapping and variant
calling) the sequencing data of a single hu-

man genome requires over 32 CPU hours on
a 48-core Intel Xeon processor, 23 of which
are spent on read mapping [11].

3) The first two challenges worsen when a
metagenomic sample is profiled, where the
sample donor is unknown. This requires
matching the extracted reads to thousands
of reference genomes [12].

4) There is also an urgent need for rapidly
incorporating clinical DNA sequencing and
analysis into clinical practice for rapid
surveillance of disease outbreaks (e.g.,
COVID-19 [13]) and early diagnosis of ge-
netic disorders in critically ill infants [14].

Increasing the number of CPUs used for
genome analysis decreases the overall analysis
time, but significantly increases energy consump-
tion and hardware costs. Cloud computing plat-
forms are a potential alternative to distribute the
workload at a reasonable cost, but are disallowed
due to data protection guidelines in many coun-
tries [15].

As a result, there is a dire need for new com-
putational techniques that can quickly process and
analyze a tremendous number of extracted reads
in order to drive cutting-edge advances in the ge-
netic applications space [16]. Many works boost
the performance of existing and new read map-
pers using new algorithms, hardware/software co-
design, and hardware accelerators. Our goal in
this work is to survey a prominent set of these
three types of acceleration efforts for guiding
the design of new highly-efficient read mappers.
To this end, we (1) discuss various state-of-the-
art mechanisms and techniques that improve the
execution time of read mapping using different
modern high-performance computing architec-
tures, and (2) highlight the challenges, in the last
section, that system architects and programmers
must address to enable the widespread adoption
of hardware-accelerated read mappers.

Read Mapping
The main goal of read mapping is to locate

possible subsequences of the reference genome
sequence that are similar to the read sequence
while allowing at most E edits, where E is the
edit distance threshold. Commonly allowed edits
include deletion, insertion, and substitution of
characters in one or both sequences.
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Edits can be as short as a single base pair
(bp) alteration [17] or a much longer alteration
(e.g., an insertion of about 600,000-base long
region [18]). Mapping billions of reads to the ref-
erence genome is computationally expensive [16],
[5], [19]. Therefore, most read mapping algo-
rithms apply two key heuristic steps, indexing
and filtering, to reduce the number of reference
genome segments that need to be compared with
each read. The three steps of read mapping are
shown in Figure 1a. First, a read mapper indexes
the reference genome by using substrings (called
seeds) from each read to quickly identify all
potential mapping locations of each read in the
reference genome. Second, the mapper uses filter-
ing heuristics to examine the similarity for every
sequence pair (a read sequence and one potential
matching segment in the reference genome iden-
tified during indexing). These filtering heuristics
aim to eliminate most of the dissimilar sequence
pairs. Third, the mapper performs sequence align-

ment (using ASM) to check whether or not the
remaining sequence pairs that are identified by
filtering to be similar are actually similar. The
alignment step examines all possible prefixes of
two sequences and tracks the prefixes that pro-
vide the highest possible alignment score (known
as optimal alignment). The alignment score is
a quantitative representation of the quality of
an alignment for a given user-defined scoring
function (computed based on the number of edits
and/or matches).

Alignment algorithms typically use DP-based
approaches to avoid re-examining the same pre-
fixes many times. These DP-based algorithms
provide the most accurate alignment results com-
pared to other non-DP algorithms (such as the
algorithm used in HISAT2 [20]), but they have
quadratic time and space complexity (i.e., O(m2)
for a sequence length of m). Sequence alignment
calculates information about the alignment such
as the alignment score, edit distance, and the
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Figure 1. (a) The three steps of read mapping in genome analysis: (1) indexing, (2) pre-alignment filtering, and
(3) sequence alignment. (b) Overview of the existing approaches to accelerating each step of read mapping.
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type of each edit. Edit distance is defined as the
minimum number of changes needed to convert
a sequence into the other sequence [21]. Such
information is typically output by read mapping
into a sequence alignment/map (SAM) file. Given
the time spent on read mapping, all three steps
have been targeted for acceleration. Figure 1b
summarizes the different acceleration approaches,
and we discuss a set of such works in the follow-
ing sections.

Accelerating Indexing
The indexing operation generates a table that

is indexed by the contents of a seed, and identifies
all locations where the seed exists in the reference
genome. Indexing needs to be done only once for
a reference genome, and eliminates the need to
perform ASM across the entire genome. During
read mapping, a seed from a read is looked up
in the table, and only the corresponding locations
are used for ASM (as only they can match the
entire read). The major challenge with indexing
is choosing the appropriate length and number
of to-be-indexed seeds, as they can significantly
impact the memory footprint and overall perfor-
mance of read mapping [6]. Querying short seeds
potentially leads to a large number of mapping
locations that need to be checked for a string
match. The use of long reads requires extracting
from each read a large number of seeds, as the
sequencing error rate is much higher in long
reads. This affects (1) the number of times we
query the index structure and (2) the number of
retrieved mapping locations. Thus, there are two
key approaches used for accelerating the indexing
step (Figure 1b).

Reducing the Number of Seeds
Read mapping algorithms (e.g., minimap2 [6])

typically reduce the number of seeds that are
stored in the index structure by finding the min-
imum representative set of seeds (called mini-
mizers) from a group of adjacent seeds within
a genomic region. The representative set can be
calculated by imposing an ordering (e.g. lexi-
cographically or by hash value) on a group of
adjacent seeds and storing only the seed with the
smallest order. Read mappers also apply heuris-
tics to avoid examining the mapping locations of
a seed that occur more times than a user-defined

threshold value [6]. Various data structures have
been proposed and implemented to both reduce
the storage cost of the indexing data structure and
improve the algorithmic runtime of identifying
the mapping locations within the indexing data
structure. One example of such data structures is
FM-index (implemented by Langarita et al. [22]),
which provides a compressed representation of
the full-text index, while allowing for querying
the index without the need for decompression.
This approach has two main advantages. 1) We
can query seeds of arbitrary lengths, which helps
to reduce the number of queried seeds. 2) It
typically has less (by 1.5 – 2×) memory foot-
print compared to that of the indexing step of
minimap2 [6]. However, one major bottleneck of
FM-indexes is that locating the exact matches
by querying the FM-index is significantly slower
than that of classical indexes [23], [22]. BWA-
MEM2 [23] proposes an uncompressed version of
the FM-index that is at least 10× larger than the
compressed FM-index to speed up the querying
step by 2×.

Reducing Data Movement During Indexing
RADAR [24] observes that the indexing step

is memory intensive, because the large number
of random memory accesses dominates com-
putation. The authors propose a processing-in-
memory (PIM) architecture that stores the entire
index inside the memory and enables querying the
same index concurrently using a large number of
ASIC compute units. The amount of data move-
ment is reduced from tens of gigabytes to a few
bytes for a single query task, allowing RADAR to
balance memory accesses with computation, and
thus provide speedups and energy savings.

Accelerating Pre-Alignment Filtering
After finding one or more potential mapping

locations of the read in the reference genome,
the read mapper checks the similarity between
each read and each segment extracted at these
mapping locations in the reference genome. These
segments can be similar or dissimilar to the read,
though they share common seeds. To avoid exam-
ining dissimilar sequences using computationally-
expensive sequence alignment algorithms, read
mappers typically use filtering heuristics that are
called pre-alignment filters.
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The key idea of pre-alignment filtering is to
quickly estimate the number of edits between two
given sequences and use this estimation to decide
whether or not the computationally-expensive
DP-based alignment calculation is needed — if
not, a significant amount of time is saved by
avoiding DP-based alignment. If two genomic
sequences differ by more than the edit distance
threshold, then the two sequences are identified
as dissimilar sequences and hence DP calculation
is not needed. In practice, only genomic sequence
pairs with an edit distance less than or equal to
a user-defined threshold (i.e., E) provide useful
data for most genomic studies [25], [5], [7]. Pre-
alignment filters use one of four major approaches
to quickly filter out the dissimilar sequence pairs:
(1) the pigeonhole principle, (2) base counting,
(3) q-gram filtering, or (4) sparse DP. Long read
mappers typically use q-gram filtering or sparse
DP, as their performance scales linearly with read
length and independently of the edit distance.

Pigeonhole Principle
The pigeonhole principle states that if E

items are put into E+1 boxes, then one or more
boxes would be empty. This principle can be
applied to detect dissimilar sequences and discard
them from the candidate sequence pairs used for
ASM. If two sequences differ by E edits, then
they should share at least a single subsequence
(free of edits) among E+1 non-overlapping sub-
sequences [5], where E is the edit distance thresh-
old. For a read of length m, if there are no more
than E edits between the read and the reference
segment, then the read and reference segment are
considered similar if they share at most E+1 non-
overlapping subsequences, with a total length of
at least m – E.

The problem of identifying these E+1 non-
overlapping subsequences is highly parallelizable,
as these subsequences are independent of each
other. Shouji [5] exploits the pigeonhole principle
to reduce the search space and provide a scalable
architecture that can be implemented for any
values of m and E, by examining common subse-
quences independently and rapidly with high par-
allelism. Shouji accelerates sequence alignment
by 4.2-18.8× without affecting the alignment
accuracy. We refer the reader to the sidebar for a
brief discussion of several other related works.

Sidebar: Related Works on Pre-Alignment Filtering
Using the Pigeonhole Principle

Pigeonhole-filtering-based pre-alignment filtering can ac-
celerate read mappers even without specialized hardware.
For example, the Adjacency Filter [1] accelerates sequence
alignment by up to 19×. The accuracy and speed of pre-
alignment filtering with the pigeonhole principle have been
rapidly improved over the last seven years. Shifted Hamming
Distance (SHD) [2] uses SIMD-capable CPUs to provide
high filtering speed, but supports a sequence length up to
only 128 base pairs due to the SIMD register widths. Gate-
Keeper [3] utilizes the large amounts of parallelism offered
by FPGA architectures to accelerate SHD and overcome
such sequence length limitations. MAGNET [4] provides a
comprehensive analysis of all sources of filtering inaccuracy
of GateKeeper and SHD. Shouji [5] leverages this analysis
to improve the accuracy of pre-alignment filtering by up to
two orders of magnitude compared to both GateKeeper and
SHD, using a new algorithm and a new FPGA architecture.
SneakySnake [6] achieves up to four orders of magnitude
higher filtering accuracy compared to GateKeeper and SHD
by mapping the pre-alignment filtering problem to the single
net routing (SNR) problem in VLSI chip layout. SNR finds
the shortest routing path that interconnects two terminals
on the boundaries of a VLSI chip layout in the presence
of obstacles. SneakySnake is the only pre-alignment filter
that works on CPUs, GPUs, and FPGAs. GenCache [7]
proposes to perform highly-parallel pre-alignment filtering
inside the CPU cache to reduce data movement and improve
energy efficiency, with about 20% cache area overhead.
GenCache shows that using different existing pre-alignment
filters together (similar approach to [26]), each of which
operates only for a given edit distance threshold (e.g., using
SHD only when E is between 1 and 5), provides a 2.5×
speedup over GenCache with a single pre-alignment filter.
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Base Counting
The base counting filter compares the num-

bers of bases (A, C, G, T) in the read with the cor-
responding base counts in the reference segment.
If one sequence has, for example, three more Ts
than another sequence, then their alignment has
at least three edits. If the difference in count
is greater than E, then the two sequences are
dissimilar and the reference segment is discarded.
The base counting filter is used in mrsFAST-
Ultra [27] and GASSST [26]. Such a simple
filtering approach rejects a significant fraction
of dissimilar sequences (e.g., 49.8%–80.4% of
sequences, as shown in GASSST [26]) and thus
avoids a large fraction of expensive verification
computations required by sequence alignment al-
gorithms.

q-gram Filtering Approach
The q-gram filtering approach considers all of

the sequence’s possible overlapping substrings of
length q (known as q-grams). Given a sequence of
length m, there are m – q + 1 overlapping q-grams
that are obtained by sliding a window of length
q over the sequence. A single difference in one
of the sequences can affect at most q overlapping
q-grams. Thus, E differences can affect no more
than q · E q-grams, where E is the edit distance
threshold. The minimum number of shared q-
grams between two similar sequences is therefore
(m–q+1)–(q ·E). This filtering approach requires
very simple operations (e.g., sums and compar-
isons), which makes it attractive for hardware
acceleration, such as in GRIM-Filter [25]. GRIM-
Filter exploits the high memory bandwidth and
computation capability in the logic layer of 3D-
stacked memory to accelerate q-gram filtering in
the DRAM chip itself, using a new representation
of reference genome that is friendly to in-memory
processing. q-gram filtering is generally robust
in handling only a small number of edits, as
the presence of edits in any q-gram is signifi-
cantly underestimated (e.g., counted as a single
edit) [28].

Sparse Dynamic Programming
Sparse DP algorithms exploit the exact

matches (seeds) shared between a read and a ref-
erence segment to reduce execution time. These
algorithms exclude the corresponding locations

of these seeds from estimating the number of
edits between the two sequences, as they were
already detected as exact matches during index-
ing. Sparse DP filtering techniques apply DP-
based alignment algorithms only between every
two non-overlapping seeds to quickly estimate
the total number of edits. This approach is also
known as chaining, and is used in minimap2 [6]
and rHAT [29]. The recent work in [30] presents
GPU and FPGA accelerators that achieve 7×
and 28× acceleration, respectively, compared to
the sequential implementation (executed with 14
CPU threads) of the chaining algorithm used in
minimap2.

Accelerating Sequence Alignment
After filtering out most of the mapping lo-

cations that lead to dissimilar sequence pairs,
read mapping calculates the sequence alignment
information for every read and reference segment
extracted at each mapping location. Sequence
alignment calculation is typically accelerated us-
ing one of two approaches: (1) accelerating the
DP-based algorithms using hardware accelerators
without altering algorithmic behavior, and (2) de-
veloping heuristics that sacrifice the optimality of
the alignment score solution in order to reduce
alignment time.

Despite more than three decades of attempts
to accelerate sequence alignment, the fastest
known edit distance algorithm [31] has a nearly
quadratic running time, O(m2/log2m) for a se-
quence length of m, which is proven to be a tight
bound [32]. With maintaining the algorithmic
behavior as in the first approach, it is challenging
to rapidly calculate sequence alignment of long
reads with high parallelism. As long reads have
high sequencing error rates (up to 20% of the
read length), the edit distance threshold for long
reads is typically higher than that for short reads,
which results in calculating more entries in the
DP matrix compared to that of short reads. The
use of heuristics (i.e., the second approach) helps
to reduce the number of calculated entries in the
DP matrix and hence allows both the execution
time and memory footprint to grow only linearly
with read length (as opposed to quadratically
with classical DP). Next, we describe the two
approaches in detail.
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Accurate Alignment Accelerators
From a hardware perspective, sequence align-

ment acceleration has five directions: (1) us-
ing SIMD-capable CPUs, (2) using multicore
CPUs and GPUs, (3) using FPGAs, (4) using
ASICs, and (5) using processing-in-memory ar-
chitectures. Traditional DP-based algorithms are
typically accelerated by computing only the nec-
essary regions (i.e., diagonal vectors) of the DP
matrix rather than the entire matrix, as proposed
in Ukkonen’s banded algorithm [33]. This re-
duces the search space of the DP-based algorithm
and reduces computation time. The number of
diagonal bands required for computing the DP
matrix is 2E+1, where E is the edit distance
threshold. For example, the number of entries in
the banded DP matrix for a 2 Mb long read can
be 1.2 trillion. Parasail [34] and KSW2 (used
in minimap2 [6]) exploit both Ukkonen’s banded
algorithm and SIMD-capable CPUs to compute
banded alignment for a sequence pair with a
configurable scoring function. SIMD instructions
offer significant parallelism to the matrix compu-
tation by executing the same vector operation on
multiple operands at once. KSW2 is nearly as fast
as Parasail when KSW2 does not use heuristics
(explained in the next subsection).

The multicore architecture of CPUs and
GPUs provides the ability to compute align-
ments of many independent sequence pairs con-
currently. GASAL2 [35] exploits the multi-
core architecture of both CPUs and GPUs for
highly-parallel computation of sequence align-
ment with a user-defined scoring function. Unlike
other GPU-accelerated tools, GASAL2 transfers
the bases to the GPU, without encoding them
into binary format, and hides the data trans-
fer time by overlapping GPU and CPU execu-
tion. GASAL2 is up to 20× faster than Parasail
(when executed with 56 CPU threads). BWA-
MEM2 [23] accelerates the banded sequence
alignment of its predecessor (BWA-MEM [36])
by up to 11.6×, by leveraging multicore
and SIMD parallelism. However, to achieve
such levels of acceleration, BWA-MEM2 builds
an index structure that is 6× larger than that of
minimap2.

Other designs, such as FPGASW [37], exploit
the very large number of hardware execution units
in FPGAs to form a linear systolic array [38].

Each execution unit in the systolic array is re-
sponsible for computing the value of a single
entry of the DP matrix. The systolic array com-
putes a single vector of the matrix at a time. The
data dependency between the entries restricts the
systolic array to computing the vectors sequen-
tially (e.g., top-to-bottom, left-to-right, or in an
anti-diagonal manner). FPGASW has a similar
execution time as its GPU implementation, but
is 4× more power efficient.

Specialized hardware accelerators (i.e., ASIC
designs) provide application-specific, power- and
area-efficient solutions to accelerate sequence
alignment. For example, GenAx [39] is composed
of SillaX, a sequence alignment accelerator, and
a second accelerator for finding seeds. SillaX
supports both a configurable scoring function and
traceback operations. SillaX is more efficient for
short reads than for long reads, as it consists
of an automata processor whose performance
scales quadratically with the edit distance. GenAx
is 31.7× faster than the predecessor of BWA-
MEM2 (i.e., BWA-MEM [36]) for short reads.

Recent processing-in-memory architectures
such as RAPID [40] exploit the ability to perform
computation inside or near the memory chip
to enable efficient sequence alignment. RAPID
modifies the DP-based alignment algorithm to
make it friendly to in-memory parallel compu-
tation by calculating two DP matrices: one for
calculating substitutions and exact matches and
another for calculating insertions and deletions.
RAPID claims that this approach efficiently en-
ables higher levels of parallelism compared to
traditional DP algorithms. The main two ben-
efits of RAPID and such PIM-based architec-
tures are higher performance and higher energy
efficiency [8], [9], as they alleviate the need
to transfer data between the main memory and
the CPU cores through slow and energy hungry
buses, while providing high degree of parallelism
with the help of PIM. RAPID is on average 11.8×
faster and 212.7× more power efficient than 384-
GPU cluster of GPU implementation of sequence
alignment, known as CUDAlign [41].

Heuristic-Based Alignment Accelerators
The second direction is to limit the func-

tionality of the alignment algorithm or sacrifice
the optimality of the alignment solution in order
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to reduce execution time. The use of restrictive
functionality and heuristics limits the possible
applications of the algorithms that utilize this
direction. Examples of limiting functionality in-
clude limiting the scoring function, or only taking
into account accelerating the computation of the
DP matrix without performing the backtrack-
ing step [42]. There are several existing algo-
rithms and corresponding hardware accelerators
that limit scoring function flexibility. Levenshtein
distance [21] and Myers’s bit-vector algorithm
[43] are examples of algorithms whose scoring
functions are fixed, such that they penalize all
types of edits equally when calculating the to-
tal alignment score. Restrictive scoring functions
reduce the total execution time of the alignment
algorithm and reduce the bit-width requirement of
the register that accommodates the value of each
entry in the DP matrix. ASAP [44] accelerates
Levenshtein distance calculation by up to 63.3×
using FPGAs compared to its CPU implementa-
tion. The use of a fixed scoring function as in
Edlib [45], which is the state-of-the-art imple-
mentation of Myers’s bit-vector algorithm, helps
to outperform Parasail (which uses a flexible
scoring function) by 12–1000×. One downside of
fixed function scoring is that it may lead to the
selection of a suboptimal sequence alignment.

There are other algorithms and hardware ar-
chitectures that provide low alignment time by
trading off accuracy. Darwin [16] builds a cus-
tomized hardware architecture to speed up the
alignment process, by dividing the DP matrix into
overlapping submatrices and processing each sub-
matrix independently using systolic arrays. Dar-
win provides three orders of magnitude speedup
compared to Edlib [45]. Dividing the DP ma-
trix (known as the Four-Russians Method [46])
enables significant parallelism during DP matrix
computation, but it leads to suboptimal alignment
calculation [26]. Darwin claims that choosing a
large submatrix size (≥ 320× 320) and ensuring
sufficient overlap (≥128 entries) between adja-
cent submatrices may provide optimal alignment
calculation for some datasets.

There are other proposals that limit the num-
ber of calculated entries of the DP matrix based
on one of two approaches: (1) using sparse
DP or (2) using a greedy approach to main-
tain a high alignment score. Both approaches

suffer from providing suboptimal alignment cal-
culation [47], [48]. The first approach uses the
same sparse DP algorithm used for pre-alignment
filtering but as an alignment step, as done in
the exonerate tool [47]. The second approach
is employed in X-drop [48], which (1) avoids
calculating entries (and their neighbors) whose
alignment scores are more than X below the
highest score seen so far (where X is a user-
specified parameter), and (2) stops early when
a high alignment score is not possible. The X-
drop algorithm is guaranteed to find the optimal
alignment between relatively-similar sequences
for only some scoring functions [48]. A similar
algorithm (known as Z-drop) makes KSW2 at
least 2.6× faster than Parasail. A recent GPU
implementation [49] of the X-Drop algorithm is
3.1–120.4× faster than KSW2.

There are also a large number of edit dis-
tance approximation algorithms that provide a
reduction in time complexity (e.g., O(m1.647)
instead of O(m2)), but they suffer from providing
overestimated edit distance [50], [51], [52], [53].

Discussion and Future Opportunities
Despite more than two decades of attempts,

bridging the performance gap between sequenc-
ing machines and read mapping is still challeng-
ing. We summarize four main challenges below.

First, we need to accelerate the entire read
mapping process rather than its individual steps.
Accelerating only a single step of read map-
ping limits the overall achieved speedup accord-
ing to Amdahl’s Law. Illumina and NVIDIA
have recently started following a more holistic
approach, and they claim to accelerate genome
analysis by more than 48×, mainly by using spe-
cialization and hardware/software co-design. Illu-
mina has built an FPGA-based platform, called
DRAGEN (https://www.illumina.com/produ
cts/by- type/informatics-products/dragen-bi
o- it-platform.html), that accelerates all steps
of genome analysis, including read mapping and
variant calling. DRAGEN reduces the overall
analysis time from 32 CPU hours to only 37
minutes [11]. NVIDIA has built Parabricks, a
software suite accelerated using the company’s
latest GPUs. Parabricks (https://developer.nvidia
.com/clara-parabricks) can analyze whole human
genomes at 30× coverage in about 45 minutes.
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Second, we need to reduce the high amount
of data movement that takes place during genome
analysis. Moving data (1) between compute units
and main memory, (2) between multiple hard-
ware accelerators, and (3) between the sequenc-
ing machine and the computer performing the
analysis incurs high costs in terms of execution
time and energy. These costs are a significant
barrier to enabling efficient analysis that can
keep up with sequencing technologies, and some
recent works try to tackle this problem [25],
[8], [9]. GenASM [19] is a framework that uses
bitvector-based ASM to accelerate multiple steps
of the genome analysis pipeline, and is designed
to be implemented inside 3D-stacked memory.
Through a combination of hardware–software co-
design to unlock parallelism, and processing-
in-memory to reduce data movement, GenASM
can perform (1) pre-alignment filtering for short
reads, (2) sequence alignment for both short and
long reads, and (3) whole genome alignment,
among other use cases. For short/long read align-
ment, GenASM achieves 111×/116× speedup
over state-of-the-art software read mappers while
reducing power consumption by 33×/37×. DRA-
GEN reduces data movement between the se-
quencing machine and the computer performing
analysis by adding specialized hardware support
inside the sequencing machine for data compres-
sion. However, this still requires movement of
compressed data. Performing read mapping inside
the sequencing machine itself can significantly
improve efficiency by eliminating sequencer-to-
computer movement, and embedding a single spe-
cialized chip for read mapping within a portable
sequencing device can potentially enable new
applications of genome sequencing (e.g., rapid
surveillance of diseases such as Ebola [54] and
COVID-19 [13], near-patient testing, bringing
precision medicine to remote locations). Unfor-
tunately, efforts in this direction remain very
limited.

Third, we need to develop flexible hardware
architectures that do not conservatively limit the
range of supported parameter values at design
time. Commonly-used read mappers (e.g., min-
imap2) have different input parameters, each of
which has a wide range of input values. For
example, the edit distance threshold is typically

user defined and can be very high (15-20% of the
read length) for recent long reads. A configurable
scoring function is another example, as it deter-
mines the number of bits needed to store each
entry of the DP matrix (e.g., DRAGEN imposes
a restriction on the maximum frequency of seed
occurrence). Due to rapid changes in sequencing
technologies (e.g., high sequencing error rate and
longer read lengths) [55], [56], these design re-
strictions can quickly make specialized hardware
obsolete. Thus, read mappers need to adapt their
algorithms and their hardware architectures to be
modular and scalable so that they can be imple-
mented for any sequence length and edit distance
threshold based on the sequencing technology.

Fourth, we need to adapt existing genomic
data formats for hardware accelerators or develop
more efficient file formats. Most sequencing
data is stored in the FASTQ/FASTA format,
where each base takes a single byte (8 bits)
of memory. This encoding is inefficient, as
only 2 bits (3 bits when the ambiguous base,
N, is included) are needed to encode each
DNA base. The sequencing machine converts
sequenced bases into FASTQ/FASTA format,
and hardware accelerators convert the file
contents into unique (for each accelerator)
compact binary representations for efficient
processing. This process that requires multiple
format conversions wastes time. For example,
only 43% of the sequence alignment time
in BWA-MEM2 [23] is spent on calculating
the DP matrix, while 33% of the sequence
alignment time is spent on pre-processing the
input sequences for loading into SIMD registers,
as provided in [23]. To address this inefficiency,
we need to widely adopt efficient hardware-
friendly formats, such as UCSC’s 2bit format
(https://genome.ucsc.edu/goldenPath/help/twoBit),
to maximize the benefits of hardware accelerators
and reduce resource utilization. We are not aware
of any recent read mapper that uses such formats.

The acceleration efforts we highlight in this
work represent state-of-the-art efforts to re-
duce current bottlenecks in the genome analysis
pipeline. We hope that these efforts and the chal-
lenges we discuss provide a foundation for future
work in accelerating read mappers and developing
other genome sequence analysis tools.
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